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Abstract

In this work, we propose a balanced multi-component and multi-layer neural network (MMNN)
structure to approximate functions with complex features with both accuracy and efficiency in terms
of degrees of freedom and computation cost. The main idea is motivated by a multi-component, each
of which can be approximated effectively by a single-layer network, and multi-layer decomposition
in a “divide-and-conquer” type of strategy to deal with a complex function. While an easy modifi-
cation to fully connected neural networks (FCNNs) or multi-layer perceptrons (MLPs) through the
introduction of balanced multi-component structures in the network, MMNNs achieve a significant
reduction of training parameters, a much more efficient training process, and a much improved accu-
racy compared to FCNNs or MLPs. Extensive numerical experiments are presented to illustrate the
effectiveness of MMNNs in approximating high oscillatory functions and its automatic adaptivity in
capturing localized features. Our codes and implementation details are available here.
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1 Introduction

The key use of neural networks is to approximate an input-to-output relation, i.e., a mapping or a
function in the mathematics term. In this work, we continue our study of numerical understanding
of neural network approximation of functions from representation to learning dynamics. In our earlier
study [38], we demonstrated that a one-hidden-layer (also known as a two-layer or shallow) network is
essentially a “low-pass filter” when approximating a function in practice. Due to the strong correlation
among the family of activation functions (parameterized by the weight and bias), such as ReLU (rectified
linear unit), the Gram matrix, the element of which is the pairwise correlation (inner product) of the
activation functions, has a fast spectral decay. If initialized randomly, the eigenvectors of the Gram matrix
correspond to generalized Fourier modes from low frequency to high frequency ordered corresponding
to decreasing eigenvalues. Due to the ill-conditioning of the representation, no matter how wide a one-
hidden-layer network is, it can only learn and approximate smooth functions or sample low-frequency
modes effectively and stably (with respect to noise or machine round-off errors).

In this work, we propose a balanced multi-component and multi-layer neural network (MMNN)
structure based on our previous understanding of a one-hidden-layer network. First, we show that a
multi-layer network with a multi-component structure, each of which can be approximated well and
effectively by a one-hidden-layer network, can overcome the limitation of a shallow network by smooth
decomposition and transformation. Compared to a fully connected neural network of a similar structure,
our proposed MMNN is much more effective in terms of representation, training, and accuracy in approx-
imating functions, especially for functions containing complex features, e.g., high-frequency modes. The
key idea of MMNNSs is to view a linear combination of activation functions as randomly parameterized
basis functions, called a component, as a whole to represent a smooth function. Each layer has multiple
components all sharing the common basis functions with different linear combinations. The number of
components, called rank, is typically much smaller than the layer’s width and increases to enhance the
flexibility of decomposition when dealing with more complex functions. These components are combined
and composed (through layers) in a structured and balanced way in terms of network width, rank, and
depth to approximate a complicated function effectively. Another important feature we used in practice
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is that weights and biases inside each activation function are randomly assigned and fixed during the
optimization while the linear combination weights of activation functions in each component are trained.
This leads to more efficient training processes motivated by our finding that a one-hidden-layer neural
network can be trained effectively to approximate a smooth function well using random basis functions.
We also demonstrate interesting learning dynamics based on Adam optimizer [14], which is crucial for
the successful and efficient training of MMNNs. An important remark is that a balanced and holistic
approach needs to consider both representation and optimization as well as their interplay altogether.

The outline of this paper is summarized as follows. In Section 2, the design of MMNNs is pro-
posed and explained. Then, in Section 3, a mathematical framework for smooth decomposition and
transformation using the MMNN architecture is presented, demonstrating that each component can be
effectively approximated by a one-hidden-layer network. Extensive numerical experiments are presented
in Section 4 to verify the analysis and demonstrate the effectiveness of MMNNSs in the approximation
of more complicated functions. Further discussion is presented in Section 5, where more insights and
implementation guidelines of MMNNSs are provided. Finally, remarks and conclusions are provided in
Section 6.

2  Multi-component and multi-layer neural network (MMNN)

This section begins with an overview of the main notations used in this paper, as detailed in Section 2.1.
Subsequently, we introduce a novel network architecture, the Multi-component and Multi-layer Neu-
ral Network (MMNN), which is developed based on the balanced decomposition principle discussed in
Section 2.2. Following this, in Section 2.3, we outline the learning strategy of MMNN and highlight
its advantages over other methods. Finally, in Section 2.4, we compare the numerical performance of
MMNNs and FCNNs.

2.1 Notations

The following is an overview of the basic notations used in this paper.

e The symbols N, Z, Q, and R are used to denote the sets of natural numbers (including 0), integers,
rational numbers, and real numbers, respectively. The set of positive natural numbers is denoted
as Nt = N\{0}.

e The indicator (or characteristic) function of a set A, denoted by 14, is a function that takes the
value 1 for elements of A and 0 for elements not in A.

e The floor and ceiling functions of a real number 2 can be represented as |x] = max{n:n <z, n €
Z} and [z] =min{n:n >z, n € Z}.

e Vectors are denoted by bold lowercase letters, such as a = (a1, --,a,) € R™. On the other hand,
matrices are represented by bold uppercase letters. For example, A € R"™*" refers to a real matrix
of size m x n, and AT denotes the transpose of matrix A.

e Slicing notation is used for a vector € = (z1,---,74) € R?, where x[n : m] denotes a slice of = from
its n-th to the m-th entries for any n,m € {1,2,---,d} with n < m and x[n]| denotes the n-th entry
of z. For example, if x = (71,22, 73) € R3, then (5z)[2 : 3] = (5z2, 5x3) and (6x + 1)[3] = 6x3 + 1.
A similar notation is employed for matrices. For instance, A[:,] refers to the i-th column of A,
whereas Ali,:] indicates the i-th row of A. Additionally, A[i,n : m] corresponds to (A[i,:])[n : m],
which means it extracts the entries from the n-th to the m-th in the i-th row.

2.2 Architecture of MMNNSs

In this section, we introduce our Multi-component and Multi-layer Neural Network (MMNN). Each layer
of MMNN is a (shallow) neural network of the form

h(z) = Ao(Wz +b)+c

to approximate a vector-valued function f € C([0,1]%n;Rdout) where W € R"*%n A € RdowtXn and
n is the width of this network. Here, o : R — R represents the activation function that can be applied



elementwise to vector inputs. Throughout this paper, the activation function is ReLU, unless otherwise
specified. One can also write it in a more compact form,

h=Ao(Wz+b)+c=A {”(V{’m)] — Ao(W3), (1)
where
W= (Wb, A=[Ac], 3- m
We call each element of h, i.e., h[i] = Av[z, - [J(V;/:c)} for i =1,2,---,doys, a component. Here are a
few key features of h:
1. Each component is viewed as a linear combination of basis functions o(W1i,:] - & + bi]), i =
1,2,--+,n, which is a function in x, as a whole.

2. Different components of h share the same set of basis with different coeflicients A[z, .
3. Only A are trained while W are randomly assigned and fixed.

4. The output dimension dy,4 and network width n can be tuned according to the intrinsic dimension
and complexity of the problem.

In comparison, each layer in a typical deep FCNN takes the form a(ﬁ;i), and each hidden neuron is

individually a function of the input « or each point & € R%» is mapped to R™, where n is the layer

width. All weights W are training parameters. In MMNN, each layer is composed of multiple components

AU(WE). Each component is a linear combination of randomly parameterized hidden neurons U(WE),

which can be more effectively and stably trained through A as a smooth decomposition/transformation.

Typically the number of components d,,; is (much) smaller than the layer width n in our experiments.
A MMNN is a multi-layer composition of h;, i.e., b : R%» s Rout

h =hy,, 0---ohyohy,
where each h; : R%-1 s R% is a multi-component shallow network defined in (1) of width n;, where
do :dina d17"'7dm—1 < ng, A = dout-

The width of this MMNN is defined as max{n; : ¢ = 1,2,---,m — 1}, the rank as max{d; : i =
1,2,---,m— 1}, and the depth as m. To simplify, we denote a network with width w, rank r, and depth
[ using the compact notation (w,r,1). See Figure 1(a) for an illustration of MMNN of size (4,2,2). In
contrast, an FCNN ¢ can be expressed in the following composition form

¢p=LroocoLy 10 -+ ocoLlijoocoLy,

where £; is an affine linear map given by £;(y) = W, - y + b;. Readers are referred to Figure 1(b) for
an illustration and also a comparison with the MMNN.

For very deep MMNNSs, one can borrow ideas from ResNets [8] to address the gradient vanishing
issue, making training more efficient. Incorporating this idea, we propose a new architecture given by a
multi-layer composition of I + h;, i.e., h : R%n s Rdout

h=h,o(I+hp_1)o---o(I+hs)o(I+hs)oh,
where each h; : R%-1 s R% is a multi-component shallow network defined in (1) with width n,,
dO:dirn dy = =dp1=1< ng, dm:doutv

and I is the identity map. We call this architecture ResMMNN. See Figure 1(c) for an illustration of a
ResMMNN of size (4,2,3).

The above definition of ResMMNNSs requires dy = --- = d,,_1 = r. If this condition does not hold,
we can alternatively define ResMMNN via

h=I&h,)o(IPhy,u_1)o---o(Idh3)o(I&hy)o(IDhy),



where @ is an operation defined as follows. For any functions f : R — R% and g : R¢ — R%, the ®
operation is given by

fog= (f-}- g)[1:dg], where f: |:-(q e Rmatdsdg}  apngd g = |:g:| c Rmax{ds.dg}

It is noteworthy that such an operation is both straightforward and cost-effective to implement. For
example, in Python, one can use the following code:

y = f(x); z = g(x); n = min(len(y), len(z)); z[:n] = y[:n] + z[:n]

After executing this code, z will be the result of the map f ® g at x. We remark that the definition of
ResMMNN can be generalized to only adding identity maps to certain specific layers, which we still refer
to as ResMMNN.
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(c) ResMMNN of size (4,2, 3), i.e., width 4, rank 2, and depth 3.

Figure 1: Hlustrations of o-activated MMNN, FCNN, and ResMMNN.

2.3 Learning strategy of MMNNs

Our learning strategy is motivated by the following basic principle: a function can be decomposed in a
multi-component and multi-layer structure each component of which can be approximated and trained
effectively using a one-hidden-layer network, which is a linear combination of random basis functions (e.g.,
of the form o(W;-x+b;), see Section 3). Hence optimizing the linear combination weights of the random
basis functions, i.e., A;,¢c; is both efficient and adequate. On the other hand, optimizing the weights
(orientations of the basis functions) W;’s and biases b;’s to make the basis functions more adaptive to
fine features of the target function, which would require capturing high-frequency information by a single
layer network, leads to not only significantly more parameters to optimize but also difficulties in training
as shown in [38]. Specifically, for each layer of MMNN, we fix the activation function parameters (W;’s
and b;’s) as per PyTorch’s default setting during the training process. This entails initializing both
weights and biases uniformly from the distribution U(—vk, Vk), where k = o' The whole
training process optimizes all A;’s and ¢;’s simultaneously using Adam. Note that it is important to
have a uniform sampling of orientations W, and biases b; for the random basis functions to be able to
approximate an arbitrary smooth function well. Unless stated otherwise, parameter initialization adheres
to the default settings provided by PyTorch in our experiments.

Tt is noteworthy that this initialization approach is similar to the widely used Xavier initialization [4], which draws
weights from the distribution U(—vk, vk) with k = V6 and sets the bias to 0.

in_features+out_features




To demonstrate the advantages of our training approach (labeled S1), we conduct a comparison with
the typical strategy in deep neural networks, denoted as Strategy S2, which uses the default PyTorch
initialization and optimizes all parameters during training. In our tests, we select an oscillatory target
function f(z) = cos(36mx?)—0.6 cos(12rz?) and use fairly compact networks. The tests are performed on
a total of 1000 uniform samples in [—1, 1] with a mini-batch size of 100 and a learning rate for epoch-k set
at 0.001 x 0.91%/400) for k= 1,2,---,20000, where |-| denotes the floor operation. The Adam optimizer
[14] is applied throughout the training process.

Table 1: Comparison of test errors averaged over the last 100 epochs.

network (width, rank, depth)  #parameters (trained / all)  test error (MSE)  test error (MAX) training time
MMNNT1 (S1) (400, 20, 6) 40501 / 83301 2.01 x 10~° 4.36 x 1072 23.9s / 1000 epochs
MMNNTI (S2) (400, 20, 6) 83301 / 83301 4.26 x 1075 4.71 x 1072 30.2s / 1000 epochs
MMNN2 (S1) (590, 28, 6) 83331 / 170061 1.39 x 1073 2.80 x 1072 25.2s / 1000 epochs
1 —— MMNN1 (S1, train 40501 of the 83301 parameters) —— MMNN1 (S1, train 40501 of the 83301 parameters)
1.0 MMNN1 (S2, train all 83301 parameters) 1 MMNN1 (S2, train all 83301 parameters)
: —— MMNN2 (S1, train 83331 of the 170061 parameters) —— MMNN2 (S1, train 83331 of the 170061 parameters)
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Figure 2: Left: target function f(z) = cos(36mz?) — 0.6 cos(12mz?). Middle: logarithm of test errors vs.
epoch. Right: logarithm of “test-error-aver” vs. epoch, where “test-error-aver” for epoch k is calculated
by averaging the errors in epochs max{1,k — 100} to min{k + 100, #epochs}.

As illustrated in Table 1 and Figure 2, our learning strategy S1 is significantly more effective than
strategy S2 with comparable accuracy. There are two main advantages of S1. First, S1 requires training
only about half the number of parameters compared to S2, which results in time savings. Second, S1
converges more quickly and performs significantly better when the training is not sufficient. We would
like to note that in certain specific cases, S2 may outperform S1, particularly when the network size is
relatively small and S2 is well-trained. This is expected since S2 trains all parameters, whereas S1 only
trains a subset. Based on our experience, S1 is more effective in practice, particularly for sufficiently
large networks. Alternatively, one might consider a hybrid learning strategy.

2.4 MDMNNs versus FCNNs

Previously in Section 1, we discussed the theoretical differences between MMNNs and FCNNs. Now, let’s
explore and compare their numerical performance. To ensure a fair comparison, we will use networks
with a similar number of parameters, ensuring that all networks have sufficient parameters to learn
the target function effectively. Typically, when training an FCNN, all parameters are optimized. For
a thorough comparison, we will employ two learning strategies for MMNNSs as detailed in Section 2.3:
S1 and S2. S1 involves training approximately half the number of parameters of the MMNN, while S2
involves training all parameters.
We choose a 1D function fi(z) = cos(207|z|**) + 0.5 cos(127|x|*®) and a 2D function

2 2

fa(zy,29) = Z Z a;j sin(sb;x; + sc;jxix;) cos(sbjz; + sdijxf),
i=1 j=1

where s = 2 and

0.3 0.2 2 2r 4w 47 67
(aij) = {0.2 0.3} ’ (bi) = {47r] ’ (cij) = {8# 477} , and (di) = [871' 677] ’

Refer to Figures 3 and 4 for illustrations of f; and f,, respectively.
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We select large network sizes (see Table 2) to ensure that all networks possess sufficient parameters
to learn the target functions.? For training the 1D function, we sample a total of 1000 data points on a
uniform grid within [—1,1], using a mini-batch size of 100 and a learning rate of 0.001 x 0.9L%/490) for
epochs k = 1,2,---,20000. For training the 2D function, we sample a total of 600% data points on a
uniform grid within [—1,1]?, using a mini-batch size of 1000 and a learning rate of 0.001 x 0.91%/16] for
epochs k=1,2,---,800.

Table 2: Comparison of test errors averaged over the last 100 epochs.

target function network (width, rank, depth) #parameters (trained / all) test error (MSE) test error (MAX) training time
f MMNNT1 (S1) (388, 18, 6) 35399 / 73035 2.49 x 1076 9.93 x 107* 23.3s / 1000 epochs
h FCNN1-1 (83, -, 6) 35110 / 35110 243 x 1074 1.87 x 1071 19.5s / 1000 epochs
fi MMNN1 (S2) (388, 18, 6) 73035 / 73035 2.05 x 1076 1.88 x 102 27.4s / 1000 epochs
fi FCNN1-2 (120, -, 6) 72961 / 72961 1.73 x 1074 1.14 x 1071 22.3s / 1000 epochs
fa MMNN2 (S1) (789, 36, 12) 313630 / 637120 4.61 x 1076 1.55 x 102 30.3s / 10 epochs
fa FCNN2-1 (168, —, 12) 312985 / 312985 2.42 x 1074 2.75 x 107} 26.7s / 10 epochs
fa MMNN2 (S2) (789, 36, 12) 637120 / 637120 6.17 x 1076 6.05 x 1072 35.8s / 10 epochs
fa FCNN2-2 (240, -, 12) 637201 / 637201 3.28 x 107° 1.39 x 1071 29.3s / 10 epochs

As illustrated in Table 2 and Figure 5, MMNNSs outperform FCNNs when both have the same depth
and a comparable number of parameters, particularly for relatively oscillatory target functions. Moreover,
as indicated in Table 2, the training time for MMNN (S1) is similar to that of FCNN, while MMNN
(S2) takes a bit more time. We remark that the primary advantage of MMNNSs lies in capturing high-
frequency components. As we can see from Figure 5, the differences between network approximations
and the corresponding target functions show that FCNNs approximate high-frequency parts of the target
functions poorly. In contrast, the approximation errors for MMNNSs, especially with the S1 learning
strategy, are more evenly distributed across the entire domain, indicating their effectiveness in capturing
high-frequency components. The Adam optimizer [14] is applied throughout the training process.

3 Multi-component and multi-layer decomposition

Although a one-hidden-layer neural network is a low-pass filter that can not represent and learn high-
frequency features effectively [38], we use mathematical construction to show that MMNNs, which are
composed of one-hidden-layer neural networks, can overcome this difficulty by decomposition of the
complexity through components and/or depth. We emphasize that the decomposition is highly non-
unique. Our construction is “man-made” which can be different from the one by computer through an
optimization (learning) process. Our discussion begins with one-dimensional construction in Section 3.1
and later extends to higher dimensions in Section 3.2.

3.1 One dimensional construction

We begin with a two-component decomposition in 1D as both an illustration and an example in Sec-
tion 3.1.1. Later in Section 3.1.2, we introduce the general multi-component decomposition. Finally in
Section 3.1.3, we use concrete examples for demonstration.

2FCNNs perform poorly if the network size is small. For a fair comparison, we choose relatively large network sizes for
FCNNs and MMNNSs, where both perform reasonably well.
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Figure 5: First row: logarithm of “test-error-aver” vs. epoch, where “test-error-aver” for epoch k is
calculated by averaging the errors in epochs max{1,k — 100} to min{k + 100, #epochs}. Second row:
differences between learned networks and f;. Second row: differences between learned networks and fo.

3.1.1 Two-component decomposition

We show a simple “divide and conquer” strategy for a target function (example) f(z) = cos(2nmz), a
high frequency Fourier mode when n is large. Define

.fl : [_Ll] = [_171]2? fl = [;171:| 5
1,2
-1 for z € [-1,0),

fra(z) = RelU(2z) — 1 = {295 -1 forxe[0,1],

2¢+1 for x € [-1,0),
fi2(x) eLU(—2z) + {1 for x € [0, 1],

and
f2 1 (u,v) € [=1,1]* = cos (nm(u+ 1)) + cos (nm(v — 1)) € R.

Then for any z € [—1,1] we have
f(z) = cos (mr . ReLU(Zm)) + cos ( —nm- ReLU(—Qx))

= cos (mr(fl’l(m) + 1)) + cos (mr(flyg(x) - 1)) = fyo fi(x)

Through this decomposition and piecewise linear transformation, which can be approximated easily by a
single layer of ReLU network, one only needs to approximate a function that is smoother than the original
f: f1 is simplified, while f5 is reduced to half of the frequency of the original target function f.

We observe that this decomposition approach is universally applicable for any function f : [—1,1] —
R. Specifically, the decomposition is defined as

fiolLal e L = [
1,2



where the component functions f; ; and f; 2 are defined by

-1 for z € [-1,0),

fii(x) =RelU(2z) — 1 = {Qx 1 forze 0,1,

and
2z +1 for x € [-1,0),

fra(e) = —RelU(-2z) + 1= {1 for x € [0,1].

Moreover,
f2 : (’LL,’U) S [_171]2 — f(uTH) +f(%) - f(O) S R.
Hence, for any x € [—1, 1], we achieve the following reconstruction of f(x):
f(gc) _ f(ReLUz(%L')) +f(—ReLIJZ(—2w)) —f(O)
= f(Lf) 4 p (L2822) — £(0) = foo fila)

demonstrating a structured decomposition that allows the function to be expressed through the compo-
sition of a smoother function with a piecewise (component-wise) transformation and rescaling.

3.1.2 General multi-component decomposition

Now we propose a general multi-component adaptive decomposition, a “divide and conquer” strategy,
that can distribute the complexity of a target function evenly to multiple components.

Given a sequence xg < 1 < - -+ < &, where the target function is defined on the interval [z, z,], we
will demonstrate how our new architecture allows us to partition the complexities of the function f into
smaller intervals [z;_1,x;]. By rescaling each subinterval, one only needs to deal with a much smoother
function in each interval. This approach enables us to effectively approximate the target function over
the entire interval [xg, z,].

Let L; : [a;, b;] = [zi—1, ;] be the linear map with

Ez(al) =Ti-1 and ,Cl(bl) = ;. (2)

Define
fi=foL;: [ai,bi]%R. (3)

To decompose the target function into smoother pieces, we define a piecewise linear transformation
1; using a linear combination of two ReLU functions (or a simple single layer network),

Yi(x) = s; -RelU(z — x;-1) — s; - ReLU (z — ;) + a;. (4)

Here s; = ;’%& is the “slope” of L ! which is a local rescaling. For example, f; becomes a smoother
function than f after stretching [z;—1,;] to a larger domain [a;,b;]. See an illustration of ;(x) in

Figure 6.

bi| —— i)

Li-1 L
Figure 6: An illustration of ¥;(x).

Theorem 3.1. Given zg < 1 < -+ < Ty, suppose L; and ¥; are given in FEquations (2) and (4),
respectively. Then the target function f : [z, 2,] = R has the following (smoother) decomposition (f;)
with a piecewise linear transformation (V;),
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Figure 7: Visual representations of the decompositions of f and h are provided with ¢ = Z?:_OI (24)
being a constant and s; being the slope. Here, the function f is dissected into several simpler functions,
labeled as f;. Each f; represents a simplified and more manageable segment of f, allowing for the
straightforward application of subnetwork h; to closely approximate f;, even with the use of shallow

networks.

n n—1
x) = Zfz o;(z) — Z f(x;) for any z € [zg, 2],
=1 =1
constant
where f; is given in Equation (3).

Proof of Theorem 3.1. By definition of ¢; in Equation (4), it is easy to check

b; if$>$i, b; 1fz§]—1,
Yi(x) = L7 (2) ifz€lriy,2], = i(z)= Ej_l(x) if i = j,
a; ifz <m;_q, a; ifi>j5+1,

for a fixed j € {1,2,---,n} and any x € [z;_1,z;]. It follows that

Zfl e Zfoﬁowz Zfoﬁowz )+ foLjou;(x Zfollowz z)

1=j+1
_Zfoﬁ )+ foLjoLy Z foLi(a)
i=j+1
j—1 n n—1
=Y f@)+ f@)+ Y i) = fl@)+ Y fla).
i=1 i=j+1 i=1

It follows that

n n—1
= Zfz oi(x) — Z f(x;) forany x € [x;_1,2;].
i=1 i=1

constant

Since j is arbitrary, the above equation holds for all z = Uj_; [z;1,z;] = [0, Tpn]. O



For each smoother f;, one can use a shallow network component ¢;- a linear combination of random
basis functions to approximate f; well on [a;, b;]. Then

Zfzowz Zf:rz Z@ i@ foz—- (),

constant constant

h(z) is a one-hidden-layer neural network approximation of the target function f(x) that can approximate
a complex function better than a single layer. See Figure 7 for an illustration. In practice, one can
choose repeated decomposition using a multi-component and multi-layer network structure which is the
motivation for MMNN. It is well-known that neural networks can approximate smooth functions well.
For localized rapid change/oscillation, our construction shows that a small network in terms of the width
as well as the number of components and layers can achieve adaptive decomposition and deal with it
rather easily. Hence MMNN is effective in approximating a function with localized fine features. This
is an important advantage in dealing with low-dimensional structures embedded in high dimensions.
The most difficult situation is approximating global highly oscillatory functions, especially with diverse
frequency modes, for which wider networks with more components and layers are needed to deal with
both the complexity and curse of dimensions.

3.1.3 Examples

Here we use two examples to demonstrate the complexity decomposition strategy presented in the pre-
vious section. We start with the Runge function f(x) = 25$2+1 and modify it to f(z) = W;QH, which
has a localized rapid change near 0. As an example, we use four components n = 4, choose points
T, X1, X2, 23,24 at —1,—0.2,0,0.2,1, and let a; = —1 and b; = 1 for all i. In practice, each component
is approximated by a single-layer network - a linear combination of basis functions, and trained by an
optimization method, e.g., Adam. Our examples here are just a proof of concept for the decomposition
of a target function into smoother components using MMNN structure in the form

1 3
= Z fioti(x) — Z f(zs),
i=1 i=1

where f; and v; (piecewise tranformation/rescaling) are defined as in (3) and (4), respectively. These
components are illustrated in Figure 8. Each component is relatively smooth, making it easier for
approximation and learning through shallow networks. This approach essentially utilizes a divide-and-
conquer principle.

— )= m — h@ foler) — S — @)

0.02 . - 0.02
0,

0.01 0.01

0.00 0.00 0.00 0.00
3 05 -1

— soomoutof fi(s)  — zoom outof fix -

zoom out of fr)  —— z00m out o fy(a — ()
100 100 100 100
0.75 0.75
050 050 050 050

0.25 0.25 0.25 0.25

179 I I — 0.00 0.00 0.00 0.00

~10 0.5 00 05 0 ~10 0.5 00 05 0 —10 0.5 00 05 0 —10 0.5 00 05 10

Figure 8: Illustrations of f(z) = m and its multi-component decomposition through f; and );
i=1,2,3,4, where f(z) = S, fiowi(x) — S0, fla).
The second example is a globally oscillatory function of the form
f(x) = cos?(6mx) + sin(107x?).

Again we illustrate using four components n = 4, selecting points xg, 1, z2, 3,24 at —1,—0.7,0,0.7,1,
and setting a; = —1 and b; = 1 for all i. As shown in Figure 9, the target function f(z) is decomposed
into components that are less oscillatory again facilitating their approximation and learning through
shallow networks.

10



=) sl £ dnline?) , — i) fola) 0 i — i)

om o 200m out of [i(r) 25 N
mout of fo(r)  —— zo0m out of fi(x) — @)

7": H':'\ llT: H':'\ 0.75

\“: 0.50 0.50 0.50- 0.50-

oo 0.25 0.25- 0.25 0.25-
A i 7 ol i B ___/ ol
Figure 9: Illustrations of f(z) =
such that f(z) = Z?:l fioi(z) — Z

3.2 High dimensional cases

os?(6mx) + sin(1072?) and its decomposition components f; and 1;
3

[ (@)

Let us now consider the extension to multi-dimension using two dimensions as an example since the
simple dimension-by-dimension strategy applies to any dimension.

Given zg < 1 < -+ < @, and yp < y1 < ++- < Ym, dividing the domain of the function f(z,y)
into small Cartesian rectangles [x;_1, z;] X [yj,hyj]. Let £, : [a;, b)) = [i—1, 2] and Lo : [¢;,di] —
[yj—1,Y;] be the linear maps with

Lii(a;) =xi-1, and Lo (ci) =yj-1, (5)
L1(b;) =x; Lo i(d;) = y;.

Fori=1,2,---,nand j =1,2,---,m, we define

fiolz,y) = f(ﬁl,z‘(fﬂ), y)a
fo(@,y) = f (2, L25)) (6)
fij(z,y) = f(ﬁu(»’c), ﬁz,j(y)) = foj (ﬁu(»’C), y) = fio (5177 £2,j(y))-

It is evident that with appropriate transformation and rescaling, f; o(z,y) is smooth in = when y is held
constant, fo ;(z,y) is smooth in y when z is fixed, and f; ;(z,y) is smooth in both = and y. Define

b; if x > xy, d; if y > y;,
Yi(e) =S Lij(x) ifzeriy,z], and ¢;(y) = L) ifye -1y, (7)
a; ifoe <wi_q c;j ify <yj_1.

The following result provides a decomposition of f that fits into the structure of MMNN.

Theorem 3.2. Given z9p < 1 < -+ < 2y and Yo < Y1 < -+ < Ym, suppose L1 ;,Lo; and s, ¢,
are given in Equations (5) and (7), respectively. Then the function f : [xo,xn] X [Yo,ym] — R can be
erpressed as

-1

3

=35 fo (e 65 - fio(v:(2), u5)
i:lnj_:ll = 1 (8)

- Z: ifo,j (w‘i, ¢j(y)> + f (@i, y5)

%

IM-
i

3

Il
-
<.
Il
_

for all (x,y) € [xo,zn] X [Yo,Ym], where f; ; are given in Equation (6).

Proof of Theorem 3.2. Fixing (k, j), for any (z,y) € [xk—1,Zk] X [ye—1, ye], we have

b ifi <k—1, d; if j<0—1,
Yi(x) = LT (x) ifi =k, and  ¢;(y) = ¢ L34(y) ifj=1,
a; ifi>k+1 ¢j if § >041.
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It follows that

n

(@) y) =Y f(Lriowil@). y)

WM:
MR
ot
k=)
/~
=

; i=1

= klf(ﬁu 0@, 1) + F(Lorovn@). 1) + 30 F(Lrowila) v)
i=1 i=k+1

—kz_:lf(ﬁl,i(bz) )"‘f(ﬁlkoﬁﬂc ) Z f(ﬁum )
i=1 i=k+1

:k_lf(x“ )+ f(x, y) Z f(zic1, y) = f(x, y)+§f(ﬂfial/)7
i=1 i=k-+1 i=1

implying

Zfzo(wl y) - Zf zi, y

For each 4, using the 1D decomposition technique described in Section 3.1, we find the decompositions
for fi,o(wi(x), y) and f(x;, y). We have

3 fus (vi@), 6:0)) = if (¥i(@), Lo005))

=j§_:1fi,o(wi<x>, L2, 0 6;0)) + foo (¥i(@), Lae o dely )+”Z+1 o (4(a). £25(06;(0)
=§fi,o(wz<)c2j< ) + fio(0i(@), Laeo £54(w)) + ]zé;rlflo@ﬁ Lay(e)
:jgéfi,o(wx 2), 35) + fio (Vil2), ) + j%;lfzo(wz yio1)

= oo ) 4 5 (o)

implying
fzo(wz ) me(wz ) Z sz("/’z )
Moreover,
Zfoj(:cz, 650) = 3 F (1. L2 06,0))
j=1
—esz(xu[ﬂjodj] +f($z7ﬁzeo¢e >+ Zf(xnﬁwo%( ))
Jj=1 j=t+1
- Zf(x,, £25(d5)) + f (w1, La0 L31(0)) + Z 1 (i £25(c5))
j=0+1
:Zf(xia y;) + flzi, y) + f: f(@i, yj— flziy +mz:1f (@i, y5),
j=1 j=+1 Jj=1
implying
f(@is y Zfo;(mu DS Fo )
j=1
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Therefore, for any (x,y) € [Tk—1, k] X [Ye—1,Ye],

Zflo(wz y) - Sty

1=

(ifw(m ) - mzlfl,o( ) )

Il
HM:
i

1 m m—1
(Zf,] X, ¢] ) fomy])
J=1

i Jj=1 Jj=1
:ii ,3(7/11 ) izlf’vo(% ) n_lifoj(xw ¢J )Jrrfmzlf xla yj
i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=1

Since k and ¢ are arbitrary, the above equation holds for all (z,y) = U}_; UJ", [@p—1, k] X [Ye—1,ye] =
[ZC(), xn] X [yovym}- O

3.3 Related work

Approximation Extensive research has examined the approximation capabilities of neural networks,
focusing on various architectures to approximate diverse target functions. Early studies concentrated
on the universal approximation power of single-hidden-layer networks [3, 10, 11], which demonstrated
that sufficiently large neural networks could approximate specific functions with arbitrary precision
mathematically, without quantifying the error relative to network size. Subsequent research, such

s [1, 2, 6, 7, 19, 21, 30, 31, 32, 33, 35, 36, 37, 39], analyzed the approximation error for different
networks in terms of size characterized by width, depth, or the number of parameters. Those studies
have primarily concentrated on the mathematical theory that supports the existence theory for such neu-
ral networks. However, there has been limited focus on determining the parameters within these networks
computationally and the numerical errors, particularly those arising from finite precision in computer
simulations. This gap motivated our current investigation, which considers practical training processes
and numerical errors. Specifically, the balanced structure of MMNN;, the choice of training parameters,
and the associated learning strategy discussed here are intended to facilitate a smooth decomposition of
the function, thereby promoting an efficient training process.

Low-rank methods Low-rank structures in the weight matrix W of a fully connected neural network
have been investigated by various groups. For example, the methods proposed in [12, 26, 28] focus
on accelerating training and reducing memory requirements while maintaining final performance. The
concept of low-rank structures is further extended to tensor train decomposition in [22]. The MMNN
proposed here differs in two key aspects. First, each layer contains two matrices: A outside and W
inside the activation functions. Each row of A represents the weights for a linear combination of a set
of random basis functions, forming a component in each layer. The number of rows in A, which equals
the number of components, is selected based on the complexity of the function and is typically much
smaller than the number of columns, corresponding to the number of basis functions. Each row of (W, b)
represents a random parameterization of a basis function, with the number of rows in W corresponding
to the number of basis functions, usually much larger than the number of columns in W, which is the
input dimension. Secondly, in our MMNN;, only A is trained while W remains fixed with randomly
initialized values. Theoretical studies and numerical experiments demonstrate that the architecture of
MMNN, combined with the learning strategy, is effective in approximating complex functions.

Random features Fixing (W,b) of each layer and use of random basis functions in the MMNNs is
inspired by a previous approach known as random features [16, 23, 24, 27, 34]. In typical random feature
methods, only the linear combination parameters at the output layer are trained which also leads to the
issue of ill-conditioning of the representation. While in MMNNS matrix A and vector ¢ of each layer
are trained. Our MMNN employs a composition architecture and learning mechanism that enhances the
approximation capabilities compared to random feature methods while achieving a more effective training
process than a standard fully connected network of equivalent size. Extensive experiments demonstrate
that our approach can strike a satisfactory balance between approximation accuracy and training cost.

Komogolrov-Arnold (KA) representation The KA representation theorem [15] states that any
multivariate continuous function on a hypercube can be expressed as a finite composition of continuous
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univariate functions and the binary operation of addition. However, this elegant mathematical represen-
tation may result in non-smooth or even fractal univariate functions in general due to this very specific
form of representation, a computational challenge one has to address in practice. KA representation has
been explored in several studies [13, 17, 20, 32]. A recently proposed network known as the KA network
(KAN) utilizes spline functions to approximate the univariate functions in the KA representation. The
proposed MMNN is motivated by a multi-component and multi-layer smooth decomposition, or a “di-
vide and conquer” approach, employing distinct network architectures, activation functions, and training
strategies.

4 Numerical experiments

In this section, we perform extensive experiments to validate our analysis and demonstrate the effec-
tiveness of MMNNs through multi-component and multi-layer decomposition studied in Section 3. In
particular, our tests show its ability in 1) adaptively capturing localized high-frequency features in
Section 4.1, 2) approximating highly oscillatory functions in Section 4.2, and 3) extending to higher
dimensions in Section 4.3 as well as some interesting learning dynamics in Section 4.4. All our experi-
ments involve target functions that include high-frequency components in various ways and are difficult
to handle by shallow networks (no matter how wide) as shown in our previous work [38]. Moreover, our
experience on these tests shows that using a fully connected deep neural network would require many
more parameters and is much harder (if possible) to train to get a comparable result. This is mainly due
to a balanced and structured network design of MMNN in terms of 1) the network width w, which is
the number of hidden neurons or random basis functions in each component, 2) the rank r, which is the
number of components in each layer, and 3) the network depth [, which is the number of layers in the
network. The use of a controllable number of collective components (through A) in each layer instead
of a large number of individual neurons and the use of fixed and randomly chosen weights (W', b) make
the training process more effective.

In all tests, 1) data are sampled enough to resolve fine features in the target function, 2) the Adam
optimizer is used in training, 3) mean squared error (MSE) is the loss function, 4) all parameters are
initialized according to the PyTorch default initialization (see Section 2.3) unless otherwise specified, 5)
W's and b’s (the parameters inside the activation functions, see Section 2.2) are fixed and only A’s and
C’s (the parameters outside the activation functions) are trained, 6) computations are conducted on an
NVIDIA RTX 8500 Ada Generation Laptop GPU (power cap 130W), with most experiments concluding
within a range from a few dozen to several thousand seconds. All our MMNN setups are specified by three
parameters (w,r, ) which depends on the function complexity. Another tuning parameter is the learning
rate the choice of which is guided by the following criteria: 1) not too large initially due to stability, 2) a
decreasing rate with iterations such that the learning rate becomes small near the equilibrium to achieve
a good accuracy while not decreasing too fast (especially during a long training process for more difficult
target functions) so that the training is stalled.

4.1 Localized rapid changes

We begin with two examples in 1D. The first is f(z) = arctan(100z + 20), which is smooth but features
a rapid transition at zero. While demonstrated in our previous work [38], a shallow network struggles to
capture such a simple local fast transition which contains high-frequencies, we show that this function
can be approximated easily by a composition of a smooth function on top of a (repeated) spatial decom-
position and local rescaling using MMNN structure in Section 2.2. Our test indeed verifies that our new
architecture can effectively capture a localized fast transition rather easily using a very small network of
size (16,4, 3) as shown in Figure 10. For this test, a total of 1000 data points are uniformly sampled in
the range [—1, 1], with a mini-batch size of 100, a learning rate of 1073, and the number of epochs set to
2000. Figure 11 gives the error plot.

Next, we consider a more complicated target function, f(x) = T{;40.2/<0.02} - sin(507x), which
represents a localized fast oscillation. For this example, we will conduct two tests. The first one is to
show the flexibility of MMNN to automatically adapt to local features. The network has a small size
as above (16,4, 3). Each layer has a network width of 16. In other words, each component is a linear
combination of 16 ReLU functions which has no way to approximate such a target function well. However,
with a multi-layer and multi-component decomposition with parameters appropriately trained by Adam,
MMNN can adapt to the behavior of the target function as shown in Figure 12. Figure 13 gives the
error plot. Also, the test shows that this example is more difficult to train. For this test, there are a
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Figure 11: Training and
Figure 10: Illustrations of the training process. test errors (MSE).

total of 1000 uniformly sampled points in [—1,1] with a mini-batch size of 100 and a learning rate of
0.002 x 0.95F/1000) " \where |-| denotes floor operation and k = 1,2,---,20000 is the epoch number. Tt
should be noted that in this test, we initialize the biases b’s to 0 and use the PyTorch default initialization
method for the weights W. This approach, inspired by Xavier initialization, is chosen because the target
function is locally oscillatory and the MMNN size is quite small, necessitating a setup adaptive to the
target function to facilitate the training. For other experiments, both the biases and weights use the
PyTorch default initialization. We then compare with least square approximation using uniform finite
element method (FEM) basis with the same degrees of freedom. As shown in Figure 14, MMNN renders
a better approximation due to automatic adaptation through the training process. We would like to
remark that when training an extremely compact MMNN which does not have much flexibility and
makes the training more subtle, the training hyperparameters, such as learning rate, min-batch size,
and etc., need to be more carefully tuned. However, when there is some redundancy in MMNN] i.e., an
MMNN with a slightly larger size, MMNN becomes more flexible and the training process becomes easier.
On the other hand, when the network becomes too large, then training a large number of parameters
and over-redundancy will lead to potential difficulties for optimization. This also shows that there is a
trade-off between representation and optimization one needs to balance in practice.
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Figure 12: Illustrations of the training process.

—— true function FEM —— true function learned network
ol M —— logy(training-error) vs. epoch 10

y’w logy(test-error) vs. epoch

W‘“JUWA'WM“‘T“‘“ F$V”h"“'“"v‘“v”v 1 1=

I |1 (a) FEM. (b) MMNN.
0 2500 5000 7500 10000 12500 15000 17500 20000

Figure 13: Training and test er- Figure 14: (a) Least square using equally spaced 153 FEM bases.
rors measured in MSE vs. epoch. (b) MMNN with (164+1)x4x (3—1)+(16+1) = 153 free parameters.

Now we show an example in 2D shown in Figure 15 and defined in polar coordinates by

0 if 0.5+ 25p — 257 <0,
f(r,0) =41 if 0.5+ 25p — 25r > 1, where p = 0.1+ 0.02cos(870).
0.5+ 25p — 25r otherwise,

Again a rather compact MMNN of size (100, 10, 6) can produce a good approximation. Figure 17 shows

the error during the training process and Figure 16 shows the log plot of training and testing errors
in MSE. For this test there are a total of 400? uniformly sampled points in [—1,1]? with mini-batch
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size of 1000 and a learning rate of 1073 x 0.91%/25)  where k = 1,2,---,1000 is the epoch number. We
compare the result with piecewise linear interpolation and least square approximation using FEM basis
on a uniform grid with the same number of degrees of freedom in Figure 18. As observed before, MMNN
renders the best result due to its adaptivity through training.

1.0

— logy(training-error) vs. epoch

_3 — log(test-error) vs. epoch

0 200 400 [ 800 1000

0.5 10

Figure 16: Training and test er-
Figure 15: Target function. rors measured in MSE.
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(a) Epoch 10. (b) Epoch 50. (c) Epoch 100. (d) Epoch 1000.

Figure 17: The error during the training process.

4.2 Highly oscillatory functions

Globally oscillatory functions with significant high-frequency components can not be approximated well
by a shallow network when a global bounded activation function of the form o(W - x — b), such as
ReLU, is used. Due to almost orthogonality or high decorrelation (in terms of the inner product) between
o(W - x —b) and oscillatory functions with high likelihood (in terms of a random choice of (W, b)), the
set of parameters that can render a good approximation, namely the Rashomon set [29], becomes smaller
and smaller (in terms of relative measure) and hence harder and harder to find as the target function
becomes more and more oscillatory (see [38]). Although this difficulty can be alleviated by complexity
decomposition using MMNN as shown in Section 2, it still requires a larger network in terms of width,
rank, and layers and more training. Here we limit our tests to oscillatory functions in 1D and 2D due to
the dramatic increase of complexity with dimensions, or the curse of dimensions, in general.

We again start with a 1D example, f(z) = sin(507z),z € [-1,1]. A MMNN of size (800,40, 15)
produces a good approximation of this highly oscillatory function, as illustrated by the error plot in
Figure 20, with a smaller learning rate and a longer training process compared to previous examples
with localized fine features. Due to the significant depth, we consider using ResMMNN as discussed in
Section 2.2. For this test, a total of 1000 uniformly sampled points in [—1, 1] are used with a mini-batch
size of 100 and a learning rate of 10=* x 0.9L%/800) ' where k = 1,2, ---,40000 is the epoch number. Also,
an interesting learning dynamics for Adam is observed from Figure 19. In the beginning, nothing seems
to happen until about epoch 3600 when learning starts from the boundary. Then more and more features
are captured from the boundary to the inside gradually. Eventually, all features are captured and then
fine-tuned together to improve the overall approximation.

Next, we consider a two-dimensional target function of the following form:

2 2
fs(xy,22) = Z Z a;; sin(sb;x; + sc;jxiz;) cos(sbjz; + sdijx?),
i=1 j=1
where
0.3 0.2 2 2 Arw 4 67
(aig) = [0.2 0.3]’ (bs) = {474’ (cid) = Lm 474’ and - (di;) = [87r 67T:|'
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Figure 18: Comparison among different approximations using MMNN;, interpolation, and least square
FEM. The interpolation and FEM are all based on a 72 x 72 = 5184 uniform grid. MMNN has (100+1) x
10 x (6 — 1) 4+ (100 + 1) = 5151 free parameters. The maximum error is approximately 0.05 for MMNN,
0.31 for interpolation, and 0.38 for FEM. The corresponding MSE errors are 0.85 x 1076, 1.95 x 104,
and 1.45 x 10, respectively.
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Figure 20: Illustrations of training

Figure 19: Illustrations of the training process. and test errors measured in MSE.

In our test, we choose s = 3 to ensure the function exhibits significant oscillations and contains diverse
Fourier modes as illustrated by Figure 21. Given the complexity of the function, we employ a MMNN
with size (600, 30,15). Again, ResMMNN is used due to the depth. For this test, a total of 4002 data are
sampled on a uniform grid in [—1, 1]? with a mini-batch size of 1000 and a learning rate of 1073 x 0.9Lk/40]
where k = 1,2,---,2000 is the epoch number. The training process is illustrated by Figure 23. Figure 22
shows log-error plot.

We trained the same function using identical network settings, except we limited the domain of
interest to a unit disc. We sampled 4522 data points uniformly distributed over the [—1,1]? area, then
filtered to retain only those points that fall within the unit disk, totaling approximately 159692 (~ 400?)
samples. As illustrated in Figure 24, our network successfully learned the target function in the disc
with no adjustments or modifications. This test highlights the network’s flexibility for domain geometry,
an advantage over traditional mesh or grid-based methods, especially in higher dimensions.

4.3 Tests in three dimension and higher

In this section, we test a few examples in three and four dimensions. Even sampling an interesting
function becomes challenging as the dimension becomes higher. Although our examples are limited by
our computation power using a laptop, our tests show that MMNN performs well and is more effective
than a fully connected network.
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Figure 21: Ilustrations of the target function. rors measured in MSE.
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Figure 23: The top row: the learned neural network; the bottom row: the differences between the learned
neural network and the target function.

The first example is a 3D function a level set of which is shown in Figure 25. Using polar coordinates
(r,0,9), 0 € [0,7], ¢ € [0,27), the target function f(x,y,z) is defined as:

0 if 0.5+ 5p—5r <0,
flr0,0)=1<1 if 0.5 4+5p —5r > 1,
0.5+ 5p — 5r otherwise,

where

p=p(0,6) = 0.5+ 0.25in(66) cos(6¢) sin().

Our MMNN is of a compact size (600,20,8). For this test, a total of 1113 data are sampled on
a uniform grid in [—1,1]® with a mini-batch size of 999 and a learning rate of 0.0005 x 0.9L¥/6] for
epochs kK = 1,2,---,300. Figure 27 gives the error plot. As shown in Figures 25 and 26, the levelsets
corresponding to the target function f and the learned MMNN approximation h are nearly identical.
To visually demonstrate the quality of the approximation and complex structure of the 3D function, we
present several slices of the target function and the MMNN approximation by fixing either z, y, or z in
Figure 28.

Next, we consider the probability density function (PDF) of a Gaussian (normal) distribution in 4D,

exp (—g(x —p)"'S7 (z — p))

fl@) = flzy,...,x4) =

(@) ( ) (2m)* det(X)
1.0 0.9 0.8 0.7

where X is the covariance matrix. We set g = 0 and X! = 20 [8:2 2018 %:S] . We remark that the
0.7 1.8 2.9 4.0

eigenvalues of 7! are 6.82,9.93,25.28, 158.05 which means that the distribution is quite anisotropic and

concentrated near the center.
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A compact MMNN with size of (500, 12, 6) produces a good approximation as shown in the error plot
Figure 30. Figure 29 compares the true function f(x,y, z,u) and the MMNN approximation h(z,y, z,u)
with 2 = u = 0.2. For this test a total of 35* data are sampled on a uniform grid in [—1,1]* with a
mini-batch size of 352 and a learning rate at 10~3 x 0.9L%/6) for epochs k = 1,2, -- -, 300.

4.4 Learning dynamics

In this section, we show some interesting learning dynamics observed during the training process. As the
first example in Section 4.2 and the following examples show, the training process not just learns from
low frequency first but can also learn feature by feature, i.e., can be localized in both frequency domain
and spatial domain. We believe this is due to the combination of MMNN’s “divide and conquer” ability
and the Adam optimizer which utilizes momentum. More understanding is needed and will be studied
in our future research.

We again start with a 1D example, f(z) = sin (367|z|'*),z € [-1,1]. A MMNN of size (600, 30, 8)
produces a good approximation of this highly oscillatory function, as illustrated by the error plot in
Figure 32. For this test, a total of 1000 uniformly sampled points in [—1,1] are used with a mini-batch
size of 100 and a learning rate of 1073 x 0.915/200] where k = 1,2,---,10000 is the epoch number. As
illustrated in Figure 31, the function is less oscillatory near 0. Therefore, we might anticipate that the
network will initially learn the part near 0 and then feature by feature from the middle to the boundary.
The experimental results presented in Figure 33 agree with our expectations.

Now we show an example of 2D function f(r, ) (see Figure 34) defined in polar coordinates (r,6) as

0 i 0.5+ 5p — 5r <0,
f(r,0) =<1 if 0.54+5p—5r>1, where p=0.5+0.1cos(7?6?).
0.5+ 5p — br otherwise,

Our MMNN is of a compact size (500,20,8). For this test, a total of 6002 data are sampled on a
uniform grid in [—1,1]? with a mini-batch size of 1000 and a learning rate of 0.001 x 0.9L%/6) for epochs
k=1,2,---,300. Figure 35 gives the error plot. The training process shown in Figure 36 illustrates
that an overall coarse scale or low-frequency component of the shape is learned first and then localized
features are learned one by one from coarse to fine.
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Figure 28: Slices of the true function f(z,y,z) vs. those of the MMNN approximation h(x,y, z).
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work h(x,y,z,u) with z = u = 0.2. (MSE) vs. epoch.
5 Further discussion

In this section, we provide several general insights about MMNNs. First, in Section 5.1, we explore
the advantages of MMNNs compared to fully connected networks (FCNNs) or multi-layer perceptrons
(MLPs). Next, in Section 5.2, we offer practical guidelines for determining the appropriate MMNN size
based on our theoretical understanding and extensive numerical experiments. Finally in Section 5.3, we
discuss the use of alternative activation functions beyond ReLU in MMNNs.

5.1 Advantages compared to FCNNs or MLPs

e The two key differences between a standard FCNN or MLP and a MMNN are 1) the introduction
of the weights A, ¢ for different linear combinations of hidden neurons (or perceptrons) as the
multi-components in each layer, and 2) the training strategy that fixes those randomly initialized
W, b (random features) in the hidden neurons. Hence it is extremely easy to modify a FCNN or
MLP to a MMNN.

e MMNNs are much more effective than FCNNs in terms of representation, training, and accuracy
especially for complex functions. In comparison, as shown in those experiments in Section 2.4,
MMNNSs 1) have much fewer training parameters, 2) converge much faster in training, 3) achieve
much better accuracy. Moreover, experiments show that training process of MMNNs converges not
only faster but also with a steady rate while FCNNs saturates pretty early to a quite low accuracy,
as commonly observed in practices. These nice behaviors of MMNNs are due to their balanced
structure for smooth decomposition as well as the training strategy. In practice, the introduction
of A, cin MMNNs provides an important balance between the network width, which is the number
of hidden neurons (basis functions) and can be very large, and the dimension of the input space,
which is the number of components from the previous layer and can be much smaller than the
network width. In other words, using a few linear combinations of the basis functions can capture
smooth structures in the input space well. On the other hand, for FCNNs the two are the same
and no balance is exerted.
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Figure 33: Illustration of the training process.

5.2 Practical guidelines for MMNN

There are three hyperparameters for the configuration of MMNN sizes, the network width, the number
of components (rank), and the number of layers (depth). Here are the general guidelines based on our
mathematical construction and extensive experiments:

1. The network width should provide enough resolution to capture fine details of the target function.
This means that the width should be at least comparable to the size of an adaptive mesh that can
approximate the target function well.

2. The number of components (rank) is related to the overall complexity of the target function which
depends on its spatial domain and Fourier domain representation as well as the input dimension.
As indicated by our mathematical multi-component construction, it is related to the “divide and
conquer” strategy.

3. The number of layers (depth) is also related to the overall complexity of the target function as for
the number of components. Rank and depth are complementary but work together effectively for
a smooth decomposition of the target function. The rule of thumb for depth is similar to that for
the rank.

Here we use more concrete examples to illustrate the guidelines. For simplicity we fix the input
dimension and domain of interest. As the domain size and dimension increases, the network size needs
to increase correspondingly. For a smooth target function, a compact MMNN in terms of width, rank,
and depth is enough and easy training process can render accurate results. Larger MMNNs are needed
for target functions with localized rapid changes. Even with a relative compact size, the training process
can allocate resources adaptive to the target function and render good approximation. The most difficult
situation is to approximate globally highly oscillatory functions with diverse Fourier modes for which
large MMNNSs are needed. For instance, if the oscillation frequency doubles, the network width should
increase by 2% where d is the dimension. In general the network width needs to deal with the curse of
dimensionality just like a mesh based method. However, the growth of the number of components and
layers with the increase of complexity seems to be relative mild (maybe polylogarithmic suggested by
our mathematical construction).
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Overall, for a given target function, MMNNs can work well with quite a large range of configuration
with a trade-off between the network size and training process. For example, the training process
for a network more on the compact size with respect to the complexity of a given target function
may become more subtle and challenging, e.g., choosing the appropriate learning rate and batch
size, due to the lack of flexibility (or redundancy) of the representation. On the other hand, a
network of too large size (or redundancy) with respect to the complexity of a given target function
requires unnecessarily expensive training cost. An interesting and important question for future
research is how to develop a posteriori strategy to automatically adjust the network size in practice.

The most advantageous situation for using MMNNs is when approximating a function in relative
high dimension which is mostly smooth except for localized fine features, e.g., a distribution in high
dimensions concentrated on a low dimensional manifold. Through training, MMNNs can provide
an automatic adaptive approximation of the underlying structure which can be challenging for a
traditional mesh based method.

We would like to remark that learning rate scheduler can be a subtle and important issue for all
training process in practice. For all our training process, the Step Learning Rate suffices. However,
one could consider using other learning rate schedulers, such as the Cosine Scheduler [18] or the
gradual warm-up strategy [5]. Exploring and designing a more efficient learning rate scheduler with
some automatic restart mechanism is a potential interesting topic for future work.

5.3 Beyond ReLU to other activation functions

We also tried using different activation functions for MMNNSs, e.g., GELU [9], Swish [25], Sigmoid, and
Tanh. In general, ReLU provides the overall best results for various target functions. However, in situations
where a smooth (e.g., C*® or real analytic) approximation is needed, one might consider using smooth
alternatives to ReLU such as GELU or Swish, which generally yield results comparable to ReLU:
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e For target functions that are C*® or even real analytic (and can be highly oscillatory), such as
f(x) = cos(36mx?) — 0.6 cos(127z?), GELU (or Swish) tends to perform slightly better than ReLU.

e For target functions with non-differentiable points, such as f(x) = 1{|5/<0.02} - sin(507), GELU (or
Swish) generally performs slightly worse than ReLU.

e The use of GELU (or Swish) typically results in slightly longer training time compared to ReLU.

Additionally, other popular S-shaped activation functions like Sigmoid and Tanh have demonstrated
poor performance in our tests, possibly due to the vanishing gradient problem. For highly oscillatory
target functions, when using Sigmoid or Tanh training errors did not even decrease during the training
process.

6 Conclusion

In this work, we introduced the Multi-component and Multi-layer Neural Network (MMNN) and demon-
strated its effectiveness in approximating complex functions. By incorporating the principles of struc-
tured and balanced decomposition, the MMNN architecture addresses the limitations of shallow networks,
particularly in capturing high-frequency components and localized fine features. Our proposed network
structure as confirmed by extensive numerical experiments can approximate highly oscillatory functions
and functions with rapid transitions efficiently and accurately. Additionally, we highlight the advantages
of our training strategy, which optimizes only the linear combination weights of basis functions for each
component while keeping the parameters within the activation (basis) functions fixed, leading to a more
efficient and stable training process.

The theoretical underpinnings and practical implementations presented in this paper suggest that
MMNNSs offer a promising direction for constructing neural networks capable of handling complex tasks
with fewer parameters and reduced computational overhead. Future research can explore further gener-
alizations and applications of MMNNSs, as well as investigate the interplay between representation and
optimization in more depth.
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