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Abstract

In this paper, we propose a new super-expressive activation function called the Parametric Elementary Universal
Activation Function (PEUAF). We demonstrate the effectiveness of PEUAF through systematic and comprehensive
experiments on various industrial and image datasets, including CIFAR10, Tiny-ImageNet, and ImageNet. Moreover,
we significantly generalize the family of super-expressive activation functions, whose existence has been demonstrated
in several recent works by showing that any continuous function can be approximated to any desired accuracy by a
fixed-size network with a specific super-expressive activation function. Specifically, our work addresses two major
bottlenecks in impeding the development of super-expressive activation functions: the limited identification of super-
expressive functions, which raises doubts about their broad applicability, and their often peculiar forms, which lead to
skepticism regarding their scalability and practicality in real-world applications.
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1. INTRODUCTION1

In recent years, deep learning has achieved significant2

success in many critical areas (LeCun et al., 2015). A3

major factor contributing to this success is the develop-4

ment of highly effective nonlinear activation functions,5

which greatly enhance the information processing ca-6

pabilities of neural networks. While established options7

like the Rectified Linear Unit (ReLU) and its variants8

are widely used (Nair and Hinton, 2010), the fundamen-9

tal importance of activation functions makes the search10

for better ones a continuous effort. Researchers are per-11

sistently working to design and evaluate various activa-12

tion functions through both theoretical analysis and em-13

pirical studies (Bingham and Miikkulainen, 2022; Api-14

cella et al., 2021; Wang et al., 2024).15

In the realm of approximation theory, it has been16

shown that certain activation functions can empower a17

neural network with a simple structure to approximate18

any continuous function with an arbitrarily small error,19

using a fixed number of neurons (Maiorov and Pinkus,20

∗Corresponding author, hitfanfenglei@gmail.com
∗∗Qianchao Wang and Shijun Zhang are co-first authors.

1999). These functions are termed “super-expressive21

activation functions” (Yarotsky, 2021). According to22

research, to achieve super-expressiveness, an activa-23

tion function should possess both periodic and analyt-24

ical components (Shen et al., 2022; Yarotsky, 2021).25

One such example is the elementary universal activation26

function (EUAF), defined as follows:27

EUAF(x) B


∣∣∣x − 2⌊ x+1

2 ⌋
∣∣∣ for x ≥ 0,

x
1+|x| for x < 0,

Figure 1 depicts EUAF, an analytical function on28

(−∞, 0) and periodic on [0,∞). The unique and highly29

desirable property of super-expressiveness allows neu-30

ral networks to achieve precise approximation accu-31

racy without increasing network complexity. This con-32

trasts with traditional universal approximation meth-33

ods, where more complex structures and a higher num-34

ber of neurons are required as the approximation error35

decreases. By integrating super-expressive activation36

functions, one can attain the desired approximation ac-37

curacy by merely adjusting parameters, thus maintain-38

ing a simpler network architecture.39

To the best of our knowledge, the development of40
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Figure 1: An illustration of EUAF.

super-expressive activation functions faces two tech-41

nical challenges that hinder their potential value to42

neural networks: 1) First, only a limited number of43

super-expressive functions have been identified so far44

(Maiorov and Pinkus, 1999; Shen et al., 2022; Yarot-45

sky, 2021). It is unclear if the super-expressive property46

can be broadly applied. Additionally, for deep learn-47

ing practitioners, having a greater variety of activation48

functions that exhibit learning capabilities is necessary49

in terms of enriching their armory. Developing more50

super-expressive functions increases the likelihood of51

finding their utilities in important applications, as dif-52

ferent activation functions differ in their trainability. 2)53

Second, the practical utility of super-expressive activa-54

tion functions is questionable. While superior expres-55

siveness can be theoretically established through spe-56

cialized constructions that demonstrate the existence of57

an expressive solution (Shen et al., 2021; Yarotsky,58

2021), this does not necessarily translate to better prac-59

tical performance. Furthermore, it is unclear whether60

gradient-based methods can effectively learn good solu-61

tions for networks using these functions.62

Compared to commonly used functions like ReLU,63

sigmoid, and tanh, super-expressive functions usu-64

ally have peculiar shapes. For example, Figure 1 shows65

EUAF, which is a typical super-expressive activation66

function. It has a complex and intimidating form, which67

makes most practitioners skeptical about its scalability68

and practicality in real-world applications. If we can69

demonstrate the practical utility of any super-expressive70

activation function, it could help resolve the skepticism71

and bridge the gap between their theoretical elegance72

and usefulness.73

In addressing the first bottleneck, we substan-74

tially generalize the scope of EUAF to encompass a75

large family of functions capable of achieving super-76

expressiveness. Specifically, an activation function ρ77

is considered to be super-expressive if it is real ana-78

lytic within a small interval and a fixed-size ρ-activated79

network can reproduce a triangle-wave function. To80

address the second bottleneck, we believe that super-81

expressive functions can indeed be practically useful.82

Previous studies (Sitzmann et al., 2020; Ramirez et al.,83

2023) successfully applied the periodic function sin84

as an activation function within the implicit neural rep-85

resentation. These models have been demonstrated86

to be suitable for representing complex signals and87

their derivatives, as well as for solving challenging88

boundary value problems (Liu et al., 2022a). These89

studies provide valuable insights into the potential of90

super-expressive activation functions, since both super-91

expressive activation functions and sin share periodic-92

ity. Moreover, from the perspective of signal decompo-93

sition, normal activation functions like ReLU tend to as-94

sist models in identifying the direct component (DC) of95

a signal (Lee et al., 2024). In contrast, super-expressive96

activation functions can better handle stationary signals97

due to their inherent periodicity. This characteristic en-98

hances their ability to manage complex real-world sig-99

nals more efficiently.100

Specifically, we choose EUAF as our representative101

and investigate a parameterized variant, named PEUAF,102

which adaptively learns the frequency w on the positive103

side. Mathematically,104

PEUAF(x) B


∣∣∣wx − 2⌊wx+1

2 ⌋
∣∣∣ for x ≥ 0,

x
1+|x| for x < 0,

where w is the trainable parameter representing the fre-105

quency on the positive side. PEUAF can adaptively ex-106

tract the stationary signals with different frequencies.107

This adaptability allows PEUAF to effectively capture108

and represent signals with diverse frequency compo-109

nents, which is particularly advantageous in addressing110

real-world signal complexities. Then, we validate the111

effectiveness of PEUAF by experimenting with four in-112

dustrial datasets (1D data) and three image datasets (2D113

data). For industrial datasets, our tests show that PEUAF114

surpasses other activation functions in terms of test ac-115

curacy, convergence speed, and fault localization ability.116

For image datasets, we find that combining PEUAFwith117

other activation functions can usually yield better per-118

formance than only using a single activation function,119

although using PEUAF alone cannot achieve satisfac-120

tory performance. Thus, PEUAF can serve as a valuable121

add-on to the network. Our main contributions are as122

follows:123

• We provide a non-trivial generalization of EUAF,124

showing that a broader family of activation func-125

tions can achieve super-expressiveness.126

• We bridge the gap between the theoretical elegance127

and empirical usefulness of super-expressive func-128

tions by demonstrating their competitive perfor-129

mance in practical applications through systematic130
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experiments on four industrial datasets and three131

image datasets including ImageNet.132

• We introduce PEUAF, a parameterized version of133

EUAF, and demonstrate that PEUAF can be used134

individually or in conjunction with other well-135

performing activation functions.136

2. RELATED WORK137

In the field of artificial intelligence, deep neural net-138

works have proven to be highly effective tools. These139

networks leverage the power of interconnected nodes140

structured in multiple layers, allowing them to excel in141

a wide range of complex applications and new domains.142

At their core, deep neural networks rely on an affine143

linear transformation followed by a nonlinear activation144

function. The nonlinear activation function is essential145

for the successful training of these networks.146

Later in this section, we will first review conventional147

activation functions including ReLU and its variants,148

as well as recent sigmoidal activation functions in Sec-149

tion 2.1. We will then discuss super-expressive activa-150

tion functions in Section 2.2.151

2.1. Conventional Activation Functions152

In recent years, the Rectified Linear Unit153

(ReLU (Nair and Hinton, 2010)), defined as154

ReLU(x) = max(0, x), has gained popularity and155

recognition for its effectiveness in addressing the gra-156

dient vanishing and explosion issues encountered with157

Sigmoid and Tanh activation functions. Thus, ReLU158

has been widely used in the deep learning community159

such as industrial fault diagnosis (Liu et al., 2024a) and160

medical image segmentation (Liu et al., 2024b) . How-161

ever, ReLU can suffer from the occurrence of a number162

of “dead neurons”, which results in information loss163

and can hurt the neural network’s feature processing164

ability. To mitigate this issue, several variants of ReLU165

have been introduced such as Leaky Rectified Linear166

Unit (LReLU) (Xu et al., 2015), Parametric Rectified167

Linear Unit (PReLU) (He et al., 2015), Randomized168

Leaky Rectified Linear Unit (RReLU) (Xu et al., 2015),169

Exponential Linear Unit (ELU) (Clevert et al., 2015),170

Gaussian Error Linear Unit (GELU) (Hendrycks and171

Gimpel, 2016), and Generalized Linear Unit (GENLU)172

(Fan et al., 2020). Most recently, Goldenstein et al.173

(2024) proposed Self-Normalizing ReLU or NeLU174

to ensure that the prediction model is not affected175

by the noise level during testing. It has been tested176

in synthetic data and image de-noising tasks. These177

variants represents a significant advancement in ac-178

tivation function design, offering adaptability and179

potentially better performance. Whereas, their benefits180

come with the cost of increased model complexity or181

computation burden and the need for careful tuning182

and regularization which inspired researchers to create183

more different activation functions.184

In addition to these ReLU variants, other kinds of ac-185

tivation functions have also been developed. For ex-186

ample, the Swish (Swish(x) = x · sigmoid(βx)) (Ra-187

machandran et al., 2017) was identified through an au-188

tomated search using a combination of exhaustive and189

reinforcement learning as an alternative to ReLU. Its190

similar shape makes it a reasonable proxy for ReLU in191

deep learning applications. Mish, defined as Mish(x) =192

x·tanh(softplus(x)) (Misra, 2020), exhibits superior em-193

pirical results compared to ReLU, Swish, and LReLU194

in CIFAR-10 and ImageNet classification tasks. Frac-195

tional adaptive linear units FALUs (Zamora et al., 2022)196

incorporate fractional calculus principles into activation197

functions, thereby defining a diverse family of activa-198

tion functions. It has demonstrated enhanced perfor-199

mance in image classification tasks, improving test ac-200

curacy. The Seagull activation function, introduced201

by (Gao and Zhang, 2023), stands out as a customized202

activation function designed for applications in regres-203

sion tasks featuring a partially exchangeable target func-204

tion. It exhibits superiority in addressing the specific205

demands of regression scenarios.206

Overall, the above-mentioned activation functions are207

hard to be generalized across different domains, espe-208

cially in industrial applications. Another problem is that209

the lack of theoretical analysis limits the acceptance of210

these activation functions in spite of their good perfor-211

mance. Therefore, it is necessary to verify an activation212

function with a good theoretical guarantee.213

2.2. Super-Expressive Activation Functions214

Numerous studies have explored new activation func-215

tions to make a fixed-size network achieve an arbitrary216

error, referred to as super-expressive activation func-217

tions. For example, Maiorov and Pinkus (1999) pro-218

posed an activation function to achieve this goal, but219

it lacks a closed form and is computationally impracti-220

cal. Recently, Yarotsky (2021) demonstrated that simple221

functions such as (sin,arcsin) can achieve super-222

expressiveness, although the relationship between the223

network size and the dimension was unclear. How-224

ever, despite the above problems, sin has been proven225

to be effective in 3D neural network field, indicating226

the potential of super-expressiveness in neural networks227

(Ramirez et al., 2023). Shen et al. (2022) proposed228
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EUAF, showing that a network with EUAF requires229

only O(d2) width and O(1) depth to achieve super-230

expressiveness. The potential of EUAF is demonstrated231

among simple experiments such as function approxima-232

tion and Fashion-MNIST classification. They also ex-233

plored the approximation of a neural network with three234

hidden layers which is named Floor-Exponential-Step235

(FLES) networks (Shen et al., 2021). The utilized floor236

function (⌊x⌋) can be recognized as an activation func-237

tion with super-expressiveness (Yarotsky, 2021). In a238

word, these super-expressive activation functions play239

a theoretically pivotal role in endowing models with240

the universal approximation property for all continu-241

ous functions. However, previous research either lacked242

experiments or only included simple ones, leaving it243

unknown whether these super-expressive functions are244

practically valuable.245

3. Enriching the Family of Super-expressive Activa-246

tion Functions247

In this section, we aim to significantly expand the248

scope of EUAF activation function by introducing a249

comprehensive collection of activation functions, each250

with approximation properties akin to those of EUAF.251

For simplicity, let NNϱ{N, L; Rd → Rn} denote the set252

of neural networks ϕ : Rd → Rn that can be represented253

by ϱ-activated networks, with a maximum width of N254

and a maximum depth of L. Let A represent the set255

of all super-expressive activation functions ϱ : R → R,256

which satisfy the following conditions:257

• There exists an interval (α, β) with α < β where ϱ258

is real analytic and non-polynomial on (α, β).259

• There exists a fixed-size ϱ-activated network ϕ that260

can reproduce a triangle-wave function on [0,∞),261

i.e.,262

ϕ(x) =
∣∣∣x − 2

⌊ x+1
2

⌋∣∣∣ ∀ x ∈ [0,∞).

We denote A as the “closure” of A . This means a func-263

tion ϱ is in A if and only if, for any A > 0 and ε > 0,264

there exists a ϱε ∈ A such that:265

|ϱε(x) − ϱ(x)| < ε ∀ x ∈ [−A, A].

Theorem 1. Given any ϱ ∈ A , the hypothesis
space

NNϱ
{
O(d2), O(1); Rd→R

}
is dense in C([a, b]d) in terms of the supremum
norm.

266

It is crucial to highlight that the constants in the O(·)267

notation in Theorem 1 can be explicitly determined and268

depend only on the choice of ϱ. The proof of Theorem 1269

will be provided later in this section.270

Before giving the proof, let us provide several exam-271

ples in A . The first example, ϱ1 ∈ A , exhibits an S-272

shape and is defined as follows:273

ϱ1 B

 x
1−x for x ≤ 0,

x
1+x +

g(x)
x2+10 for x > 0,

where g(x) =
∣∣∣x − 2

⌊ x+1
2

⌋∣∣∣ for any x ∈ R.274

The second example, ϱ ∈ A , resembles the ReLU275

activation function and is defined as follows:276

ϱ2 B

0 for x ≤ 0,
x + g(x)

x+1 for x > 0.

The third example, ϱ1 ∈ A ⊆ A , is defined as fol-277

lows:278

ϱ3 B

 2
π

arcsin(x) for − 1 ≤ x ≤ 1,
sin( π2 x) for |x| > 1.

See Figure 2 for visual representations of ϱ1, ϱ2, and ϱ3.279
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Figure 2: Illustrations of ϱ1, ϱ2, and ϱ3.
280

Now, we will focus on proving the validity of Theo-281

rem 1. Given any any f ∈ C([a, b]d) and ε > 0, our goal282

is to construct ϕ ∈ NNϱ{O(d2), O(1); Rd → Rn} such283

that284

|ϕ(x) − f (x)| < ε ∀ x ∈ [a, b]d.

Several concepts used to establish Theorem 1 can be285

traced back to the research conducted by (Shen et al.,286

2022) and (Yarotsky, 2021). The proof can be divided287

into three main steps as follows.288

• The primary objective of the first step is to create289

a neural network that effectively approximates the290

univariate function f ∈ C([0, 1]) within a specific291

“half” interval.292
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Theorem 2. Given any f ∈ C([0, 1]), ϱ ∈ A ,
ε > 0, and K ∈ N, suppose for any x1, x2 ∈

[0, 1], it holds that

| f (x1) − f (x2)| < ε/2 if |x1 − x2| < 1/K. (1)

Then there exists ϕ ∈ NNϱ{O(1), O(1); R →
R} such that

|ϕ(x) − f (x)| < ε for any x ∈
K−1⋃
k=0

[ 2k
2K ,

2k+1
2K

]
.

293

• The second step’s aim is to utilize the outcome of294

the first step, Theorem 2, to build a network that295

effectively approximates the function f ∈ C([a, b])296

within the entire interval [a, b].297

Theorem 3. Given any f ∈ C([a, b]),
ϱ ∈ A , and ε > 0, there exists ϕ ∈

NNϱ{O(1), O(1); R→R} such that

|ϕ(x) − f (x)| < ε for any x ∈ [a, b].
298

• The ultimate objective of the final step is to gen-299

eralize the one-dimensional findings described in300

Theorem 3 to the multi-dimensional scenario. To301

achieve this, we will utilize Kolmogorov’s su-302

perposition theorem (KST) (Kolmogorov, 1957),303

summarized in Theorem 4. It is important to note304

that the target function f ∈ C([a, b]d) can be ap-305

propriately rescaled to facilitate the application of306

KST.307

Theorem 4 (KST). There exist continuous
functions hi, j ∈ C([0, 1]) for i = 0, 1, · · · , 2d
and j = 1, 2, · · · , d such that any continuous
function f ∈ C([0, 1]d) can be represented as

f (x) =
2d∑
i=0

gi

( d∑
j=1

hi, j(x j)
)

for any x = (x1, · · · , xd) ∈ [0, 1]d, where gi :
R → R is a continuous function for each i ∈
{0, 1, · · · , 2d}.

308

We observe that it is sufficient to demonstrate the case309

where ϱ ∈ A rather than ϱ ∈ A , aided by the following310

lemma.311

Lemma 1 (Proposition 10 of (Zhang et al., 2024)).
Given two functions ϱ, ϱ̃ : R → R with ϱ̃ ∈
C(R), suppose for any M > 0, there exists ϱ̃η ∈
NNϱ

{
Ñ, L̃; R→R

}
for each η ∈ (0, 1) such that

ϱ̃η(x) ⇒ ϱ̃(x) as η→ 0+ for any x ∈ [−M,M].

Assuming ϕϱ̃ ∈ NNϱ̃
{
N, L; d → n

}
, for any ε > 0

and A > 0, there exists ϕϱ ∈ NNϱ
{
Ñ·N, L̃·L; Rd→

Rn} such that∥∥∥ϕϱ − ϕϱ̃∥∥∥sup([−A,A]d) < ε.

312

Now let’s prove the utilized theorems.313

3.1. Proof of Theorem 2314

Partition [0, 1] into 2K small intervals Ik and Ĩk for315

k = 1, 2, · · · ,K, i.e.,316

Ik =
[ 2k−2

2K , 2k−1
2K

]
and Ĩk =

[ 2k−1
2K , 2k

2K
]
.

Clearly, [0, 1] =
⋃K

k=1(Ik ∪ Ĩk). Let xk be the right317

endpoint of Ik, i.e., xk =
2k−1
2K for k = 1, 2, · · · ,K.318

See an illustration of Ik, Ĩk, and xk in Figure 3 for319

the case K = 5. Our objective is to construct ϕ ∈

0.0 0.2 0.4 0.6 0.8 1.0

Ĩ1I1

x1

Ĩ2I2

x2

Ĩ3I3

x3

Ĩ4I4

x4

Ĩ5I5

x5

xk for k ∈ {1, 2, 3, 4, 5} Ik for k ∈ {1, 2, 3, 4, 5} Ĩk for k ∈ {1, 2, 3, 4, 5}

Figure 3: An illustration of Ik and Ĩk for k ∈ {1, 2, · · · ,K}with K = 5.

320

NNϱ{O(1), O(1); R→ R} to achieve accurate approx-321

imations of f within Ik for k = 1, 2, · · · ,K. It is not322

essential to consider the values of ϕ within Ĩk for all k.323

In other words, our focus is primarily on achieving ac-324

curate approximations within one “half” of the interval325

[0, 1], which is the crucial element in our proof.326

Define ψ(x) B x − σ(x) for any x ∈ R, where σ ∈327

NNϱ{O(1), O(1); R→R} with328

σ(x) =
∣∣∣x − 2

⌊ x+1
2

⌋∣∣∣ for x ≥ 0.

See Figure 4 for an illustration of ψ.329

It easy to verifty that330

ψ(2Kx)/2 + 1 = k for any x ∈ [ 2k−2
2K , 2k−1

2K ] = Ik. (2)

We will make use of the two following lemmas to sim-331

plify our proof.332
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Figure 4: An illustration of ψ on [0, 10].

Lemma 2 (Lemma 23 of Shen et al. (2022)). Given
any rationally independent numbers a1, a2, · · · , aK

for any K ∈ N+ and an arbitrary periodic function
g : R → R with period T , i.e., g(x + T ) = g(x)
for any x ∈ R, assume there exist x1, x2 ∈ R with
0 < x2−x1 < T such that g is continuous on [x1, x2].
Then the following set{(

u · g(wa1) + v, · · · , u · g(waK) + v
)

: u,w, v ∈ R
}

is dense in RK provided that

min
x∈[x1,x2]

g(x) < max
x∈[x1,x2]

g(x).

333

Lemma 3. Given K ∈ N+, suppose ϱ is real ana-
lytic and non-polynomial on an interval (α, β) with
β > α. Then there exists w0 ∈

(
−

β−α
2K ,

β−α
2K

)
such

that ϱ
(α+β

2 + kw0
)
, for {k = 1, 2, · · · ,K}, are ratio-

nally independent.
334

Proof. We prove this lemma by contradiction. If it does335

not hold, then ϱ
(α+β

2 + kw
)
, for {k = 1, 2, · · · ,K}, are ra-336

tionally dependent for any w ∈
(
−

β−α
2K ,

β−α
2K

)
= I. That337

means, for any w ∈ I, there exists λ = (λ1, · · · , λK) ∈338

QK\{0} such that
∑K

k=1 λkϱ
(α+β

2 + kw
)
= 0. We observe339

that I is uncountable and QK\{0} is countable. It fol-340

lows that there exists λ = (λ1, · · · , λK) ∈ QK\{0} such341

that
∑K

k=1 λkϱ
(α+β

2 + kw
)
= 0 for all w in an uncount-342

able subset of I. Then the real analyticity of ϱ implies343 ∑K
k=1 λkϱ

(α+β
2 + kw

)
= 0 for all w ∈ I. By expand-344

ing
∑K

k=1 λkϱ
(α+β

2 + kw
)

into the Taylor series at w = 0,345

we get the identity
∑K

k=1 λkkm = 0 for each m with346

dmϱ
dwm

(
α+β

2

)
, 0. Since ϱ is non-polynomial on (α, β) ∋347

α+β
2 , there are infinitely many m with dmϱ

dwm

(
α+β

2

)
, 0, im-348

plying
∑K

k=1 λkkm = 0. This means λ = (λ1, · · · , λK) = 0,349

a contradiction with λ ∈ QK\{0}. So we finish the proof350

of Lemma 3.351

Now, let us return to the proof of Theorem 2. We352

can employ Lemma 3 to produce a collection of ratio-353

nally independent numbers. Specifically, there exists a354

value w0 such that a1, a2, · · · , aK are linearly indepen-355

dent, where each ak is defined as ak = ϱ
(
α+β

2 + kw0

)
.356

Next, define357

g(x) =
∣∣∣x − 2

⌊ x+1
2

⌋∣∣∣ for x ∈ R.

By Lemma 2, there exists u1,w1, v1 ∈ R such that358 ∣∣∣u1 · g(w1ak) + v1 − f (xk)
∣∣∣ < ε/2 for any k.

Sinceσ(x) = g(x) for any x ≥ 0 and g is periodic with359

period 2, we can choose a sufficiently large m0 ∈ N360

such that361 ∣∣∣u1σ(w1ak + 2m0) + v1 − f (xk)
∣∣∣

=
∣∣∣u1g(w1ak + 2m0) + v1 − f (xk)

∣∣∣
=

∣∣∣u1g(w1ak) + v1 − f (xk)
∣∣∣ < ε/2,

for k = 1, 2, · · · ,K. Define362

ϕ(x) = u1σ
(
w1ϱ

(
α+β

2 + (ψ(2kx)
2 − 1)w0

)
+ 2m0

)
+ v1.

For any x ∈ Ik, we have363

ϕ(x) = u1σ
(
w1ϱ

(
α+β

2 + (ψ(2kx)
2 − 1)w0

)
+ 2m0

)
+ v1

= u1σ
(
w1ϱ

(α+β
2 + kw0

)
+ 2m0

)
+ v1

= u1σ
(
w1ak + 2m0

)
+ v1,

implying364

|ϕ(x) − f (x)| ≤ |ϕ(x) − f (xk)|︸          ︷︷          ︸
<ε/2

+ | f (xk) − f (x)|︸          ︷︷          ︸
<ε/2 by (1)

< ε.

It follows that365

|ϕ(x) − f (x)| < ε for any x ∈
K−1⋃
k=0

[ 2k
2K ,

2k+1
2K

]
.

Moreover, we can easily verify ϕ ∈366

NNϱ{O(1), O(1); R → R}. So we finish the proof of367

Theorem 2.368

3.2. Proof of Theorem 3 based on Theorem 2.369

We claim it suffices to prove the special case [a, b] =370

[0, 1
2 ] as this simplification readily extends to the371

broader scenario. To see this, we simply introduce a372

linear function L : [0, 1
2 ] → [a, b] by defining L(x) =373

2(b−a)x+a. The special case implies f ◦L : [0, 1
2 ]→ R374

can be approximated by a network ϕ̃ arbitrarily well.375

Then ϕ = ϕ̃ ◦ L−1 can approximate f : [a, b]→ R well,376

as desired.377
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We can continuously extend f from [0, 1
2 ] to R by378

setting f (x) = f (0) if x < 0 and f (x) = f ( 1
2 ) if x > 1

2 . It379

follows from the uniform continuity of f on [−1, 2] that380

there exists K = K( f , ε) ∈ N+ with K ≥ 2 such that for381

any x1, x2 ∈ [−1, 2],382

| f (x1) − f (x2)| < ε/10 if |x1 − x2| < 1/K.

For i = 1, 2, 3, 4, define383

fi(x) B f
(
x − i

4K
)

for any x ∈ [0, 1].

Then, for i = 1, 2, 3, 4 and x1, x2 ∈ [0, 1], we have384

| fi(x1) − fi(x2)| < ε/10 = ε̃/2 if |x1 − x2| < 1/K,

where ε̃ = ε/5. For each i ∈ {1, 2, 3, 4}, by Theorem 2,385

there exists ϕi ∈ NNϱ{O(1), O(1); R→R} such that386

∣∣∣ϕi(x) − fi(x)
∣∣∣ < ε̃ = ε/5 for any x ∈

K−1⋃
k=0

[ 2k
2K ,

2k+1
2K

]
.

Define387

ψ(x) = σ
(
x + 1 − σ(x + 1)

)
for any x ∈ R,

where σ ∈ NNϱ{O(1), O(1); R→R} with388

σ(x) =
∣∣∣x − 2

⌊ x+1
2

⌋∣∣∣ for x ≥ 0.

See an illustration of ψ on [0, 2K] for K = 5 in Figure 5.389

0 1 2 3 4 5 6 7 8 9 10
0

1

ψ

Figure 5: An illustration of ψ on [0, 2K] for K = 5.

Clearly, 0 ≤ ψ(2Kx) ≤ 1 for any x ∈ [0, 1], from390

which we deduce391 ∣∣∣∣(ϕi(x) − fi(x)
)
ψ(2Kx)

∣∣∣∣ < ε/5 ∀ x ∈
K−1⋃
k=0

[ 2k
2K ,

2k+1
2K

]
.

Observe that ψ(y) = 0 for y ∈
⋃K−1

k=0 [2k + 1, 2k + 2],392

which implies393

ψ(2Kx) = 0 for any x ∈
K−1⋃
k=0

[ 2k+1
2K , 2k+2

2K ].

Subsequently, by the fact394

[0, 1] =
( K−1⋃

k=0

[ 2k
2K ,

2k+1
2K

])⋃( K−1⋃
k=0

[ 2k
2K ,

2k+1
2K

])
,

we have395 ∣∣∣∣(ϕi(x) − fi(x)
)
ψ(2Kx)

∣∣∣∣ < ε/5 for any x ∈ [0, 1]. (3)

For each i ∈ {1, 2, 3, 4} and any z ∈ [0, 1
2 ] ⊆ [0, 1 −396

1
K ] ⊆ [0, 1 − i

4K ], we have397

yi = z + i
4K ∈ [ i

4K , 1] ⊆ [0, 1].

By bringing x = yi ∈ [0, 1] into Equation (3), we get398

ε/5 >
∣∣∣∣(ϕi(yi) − fi(yi)

)
ψ(2Kyi)

∣∣∣∣
=

∣∣∣∣ϕi(yi)ψ(2Kyi) − fi(yi)ψ(2Kyi)
∣∣∣∣

=
∣∣∣∣ϕi(z + i

4K )ψ
(
2K(z + i

4K )
)
− fi(z + i

4K )ψ
(
2K(z + i

4K )
)∣∣∣∣

=
∣∣∣∣ϕi(z + i

4K )ψ
(
2Kz + i

2
)
− f (z)ψ

(
2Kz + i

2
)∣∣∣∣

for any z ∈ [0, 1
2 ], where the last equality comes from399

the fact that fi(x) = f (x − i
4K ) for any x ∈ [0, 1] ⊇400

[ i
4K , 1]. Define401

ϕ̃(x) B
4∑

i=1

ϕi(x + i
4K )ψ

(
2Kx + i

2
)

for any x ∈ [0, 1
2 ].

It is easy to verify that
∑4

i=1 ψ
(
x + i

2
)
= 1 for any x ≥ 0402

based on the definition of ψ. See Figure 6 for illus-403

trations. It follows that
∑4

i=1 ψ
(
2Kz + i

2
)
= 1 for any404

z ∈ [0, 1
2 ].405

0 1 2 3 4 5 6 7 8 9 10
0

1

ψ(x + 1/2) ψ(x + 2/2)

0 1 2 3 4 5 6 7 8 9 10
0

1

∑2
i=1ψ(x + i/2) ψ(x + 3/2)

0 1 2 3 4 5 6 7 8 9 10
0

1

∑3
i=1ψ(x + i/2) ψ(x + 4/2)

0 1 2 3 4 5 6 7 8 9 10
0

1

∑4
i=1ψ(x + i/2)

Figure 6: Illustrations of
∑4

i=1 ψ(x + i/2) = 1 for any x ∈ [0, 10].

Hence, for any z ∈ [0, 1
2 ], we have406 ∣∣∣ϕ̃(z) − f (z)

∣∣∣
=

∣∣∣∣ 4∑
i=1

ϕi(z + i
4K )ψ

(
2Kz + i

2
)
− f (z)

4∑
i=1

ψ
(
2Kz + i

2
)∣∣∣∣

≤

4∑
i=1

∣∣∣∣ϕi(z + i
4K )ψ

(
2Kz + i

2
)
− f (z)ψ

(
2Kz + i

2
)∣∣∣∣

< 4 ·
ε

5
=

4ε
5
.

To approximate (x, y) 7→ xy well, we define407

Γδ(x, y) B ϱ(x0+δx+δy)−ϱ(x0+δy)−ϱ(x0+δx)+ϱ(x0)
δ2ϱ′′(x0)
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for any x, y ∈ R, where ϱ′′(x0) , 0. Clearly, Γδ(x, y) →408

xy as δ→ 0. Then we can define409

ϕδ(x) B
4∑

i=1

Γδ
(
ϕi(x + i

4K ), ψ
(
2Kx + i

2
))
∀ x ∈ [0, 1

2 ].

Clearly, ϕδ ∈ NNϱ{O(1), O(1); R→R}. Moreover, we410

can choose a sufficiently small δ0 > 0 such that411

|ϕδ0 (x) − ϕ̃(x)| < ε/5 for any x ∈ [0, 1
2 ].

By defining ϕ B ϕδ0 ∈ NNϱ{O(1), O(1); R→ R}, we412

have413

|ϕ(x) − f (x)| ≤ |ϕδ0 (x) − ϕ̃(x)|︸           ︷︷           ︸
<ε/5

+ |ϕ̃(x) − f (x)|︸         ︷︷         ︸
<4ε/5

< ε

for any x ∈ [0, 1
2 ]. So we finish the proof of Theorem 3.414

3.3. Proof of Theorem 1 based on Theorem 3 and KST.415

We can safely assume that [a, b] = [0, 1] since the416

general case can be readily extended by incorporating417

an affine map such as L(a) = (b − a)x + a. Given any418

f ∈ C([0, 1]d), by KST, there exist hi, j ∈ C([0, 1]) and419

gi ∈ C(R) for i = 0, 1, · · · , 2d and j = 1, 2, · · · , d such420

that421

f (x) =
2d∑
i=0

gi

( d∑
j=1

hi, j(x j)
)
∀ x = (x1, · · · , xd) ∈ [0, 1]d.

Choose a sufficiently large A > 0, e.g.,422

A = 1+sup
{∣∣∣∣ d∑

j=1

hi, j(x j)
∣∣∣∣ : i = 0, 1, · · · , 2d, x ∈ [0, 1]d

}
.

Then for any δ > 0, by Theorem 3, there exist ψi, j, ϕi ∈423

NNϱ{O(1), O(1); R→R} such that424

|gi(t) − ϕi(t)| < δ for any t ∈ [−A, A]

and425

|hi, j(t) − ψi, j(t)| < δ for any t ∈ [0, 1],

for i = 0, 1, · · · , 2d and j = 1, 2, · · · , d. By defining426

ϕ(x) =
2d∑
i=0

ϕi

( d∑
j=1

ψi, j(x j)
)
∀ x = (x1, · · · , xd) ∈ Rd.

we have ϕ ∈ NNϱ{O(d2), O(1); R→ R}. See an illus-427

tration of the architecture of ϕ in Figure 7. Moreover,428

by choosing sufficiently small δ > 0, we can conclude429

that430

|ϕ(x) − f (x)| < ε ∀ x ∈ [0, 1]d,

which means we finish the proof of Theorem 1.

x1

x2

ψ0,1(x1)

ψ4,1

ψ1,1(x1)

ψ3,1

ψ2,1(x1)ψ2,1

ψ3,1(x1)

ψ1,1

ψ4,1(x1)

ψ0,1

ψ0,2(x2)

ψ0,2
ψ1,2(x2)

ψ1,2

ψ2,2(x2)ψ2,2

ψ3,2(x2)
ψ3,2

ψ4,2(x2)

ψ4,2

2∑

j=1

ψ0,j(xj) = ψ0(x)

2∑

j=1

ψ1,j(xj) = ψ1(x)

2∑

j=1

ψ2,j(xj) = ψ2(x)

2∑

j=1

ψ3,j(xj) = ψ3(x)

2∑

j=1

ψ4,j(xj) = ψ4(x)

ϕ0 ◦ ψ0(x)ϕ0

ϕ1 ◦ ψ1(x)ϕ1

ϕ2 ◦ ψ2(x)ϕ2

ϕ3 ◦ ψ3(x)ϕ3

ϕ4 ◦ ψ4(x)ϕ4

ϕ(x) =
4∑

i=0

ϕi ◦ ψi(x) =
4∑

i=0

ϕi

( 2∑

j=1

ψi,j(xj)
)

Figure 7: An illustration of the target network realizing ϕ for any
x ∈ [a, b]d in the case of d = 2. This network contains (2d + 1)d +
(2d + 1) = (d + 1)(2d + 1) sub-networks that realize ψi, j and ϕi for
i = 0, 1, · · · , 2d and j = 1, 2, · · · , d.

431

4. Experimental Results432

To further validate the efficacy of our activation func-433

tions, we evaluate PEUAF against a wide range of base-434

line activation functions, including LReLU (Xu et al.,435

2015), PReLU (He et al., 2015), Softplus (Zheng436

et al., 2015), ELU (Clevert et al., 2015), SELU (Klam-437

bauer et al., 2017), ReLU (Nair and Hinton, 2010) and438

Swish (Ramachandran et al., 2017). We conduct these439

Table 1: A Brief Description of Three Image Datasets and Four Industrial Fault Diagnosis Datasets

Dataset Description

CIFAR-10 60,000 32×32 resolution RGB images in 10 categories (6,000 images per category)

Tiny ImageNet 100,000 64×64 RGB images in 200 categories (500 for each category)

ImageNet 14,197,122 RGB images over 1,000 categories and 21,841 subcategories

Case Western Reserve University (CWRU ) 2,400 vibration signals with 10 types of faults in drive end. Each signals has 1,024 samples

Power Quality Disturbance (PQD)
11200 voltage disturbance signals in 16 types, each disturbance signal at each fault has
additive white Gaussian noise

Motor Fault (MF) 6 types of faults and each kind of fault has at least 290 samples (Sun et al., 2023)

Electrical Fault Detection and Classification
(EFDC)

12,000 samples with 6 types of faults. Each sample has 6 features including the measured
line currents and voltages.
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comparisons across four industrial signal datasets and440

three image datasets (CIFAR-10 (Krizhevsky et al.,441

2009), Fashion-MNIST (Xiao et al., 2017) and Ima-442

geNet (Deng et al., 2009)) using three distinct neural443

network architectures (LeNet-type (Lecun et al., 1998),444

ResNet-18 (He et al., 2016), and VGG-16 (Simonyan445

and Zisserman, 2015)).446

As discussed in (Shen et al., 2022), only a few neu-447

rons with super-expressive activation functions are re-448

quired to approximate functions with arbitrary preci-449

sion to avoid large generalization errors. However, im-450

plementing this in practical experiments is challenging.451

Therefore, our experiments primarily focus on explor-452

ing the feature patterns of PEUAF and determining how453

it contributes to improving test accuracy, instead of tar-454

geting 100% test accuracy.455

4.1. Experimental Setups456

The datasets used in our experiments are briefly in-457

troduced in Table 1. For each experiment, we train the458

models with a batch size of 64 using the “NAdam” op-459

timizer (Dozat, 2016), with an initial learning rate of460

0.01. The learning rate decays with a factor of 0.2 if the461

accuracy change over 5 consecutive epochs is no more462

than 1 × 10−4. We set the number of epochs to 300 to463

ensure proper convergence. The baseline network struc-464

tures employed in our experiments are introduced in Ta-465

bles 2 and 3.466

Table 2: Baseline A for the CWRU, PQD, and MF datasets.
Layer Parameters Activation

1D-Convolution (3 × 1) filter size=64, stride = 1 PEUAF

1D-Convolution (3 × 1) filter size=64, stride = 1 PEUAF

Batch-normalization (BN) momentum=0.99, epsilon=0.001 –

Max-pooling pool size=3 × 1, stride = 1 –
1D-Convolution (3 × 1) filter size=64, stride = 1 PEUAF

1D-Convolution (3 × 1) filter size=64, stride = 1 PEUAF

Batch-normalization (BN) momentum=0.99, epsilon=0.001 –

Max-pooling pool size=3 × 1, stride = 1 –
1D-Convolution (3 × 1) filter size=64, stride = 1 PEUAF

1D-Convolution (3 × 1) filter size=64, stride = 1 PEUAF

Batch-normalization (BN) momentum=0.99, epsilon=0.001 –

Global-average-pooling – –

Fully connected size (chosen by tasks) softmax

The most critical hyperparameter is the range of the467

adaptive frequency w. To determine this, we conducted468

a classification experiment with different w values on469

the PQD dataset (A et al.), as illustrated in Figure 8.470

The network structure used is Baseline A, a 1D convolu-471

tional neural network. To emphasize the discrepancies472

in outcomes, we employ a logarithmic transformation473

Table 3: Baseline B for the EFDC dataset.
Layer Parameters Activation

1D-Convolution (2 × 1) filter size=16, stride = 1 PEUAF

Batch-normalization (BN) momentum=0.99, epsilon=0.001 –

Max-pooling pool size=2 × 1, stride = 1 –
1D-Convolution (2 × 1) filter size=16, stride = 1 PEUAF

Batch-normalization (BN) momentum=0.99, epsilon=0.001 –

Max-pooling pool size=2 × 1, stride = 1 –

Flatten – –

Fully connected size (chosen by tasks) softmax

(log) during the visualization of the loss function. Fig-474

ure 8 shows the training and validation curves, while Ta-475

ble 4 provides the corresponding test accuracy. The ta-476

ble reveals two key points: First, when w exceeds 1, the477

test accuracy drops significantly, indicating that higher478

frequencies pose challenges to the PEUAF’s ability to479

effectively extract PQD features. Second, when w lies480

in the range of [0, 1], the test accuracy consistently re-481

mains above 98%. Therefore, we reasonably conclude482

that the frequency w should be constrained within the483

range of [0, 1].484
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Figure 8: The training and validation loss with different w. (a) the
training loss; (b) the validation loss

Table 4: The accuracy of PQD classification with different w.

w 0.1 0.5 1 3 5 7

Accuracy 98.25% 98.30% 98.04% 93.66% 75.26% 53.39%

4.2. Analysis Experiments485

In this section, we conduct experiments to show486

the characteristics of PEUAF. For the larger datasets487

(CWRU, PQD, and MF), we utilize the Baseline A in488

Table 2, while for the EFDC dataset, we use the Base-489

line B in Table 3. Baseline B is smaller than Baseline A490

due to the smaller size of the EFDC dataset compared491

to CWRU, PQD, and MF. Our comparison focuses not492

only on the overall performance but also on the con-493

vergence behavior during the training process, fluctua-494

tions in the validation process, and a detailed mecha-495

nism analysis.496
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Table 5: Test accuracy in industrial fault diagnosis datasets.

Model CWRU PQD MF EFDC Avg Rank

LReLU 99.58% 98.12% 98.82% 84.24% 4
PReLU 97.08% 97.85% 99.17% 84.50% 7
Softplus 95.00% 97.95% 98.06% 84.37% 8
ELU 100.00% 98.15% 99.70% 83.10% 2
SELU 99.17% 98.12% 99.85% 83.74% 3
ReLU 99.58% 97.89% 99.70% 83.35% 5
Swish 99.16% 98.15% 97.35% 84.63% 6
PEUAF 100.00% 98.17% 100.00% 85.64% 1

Performance. Table 5 summarizes the performance497

of several activation functions. All results are the av-498

erage over three runs. On the EFDC dataset, PEUAF499

takes the lead by the largest margin, i.e., surpassing500

the second place Swish by over 1%. On the CWRU,501

dataset, PEUAF exhibits competitive performance com-502

pared to Swish, ReLU, SELU, ELU, and LReLU, while503

PEUAF outperforms Softplus and PReLU by 2%504

and 5%, respectively. On the PQD dataset, all activa-505

tion functions achieve similar test accuracy. Lastly, on506

the MF dataset, PEUAF shows similar performance with507

ReLU, SELU, ELU, and PReLU but surpasses Swish508

and Softplus. Overall, PEUAF proves to be a com-509

petent activation function on four industrial fault diag-510

nosis datasets.511

To further evaluate the effectiveness of PEUAF,512

we conducted occlusion experiments in two classic513

datasets: CWRU and PQD. For each dataset, the oc-514

cluding sizes and strides were set to 100 and 50, respec-515

tively. The occluded pixels were all replaced by zeros.516

Based on the results in Figure 9, we observe that PEUAF517

outperforms ReLU in locating faults. The experiments518

reveal two distinct levels of performances: (1) In the519

PQD dataset, PEUAF and ReLU show similar perfor-520

mance in accurately detecting and localizing faults, as521

illustrated in Figure 9. This can be attributed to the fa-522

vorable condition within the PQD dataset, characterized523

by its low signal-to-noise ratio, contributing to the suc-524

cessful faults localization. However, such ideal condi-525

tions are rare in real-world scenarios. (2) In contrast,526

in the CWRU dataset, PEUAF significantly outperforms527

ReLU as shown in Figure 9. Despite that both PEUAF528

and ReLU achieve commendable test accuracy, ReLU529

tends to capture more holistic features instead of locat-530

ing the real fault, which makes the outputs less reliable.531

Conversely, PEUAF effectively locates faults even in532

the presence of noise interference, offering valuable in-533

sights into the timing and severity of fault occurrences,534

as indicated by the occlusion experiments.535

Convergence. Since PEUAF has a unique shape,536

PEUAF

ReLU

CWRU PQD

0 200 400 600 800 1000

ReLU

PEUAF

Figure 9: Occlusion experiments of Baselines using PEUAF and
ReLU in CWRU and PQD datasets. It is seen that the baseline with
PEUAF can better localize the fault when the original signal is noisy.

there might be concerns that such an oscillating func-537

tion could be difficult to optimize. To address this, we538

compare the training dynamics of PEUAF and ReLU.539

Figure 10 shows the training and validation curves540

of PEUAF and ReLU on the CWRU, PQD, and MF541

datasets. Below are our detailed analyses:542

1. Convergence speed during training: The conver-543

gence rate during the training process is notably544

influenced by the choice of activation functions545

and the inherent characteristics of the dataset. All546

the experiments in Figure 10 consistently demon-547

strate the superior convergence speed of PEUAF.548

In dataset with a lower signal-to-noise ratio (such549

as the PQD dataset), PEUAF and ReLU show sim-550

ilar convergence speed. In contrast, in noise-free551

datasets or those with high signal-to-noise ratio,552

models adopting the PEUAF activation function553

display significantly faster convergence.554

2. Convergence effect during training: The choice555

of activation functions can impact the convergence556

effect, particularly in terms of oscillations or fluc-557

tuations during the training process. In the PQD558

dataset, the convergence patterns of PEUAF and559

ReLU are relatively similar, except for some fluc-560

tuations occurring around the 50th epoch. How-561

ever, for the MF dataset, noticeable oscillations562

occur during convergence, particularly within the563

epoch range between 150 to 200. For the CWRU564

dataset, the fluctuations happen at around the 50th565

epoch when using ReLU as the activation function.566

Therefore, PEUAF helps reduce the oscillation of567

training losses and improves the training perfor-568

mance.569

3. Fluctuation during validation: In addition to the570

training process, the effectiveness of PEUAF can571

also be observed during the validation process.572

Across all the datasets, PEUAF outperforms ReLU573

by showing less fluctuation in the validation pro-574

cess. For the CWRU dataset, both PEUAF and575
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ReLU exhibit fluctuations at the start of the val-576

idation process. However, after a sudden drop577

in validation loss after approximately 20 epochs,578

PEUAF shows smaller validation loss fluctuations579

than ReLU. For the PQD dataset, the validation580

loss curve for PEUAF and ReLU appear similar,581

but the amplitude of fluctuations is smaller for582

PEUAF. The most significant difference in fluc-583

tuation patterns is particularly obvious in the MF584

dataset, where ReLU exhibits high frequency and585

amplitude of fluctuations. This behavior can po-586

tentially be attributed to the fact that, in noise-587

free data settings, ReLU tends to capture global588

features initially, rather than precisely pinpointing589

fine-grained fault details, unlike PEUAF.590
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Figure 10: Training dynamics of Baselines using PEUAF and ReLU
in three large datasets.

4.3. Comparative Experiments591

In this section, we demonstrate combining the super-592

expressive activation function (PEUAF) with the base-593

line activation function can enhance the generalization594

ability of neural networks.595

CIFAR-10. In this experiment, we augment the596

dataset by rotating, shifting, shearing, and horizontally597

flipping the original images. We mainly focus on the598

ResNet structure. Table 6 compares ResNet-18a with599

a mixed activation function to several identical model600

topologies using ReLU. The mixed activation function601

achieves a 0.89% error reduction. Tables 7 and 8 sep-602

arately summarize the test accuracy of ResNet-18 and603

Vit-B/16 (Dosovitskiy et al., 2020) across various base-604

line activation functions and mixed activation functions.605

Notably, the mixed activation function improves the test606

accuracy, especially in Softplus, which increased by607

2.72% and 5.01%.608

To further explain the efficacy of mixed activation609

functions, Figure 11 provides a detailed comparison610

of the loss and accuracy among ReLU, PEUAF and611

mixed activation functions. When exclusively apply-612

ing PEUAF in the CIFAR-10 classification task, both613

the training convergence and fluctuations are worse than614

those of ReLU, as shown in the loss curve in Fig-615

ure 11. However, the ResNet-18 using mixed activation616

Table 6: CIFAR-10 Classifcation error vs the number of parameters,
for common compact model architectures vs. ResNet-18a + Mixed
ReLU.

Neural Network #Param Error%

All-CNN (Springenberg et al., 2014) 1.3M 7.25%
MobileNetV1 (Howard et al., 2017) 3.2M 10.76%
MobileNetV2 (Sandler et al., 2018) 2.24M 7.22%
ShuffleNet 8G (Zhang et al., 2018) 0.91M 7.71%
ShuffleNet 1G (Zhang et al., 2018) 0.24M 8.56%
HENet (Duan et al., 2018) 0.7M 10.16%
ResNet-18a+ReLU 0.27M 8.75%
ResNet-18a+ mixed ReLU 0.27M 7.82%

functions outperforms the models using either ReLU or617

PEUAF alone. The mixed approach results in smoother618

loss and accuracy curves during both the training and619

validation process.620

The occlusion experiments further demonstrate that621

the mixed activation functions can enhance the neu-622

ral network’s ability to identify essential features. The623

occlusion sizes and strides are set to 4 and 2, respec-624

tively, with occluded pixels replaced by zeros. As in625

Figure 12, the results provide a clear illustration of this626

phenomenon. The models using only ReLU or PEUAF627

successfully identify a multitude of features contribut-628

ing to the classification. However, they also select too629

many unnecessary pixel points, recognizing part of the630

surroundings as the important features for classification.631

In contrast, the mixed activation function model can ac-632

curately locate the critical features while ignoring irrel-633

evant pixels.634

Table 7: Comparisons of classification accuracy across several activa-
tion functions using ResNet for CIFAR-10.

Activation Test accuracy

ResNet-18+PEUAF 90.00% / -
ResNet-18+LReLU/Mixed 92.42% / 94.13%
ResNet-18+PReLU/Mixed 92.29% / 94.23%
ResNet-18+Softplus/Mixed 89.28% / 92.09%
ResNet-18+ELU/Mixed 91.09% / 92.11%
ResNet-18+SELU/Mixed 90.47% / 91.32%
ResNet-18+ReLU/Mixed 93.02% / 93.91%
ResNet-18+Swish/Mixed 94.07% / 92.99%
ResNet-34+ReLU/Mixed 93.70% / 94.23%

Tiny-ImageNet. The Tiny-Imagenet dataset is uti-635

lized to further demonstrate the expressiveness of636

PEUAF. The model is trained for 100 epochs with an637

initial learning rate of 0.1, which decays by an order638

of magnitude every 30 epochs, using a batch size of639

256. Table 9 compares the test accuracy of ResNet-640

11



Table 8: Comparisons of classification accuracy across several activa-
tion functions using Vit-B/16 for CIFAR-10.

Activation Test accuracy

Vit-B/16+PEUAF 90.58% / -
Vit-B/16+LReLU/Mixed 91.15% / 91.31%
Vit-B/16+PReLU/Mixed 90.40% / 90.47%
Vit-B/16+Softplus/Mixed 74.23% / 79.24%
Vit-B/16+ELU/Mixed 89.69% / 89.80%
Vit-B/16+SELU/Mixed 87.26% / 87.37%
Vit-B/16+ReLU/Mixed 89.43% / 89.44%
Vit-B/16+Swish/Mixed 90.66% / 89.65%
Vit-B/16+GELU/Mixed 97.49% / 97.90%
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Figure 11: Loss of CIFAR-10 experiments among three activation
functions. From left to right are the loss of ResNet-18 using ReLU,
PEUAF and mixed activation function.

Table 9: Comparisons of classification accuracy across several activa-
tion functions using ResNet-18 for Tiny-ImageNet.

Activation Test accuracy

ResNet-18+PEUAF 56.86% / -
ResNet-18+LReLU/Mixed 62.39% / 62.29%
ResNet-18+PReLU/Mixed 59.57% / 60.81%
ResNet-18+Softplus/Mixed 56.98% / 57.75%
ResNet-18+ELU/Mixed 59.44% / 59.88%
ResNet-18+SELU/Mixed 59.51% / 59.62%
ResNet-18+ReLU/Mixed 63.40% / 63.42%
ResNet-18+Swish/Mixed 60.76% / 59.53%

18 with several baseline activation functions on Tiny-641

ImageNet. By replacing the activation functions in the642

last block, the ResNet-18 with mixed activation func-643

tions achieves competitive results, showing slight im-644

provements in the test accuracy across most experi-645

ments, except for Swish and PEUAF.646

ImageNet. The ImageNet dataset is used to evalu-647

ate the effectiveness of PEUAF in large datasets. Due to648

memory limitations, the model follows the setup from649

the previous research (Liu et al., 2022b), except for the650

number of neurons in the first layer and the data en-651

hancement. The neurons of the first layer is reduced652

to 256 from 512. Table 10 compares the test accuracy653

between PReLU and the mixed activation. In this large-654

scale image classification experiment, the drawbacks of655

using PEUAF alone become apparent, with the accuracy656

of ResNet-18 with PEUAF being only 63.38%, which is657

lower than that of PReLU. However, the ResNet-18 with658
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Figure 12: Occlusion experiments on the CIFAR-10 dataset among
three activation functions to examine their discriminative ability.
(a)∼(c) Occlusion experiments using ReLU, PEUAF and mixed ac-
tivation function. (d) the original figure.

mixed activation functions achieves competitive results.659

Table 10: Comparisons of classification accuracy across several acti-
vation functions using ResNet-18 for ImageNet.

Activation Test accuracy

ResNet-18+PEUAF 63.38% / -
ResNet-18+LReLU/Mixed 70.65% / 70.96%

5. Conclusion and Discussion660

This paper provides an in-depth analysis of the char-661

acteristics and effectiveness of PEUAF, particularly662

focusing on its application to industrial and image663

datasets. By testing the trainable frequency w, we have664

determined an optimal frequency range for w within665

the interval [0, 1]. To further demonstrate the super-666

expressiveness of PEUAF, we have conducted experi-667

ments using four industrial datasets and three bench-668

mark image datasets. The results indicate that PEUAF669

surpasses ReLU in terms of convergence speed, oscil-670

lation during training, fluctuation during validation, and671

fault localization ability, especially in industrial datasets672

with a high signal-to-noise ratio. Additionally, the673

mixed activation function outperforms the single acti-674

vation function in most image classification tasks.675

Looking ahead, the future of activation function re-676

search is promising. The development of PEUAF paves677

12



the way for exploring other super-expressive activa-678

tion functions that could further enhance neural net-679

work performance across various applications. Future680

research could focus on expanding the family of super-681

expressive activation functions and investigating their682

practical utility in more diverse and complex datasets.683

Moreover, combining PEUAF with other state-of-the-684

art neural network architectures and exploring its bene-685

fits in real-world scenarios could yield valuable insights.686

The adaptability and effectiveness of PEUAF in han-687

dling stationary signals suggest potential applications688

in fields such as signal processing, fault diagnosis, and689

time-series analysis.690
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