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Abstract4

In this work, we propose a balanced multi-component and multi-layer neural network (MMNN)5

structure to approximate functions with complex features with both accuracy and efficiency in terms6

of degrees of freedom and computation cost. The main idea is motivated by a multi-component, each7

of which can be approximated effectively by a single-layer network, and multi-layer decomposition8

in a “divide-and-conquer” type of strategy to deal with a complex function. While an easy modifi-9

cation to fully connected neural networks (FCNNs) or multi-layer perceptrons (MLPs) through the10

introduction of balanced multi-component structures in the network, MMNNs achieve a significant11

reduction of training parameters, a much more efficient training process, and a much improved accu-12

racy compared to FCNNs or MLPs. Extensive numerical experiments are presented to illustrate the13

effectiveness of MMNNs in approximating high oscillatory functions and its automatic adaptivity in14

capturing localized features. Our codes and implementation details are available here.15
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1 Introduction17

The key use of neural networks is to approximate an input-to-output relation, i.e., a mapping or a18

function in the mathematics term. In this work, we continue our study of numerical understanding19

of neural network approximation of functions from representation to learning dynamics. In our earlier20

study [38], we demonstrated that a one-hidden-layer (also known as a two-layer or shallow) network is21

essentially a “low-pass filter” when approximating a function in practice. Due to the strong correlation22

among the family of activation functions (parameterized by the weight and bias), such as ReLU (rectified23

linear unit), the Gram matrix, the element of which is the pairwise correlation (inner product) of the24

activation functions, has a fast spectral decay. If initialized randomly, the eigenvectors of the Grammatrix25

correspond to generalized Fourier modes from low frequency to high frequency ordered corresponding26

to decreasing eigenvalues. Due to the ill-conditioning of the representation, no matter how wide a one-27

hidden-layer network is, it can only learn and approximate smooth functions or sample low-frequency28

modes effectively and stably (with respect to noise or machine round-off errors).29

In this work, we propose a balanced multi-component and multi-layer neural network (MMNN)30

structure based on our previous understanding of a one-hidden-layer network. First, we show that a31

multi-layer network with a multi-component structure, each of which can be approximated well and32

effectively by a one-hidden-layer network, can overcome the limitation of a shallow network by smooth33

decomposition and transformation. Compared to a fully connected neural network of a similar structure,34

our proposed MMNN is much more effective in terms of representation, training, and accuracy in approx-35

imating functions, especially for functions containing complex features, e.g., high-frequency modes. The36

key idea of MMNNs is to view a linear combination of activation functions as randomly parameterized37

basis functions, called a component, as a whole to represent a smooth function. Each layer has multiple38

components all sharing the common basis functions with different linear combinations. The number of39

components, called rank, is typically much smaller than the layer’s width and increases to enhance the40

flexibility of decomposition when dealing with more complex functions. These components are combined41

and composed (through layers) in a structured and balanced way in terms of network width, rank, and42

depth to approximate a complicated function effectively. Another important feature we used in practice43
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is that weights and biases inside each activation function are randomly assigned and fixed during the44

optimization while the linear combination weights of activation functions in each component are trained.45

This leads to more efficient training processes motivated by our finding that a one-hidden-layer neural46

network can be trained effectively to approximate a smooth function well using random basis functions.47

We also demonstrate interesting learning dynamics based on Adam optimizer [14], which is crucial for48

the successful and efficient training of MMNNs. An important remark is that a balanced and holistic49

approach needs to consider both representation and optimization as well as their interplay altogether.50

The outline of this paper is summarized as follows. In Section 2, the design of MMNNs is pro-51

posed and explained. Then, in Section 3, a mathematical framework for smooth decomposition and52

transformation using the MMNN architecture is presented, demonstrating that each component can be53

effectively approximated by a one-hidden-layer network. Extensive numerical experiments are presented54

in Section 4 to verify the analysis and demonstrate the effectiveness of MMNNs in the approximation55

of more complicated functions. Further discussion is presented in Section 5, where more insights and56

implementation guidelines of MMNNs are provided. Finally, remarks and conclusions are provided in57

Section 6.58

2 Multi-component and multi-layer neural network (MMNN)59

This section begins with an overview of the main notations used in this paper, as detailed in Section 2.1.60

Subsequently, we introduce a novel network architecture, the Multi-component and Multi-layer Neu-61

ral Network (MMNN), which is developed based on the balanced decomposition principle discussed in62

Section 2.2. Following this, in Section 2.3, we outline the learning strategy of MMNN and highlight63

its advantages over other methods. Finally, in Section 2.4, we compare the numerical performance of64

MMNNs and FCNNs.65

2.1 Notations66

The following is an overview of the basic notations used in this paper.67

• The symbols N, Z, Q, and R are used to denote the sets of natural numbers (including 0), integers,68

rational numbers, and real numbers, respectively. The set of positive natural numbers is denoted69

as N+ = N\{0}.70

• The indicator (or characteristic) function of a set A, denoted by 1A, is a function that takes the71

value 1 for elements of A and 0 for elements not in A.72

• The floor and ceiling functions of a real number x can be represented as ⌊x⌋ = max{n : n ≤ x, n ∈73

Z} and ⌈x⌉ = min{n : n ≥ x, n ∈ Z}.74

• Vectors are denoted by bold lowercase letters, such as a = (a1, · · · , an) ∈ Rn. On the other hand,75

matrices are represented by bold uppercase letters. For example, A ∈ Rm×n refers to a real matrix76

of size m× n, and AT denotes the transpose of matrix A.77

• Slicing notation is used for a vector x = (x1, · · · , xd) ∈ Rd, where x[n : m] denotes a slice of x from78

its n-th to the m-th entries for any n,m ∈ {1, 2, · · · , d} with n ≤ m and x[n] denotes the n-th entry79

of x. For example, if x = (x1, x2, x3) ∈ R3, then (5x)[2 : 3] = (5x2, 5x3) and (6x+1)[3] = 6x3 +1.80

A similar notation is employed for matrices. For instance, A[:, i] refers to the i-th column of A,81

whereas A[i, :] indicates the i-th row of A. Additionally, A[i, n : m] corresponds to (A[i, :])[n : m],82

which means it extracts the entries from the n-th to the m-th in the i-th row.83

2.2 Architecture of MMNNs84

In this section, we introduce our Multi-component and Multi-layer Neural Network (MMNN). Each layer85

of MMNN is a (shallow) neural network of the form86

h(x) = Aσ(Wx+ b) + c87

to approximate a vector-valued function f ∈ C([0, 1]din ;Rdout), where W ∈ Rn×din ,A ∈ Rdout×n, and88

n is the width of this network. Here, σ : R → R represents the activation function that can be applied89
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elementwise to vector inputs. Throughout this paper, the activation function is ReLU, unless otherwise90

specified. One can also write it in a more compact form,91

h = Aσ(Wx+ b) + c = Ã

[
σ(W̃ x̃)

1

]
= Ãσ(W̃ x̃), (1)92

where93

W̃ =
[
W , b

]
, Ã =

[
A, c

]
, x̃ =

[
x
1

]
.94

We call each element of h, i.e., h[i] = Ã[i, :] ·
[
σ(W̃ x̃)

1

]
for i = 1, 2, · · · , dout, a component. Here are a95

few key features of h:96

1. Each component is viewed as a linear combination of basis functions σ(W [i, :] · x + b[i]), i =97

1, 2, · · · , n, which is a function in x, as a whole.98

2. Different components of h share the same set of basis with different coefficients Ã[i, :].99

3. Only Ã are trained while W̃ are randomly assigned and fixed.100

4. The output dimension dout and network width n can be tuned according to the intrinsic dimension101

and complexity of the problem.102

In comparison, each layer in a typical deep FCNN takes the form σ(W̃ x̃), and each hidden neuron is103

individually a function of the input x or each point x ∈ Rdin is mapped to Rn, where n is the layer104

width. All weights W̃ are training parameters. In MMNN, each layer is composed of multiple components105

Ãσ(W̃ x̃). Each component is a linear combination of randomly parameterized hidden neurons σ(W̃ x̃),106

which can be more effectively and stably trained through Ã as a smooth decomposition/transformation.107

Typically the number of components dout is (much) smaller than the layer width n in our experiments.108

A MMNN is a multi-layer composition of hi, i.e., h : Rdin 7→ Rdout109

h = hm ◦ · · · ◦ h2 ◦ h1,110

where each hi : Rdi−1 7→ Rdi is a multi-component shallow network defined in (1) of width ni, where111

d0 = din, d1, · · · , dm−1 ≪ ni, dm = dout.112

The width of this MMNN is defined as max{ni : i = 1, 2, · · · ,m − 1}, the rank as max{di : i =113

1, 2, · · · ,m− 1}, and the depth as m. To simplify, we denote a network with width w, rank r, and depth114

l using the compact notation (w, r, l). See Figure 1(a) for an illustration of MMNN of size (4, 2, 2). In115

contrast, an FCNN ϕ can be expressed in the following composition form116

ϕ = LL ◦ σ ◦LL−1 ◦ · · · ◦ σ ◦L1 ◦ σ ◦L0,117

where Li is an affine linear map given by Li(y) = Wi · y + bi. Readers are referred to Figure 1(b) for118

an illustration and also a comparison with the MMNN.119

For very deep MMNNs, one can borrow ideas from ResNets [8] to address the gradient vanishing120

issue, making training more efficient. Incorporating this idea, we propose a new architecture given by a121

multi-layer composition of I + hi, i.e., h : Rdin 7→ Rdout122

h = hm ◦ (I + hm−1) ◦ · · · ◦ (I + h3) ◦ (I + h2) ◦ h1,123

where each hi : Rdi−1 7→ Rdi is a multi-component shallow network defined in (1) with width ni,124

d0 = din, d1 = · · · = dm−1 = r ≪ ni, dm = dout,125

and I is the identity map. We call this architecture ResMMNN. See Figure 1(c) for an illustration of a126

ResMMNN of size (4,2,3).127

The above definition of ResMMNNs requires d1 = · · · = dm−1 = r. If this condition does not hold,128

we can alternatively define ResMMNN via129

h = (I ⊕ hm) ◦ (I ⊕ hm−1) ◦ · · · ◦ (I ⊕ h3) ◦ (I ⊕ h2) ◦ (I ⊕ h1),130
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where ⊕ is an operation defined as follows. For any functions f : Rd 7→ Rdf and g : Rd 7→ Rdg , the ⊕131

operation is given by132

f ⊕ g := (f̃ + g̃)[1 : dg], where f̃ =

[
f
0

]
∈ Rmax{df ,dg} and g̃ =

[
g
0

]
∈ Rmax{df ,dg}.133

It is noteworthy that such an operation is both straightforward and cost-effective to implement. For134

example, in Python, one can use the following code:135

y = f(x); z = g(x); n = min(len(y), len(z)); z[:n] = y[:n] + z[:n]136

After executing this code, z will be the result of the map f ⊕ g at x. We remark that the definition of137

ResMMNN can be generalized to only adding identity maps to certain specific layers, which we still refer138

to as ResMMNN.139

x h(x) = h2 ◦ h1(x)W1, b1 W2, b2A1, c1 A2, c2

σ

σ

σ

σ

σ

σ

σ

σ

first shallow sub-network block h1 second shallow sub-network block h2

(a) MMNN of size (4, 2, 2), i.e., width 4, rank 2, and depth 2.

x h(x)W1, b1 W2, b2 W3, b3

σ
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(b) FCNN of size (4, 2, 3), i.e., width 4 and depth 2.

I

x h(x) = h3 ◦ (I + h2) ◦ h1(x)W1, b1 W2, b2 W3, b3A1, c1 A2, c2 A3, c3

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

first shallow sub-network block h1 second shallow sub-network block I + h2 third shallow sub-network block h3

(c) ResMMNN of size (4, 2, 3), i.e., width 4, rank 2, and depth 3.

Figure 1: Illustrations of σ-activated MMNN, FCNN, and ResMMNN.

2.3 Learning strategy of MMNNs140

Our learning strategy is motivated by the following basic principle: a function can be decomposed in a141

multi-component and multi-layer structure each component of which can be approximated and trained142

effectively using a one-hidden-layer network, which is a linear combination of random basis functions (e.g.,143

of the form σ(Wi ·x+bi), see Section 3). Hence optimizing the linear combination weights of the random144

basis functions, i.e., Ai, ci is both efficient and adequate. On the other hand, optimizing the weights145

(orientations of the basis functions) Wi’s and biases bi’s to make the basis functions more adaptive to146

fine features of the target function, which would require capturing high-frequency information by a single147

layer network, leads to not only significantly more parameters to optimize but also difficulties in training148

as shown in [38]. Specifically, for each layer of MMNN, we fix the activation function parameters (Wi’s149

and bi’s) as per PyTorch’s default setting during the training process. This entails initializing both150

weights and biases uniformly from the distribution U(−
√
k,
√
k), where k = 1

in features .
1 The whole151

training process optimizes all Ai’s and ci’s simultaneously using Adam. Note that it is important to152

have a uniform sampling of orientations Wi and biases bi for the random basis functions to be able to153

approximate an arbitrary smooth function well. Unless stated otherwise, parameter initialization adheres154

to the default settings provided by PyTorch in our experiments.155

1It is noteworthy that this initialization approach is similar to the widely used Xavier initialization [4], which draws

weights from the distribution U(−
√
k,

√
k) with k =

√
6

in features+out features
and sets the bias to 0.
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To demonstrate the advantages of our training approach (labeled S1), we conduct a comparison with156

the typical strategy in deep neural networks, denoted as Strategy S2, which uses the default PyTorch157

initialization and optimizes all parameters during training. In our tests, we select an oscillatory target158

function f(x) = cos(36πx2)−0.6 cos(12πx2) and use fairly compact networks. The tests are performed on159

a total of 1000 uniform samples in [−1, 1] with a mini-batch size of 100 and a learning rate for epoch-k set160

at 0.001× 0.9⌊k/400⌋ for k = 1, 2, · · · , 20000, where ⌊·⌋ denotes the floor operation. The Adam optimizer161

[14] is applied throughout the training process.162

Table 1: Comparison of test errors averaged over the last 100 epochs.

network (width, rank, depth) #parameters (trained / all) test error (MSE) test error (MAX) training time

MMNN1 (S1) (400, 20, 6) 40501 / 83301 2.01× 10−5 4.36× 10−2 23.9s / 1000 epochs

MMNN1 (S2) (400, 20, 6) 83301 / 83301 4.26× 10−5 4.71× 10−2 30.2s / 1000 epochs

MMNN2 (S1) (590, 28, 6) 83331 / 170061 1.39× 10−5 2.80× 10−2 25.2s / 1000 epochs
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1.0

0 1000 2000 3000 4000 5000 6000 7000
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1 MMNN1 (S1, train 40501 of the 83301 parameters)
MMNN1 (S2, train all 83301 parameters)
MMNN2 (S1, train 83331 of the 170061 parameters)
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0

1
MMNN1 (S1, train 40501 of the 83301 parameters)
MMNN1 (S2, train all 83301 parameters)
MMNN2 (S1, train 83331 of the 170061 parameters)

Figure 2: Left: target function f(x) = cos(36πx2)− 0.6 cos(12πx2). Middle: logarithm of test errors vs.
epoch. Right: logarithm of “test-error-aver” vs. epoch, where “test-error-aver” for epoch k is calculated
by averaging the errors in epochs max{1, k − 100} to min{k + 100,#epochs}.

As illustrated in Table 1 and Figure 2, our learning strategy S1 is significantly more effective than163

strategy S2 with comparable accuracy. There are two main advantages of S1. First, S1 requires training164

only about half the number of parameters compared to S2, which results in time savings. Second, S1165

converges more quickly and performs significantly better when the training is not sufficient. We would166

like to note that in certain specific cases, S2 may outperform S1, particularly when the network size is167

relatively small and S2 is well-trained. This is expected since S2 trains all parameters, whereas S1 only168

trains a subset. Based on our experience, S1 is more effective in practice, particularly for sufficiently169

large networks. Alternatively, one might consider a hybrid learning strategy.170

2.4 MMNNs versus FCNNs171

Previously in Section 1, we discussed the theoretical differences between MMNNs and FCNNs. Now, let’s172

explore and compare their numerical performance. To ensure a fair comparison, we will use networks173

with a similar number of parameters, ensuring that all networks have sufficient parameters to learn174

the target function effectively. Typically, when training an FCNN, all parameters are optimized. For175

a thorough comparison, we will employ two learning strategies for MMNNs as detailed in Section 2.3:176

S1 and S2. S1 involves training approximately half the number of parameters of the MMNN, while S2177

involves training all parameters.178

We choose a 1D function f1(x) = cos(20π|x|1.4) + 0.5 cos(12π|x|1.6) and a 2D function179

f2(x1, x2) =

2∑

i=1

2∑

j=1

aij sin(sbixi + scijxixj) cos(sbjxj + sdijx
2
i ),180

where s = 2 and181

(ai,j) =

[
0.3 0.2
0.2 0.3

]
, (bi) =

[
2π
4π

]
, (ci,j) =

[
2π 4π
8π 4π

]
, and (di,j) =

[
4π 6π
8π 6π

]
.182

Refer to Figures 3 and 4 for illustrations of f1 and f2, respectively.183
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We select large network sizes (see Table 2) to ensure that all networks possess sufficient parameters184

to learn the target functions.2 For training the 1D function, we sample a total of 1000 data points on a185

uniform grid within [−1, 1], using a mini-batch size of 100 and a learning rate of 0.001 × 0.9⌊k/400⌋ for186

epochs k = 1, 2, · · · , 20000. For training the 2D function, we sample a total of 6002 data points on a187

uniform grid within [−1, 1]2, using a mini-batch size of 1000 and a learning rate of 0.001× 0.9⌊k/16⌋ for188

epochs k = 1, 2, · · · , 800.189

Table 2: Comparison of test errors averaged over the last 100 epochs.

target function network (width, rank, depth) #parameters (trained / all) test error (MSE) test error (MAX) training time

f1 MMNN1 (S1) (388, 18, 6) 35399 / 73035 2.49× 10−6 9.93× 10−3 23.3s / 1000 epochs

f1 FCNN1-1 (83, –, 6) 35110 / 35110 2.43× 10−4 1.87× 10−1 19.5s / 1000 epochs

f1 MMNN1 (S2) (388, 18, 6) 73035 / 73035 2.05× 10−6 1.88× 10−2 27.4s / 1000 epochs

f1 FCNN1-2 (120, –, 6) 72961 / 72961 1.73× 10−4 1.14× 10−1 22.3s / 1000 epochs

f2 MMNN2 (S1) (789, 36, 12) 313630 / 637120 4.61× 10−6 1.55× 10−2 30.3s / 10 epochs

f2 FCNN2-1 (168, –, 12) 312985 / 312985 2.42× 10−4 2.75× 10−1 26.7s / 10 epochs

f2 MMNN2 (S2) (789, 36, 12) 637120 / 637120 6.17× 10−6 6.05× 10−2 35.8s / 10 epochs

f2 FCNN2-2 (240, –, 12) 637201 / 637201 3.28× 10−5 1.39× 10−1 29.3s / 10 epochs

As illustrated in Table 2 and Figure 5, MMNNs outperform FCNNs when both have the same depth190

and a comparable number of parameters, particularly for relatively oscillatory target functions. Moreover,191

as indicated in Table 2, the training time for MMNN (S1) is similar to that of FCNN, while MMNN192

(S2) takes a bit more time. We remark that the primary advantage of MMNNs lies in capturing high-193

frequency components. As we can see from Figure 5, the differences between network approximations194

and the corresponding target functions show that FCNNs approximate high-frequency parts of the target195

functions poorly. In contrast, the approximation errors for MMNNs, especially with the S1 learning196

strategy, are more evenly distributed across the entire domain, indicating their effectiveness in capturing197

high-frequency components. The Adam optimizer [14] is applied throughout the training process.198

3 Multi-component and multi-layer decomposition199

Although a one-hidden-layer neural network is a low-pass filter that can not represent and learn high-200

frequency features effectively [38], we use mathematical construction to show that MMNNs, which are201

composed of one-hidden-layer neural networks, can overcome this difficulty by decomposition of the202

complexity through components and/or depth. We emphasize that the decomposition is highly non-203

unique. Our construction is “man-made” which can be different from the one by computer through an204

optimization (learning) process. Our discussion begins with one-dimensional construction in Section 3.1205

and later extends to higher dimensions in Section 3.2.206

3.1 One dimensional construction207

We begin with a two-component decomposition in 1D as both an illustration and an example in Sec-208

tion 3.1.1. Later in Section 3.1.2, we introduce the general multi-component decomposition. Finally in209

Section 3.1.3, we use concrete examples for demonstration.210

2FCNNs perform poorly if the network size is small. For a fair comparison, we choose relatively large network sizes for
FCNNs and MMNNs, where both perform reasonably well.
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Figure 5: First row: logarithm of “test-error-aver” vs. epoch, where “test-error-aver” for epoch k is
calculated by averaging the errors in epochs max{1, k − 100} to min{k + 100,#epochs}. Second row:
differences between learned networks and f1. Second row: differences between learned networks and f2.

3.1.1 Two-component decomposition211

We show a simple “divide and conquer” strategy for a target function (example) f(x) = cos(2nπx), a212

high frequency Fourier mode when n is large. Define213

f1 : [−1, 1] 7→ [−1, 1]2, f1 =

[
f1,1
f1,2

]
,214

215

f1,1(x) = ReLU(2x)− 1 =

{
−1 for x ∈ [−1, 0),

2x− 1 for x ∈ [0, 1],
216

217

f1,2(x) = −ReLU(−2x) + 1 =

{
2x+ 1 for x ∈ [−1, 0),

1 for x ∈ [0, 1],
218

and219

f2 : (u, v) ∈ [−1, 1]2 7→ cos
(
nπ(u+ 1)

)
+ cos

(
nπ(v − 1)

)
∈ R.220

Then for any x ∈ [−1, 1] we have221

f(x) = cos
(
nπ · ReLU(2x)

)
+ cos

(
− nπ · ReLU(−2x)

)

= cos
(
nπ
(
f1,1(x) + 1

))
+ cos

(
nπ
(
f1,2(x)− 1

))
= f2 ◦ f1(x)

222

Through this decomposition and piecewise linear transformation, which can be approximated easily by a223

single layer of ReLU network, one only needs to approximate a function that is smoother than the original224

f : f1 is simplified, while f2 is reduced to half of the frequency of the original target function f .225

We observe that this decomposition approach is universally applicable for any function f : [−1, 1] 7→226

R. Specifically, the decomposition is defined as227

f1 : [−1, 1] 7→ [−1, 1]2, f1 =

[
f1,1
f1,2

]
,228
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where the component functions f1,1 and f1,2 are defined by229

f1,1(x) = ReLU(2x)− 1 =

{
−1 for x ∈ [−1, 0),

2x− 1 for x ∈ [0, 1],
230

and231

f1,2(x) = −ReLU(−2x) + 1 =

{
2x+ 1 for x ∈ [−1, 0),

1 for x ∈ [0, 1].
232

Moreover,233

f2 : (u, v) ∈ [−1, 1]2 7→ f
(
u+1
2

)
+ f

(
v−1
2

)
− f(0) ∈ R.234

Hence, for any x ∈ [−1, 1], we achieve the following reconstruction of f(x):235

f(x) = f
(
ReLU(2x)

2

)
+ f

(
−ReLU(−2x)

2

)
− f(0)

= f
(

f1,1(x)+1
2

)
+ f

(
f1,2(x)−1

2

)
− f(0) = f2 ◦ f1(x)

236

demonstrating a structured decomposition that allows the function to be expressed through the compo-237

sition of a smoother function with a piecewise (component-wise) transformation and rescaling.238

3.1.2 General multi-component decomposition239

Now we propose a general multi-component adaptive decomposition, a “divide and conquer” strategy,240

that can distribute the complexity of a target function evenly to multiple components.241

Given a sequence x0 < x1 < · · · < xn where the target function is defined on the interval [x0, xn], we242

will demonstrate how our new architecture allows us to partition the complexities of the function f into243

smaller intervals [xi−1, xi]. By rescaling each subinterval, one only needs to deal with a much smoother244

function in each interval. This approach enables us to effectively approximate the target function over245

the entire interval [x0, xn].246

Let Li : [ai, bi] → [xi−1, xi] be the linear map with247

Li(ai) = xi−1 and Li(bi) = xi. (2)248

Define249

fi = f ◦ Li : [ai, bi] → R. (3)250

To decompose the target function into smoother pieces, we define a piecewise linear transformation251

ψi using a linear combination of two ReLU functions (or a simple single layer network),252

ψi(x) = si · ReLU (x− xi−1)− si · ReLU (x− xi) + ai. (4)253

Here si =
bi−ai

xi−xi−1
is the “slope” of L−1

i , which is a local rescaling. For example, fi becomes a smoother254

function than f after stretching [xi−1, xi] to a larger domain [ai, bi]. See an illustration of ψi(x) in255

Figure 6.256

xi−1 xi
ai

bi ψi(x)

Figure 6: An illustration of ψi(x).

Theorem 3.1. Given x0 < x1 < · · · < xn, suppose Li and ψi are given in Equations (2) and (4),257

respectively. Then the target function f : [x0, xn] → R has the following (smoother) decomposition (fi)258

with a piecewise linear transformation (ψi),259
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x

ReLU (x− x0)

ReLU (x− x1)

ReLU (x− x2)

ReLU (x− xn−1)

ReLU (x− xn)

s1 · ReLU (x− x0)− s1 · ReLU (x− x1) + a1 := ψ1(x)

s2 · ReLU (x− x1)− s2 · ReLU (x− x2) + a2 := ψ2(x)

sn · ReLU (x− xn−1)− sn · ReLU (x− xn) + an := ψn(x)

f1 ◦ ψ1(x)

f2 ◦ ψ2(x)

fn ◦ ψn(x)

c+

n∑

i=1

fi ◦ ψi = f(x)

f1 = f ◦ L1

f2 = f ◦ L2

fn = f ◦ Ln

... ... ...

(a) Decompostion of target function f = c+
∑n

i=1 fi ◦ ψi: oscillatory f to smooth fi’s.

x

ReLU (x− x0)

ReLU (x− x1)

ReLU (x− x2)

ReLU (x− xn−1)

ReLU (x− xn)

s1 · ReLU (x− x0)− s1 · ReLU (x− x1) + a1 := ψ1(x)

s2 · ReLU (x− x1)− s2 · ReLU (x− x2) + a2 := ψ2(x)

sn · ReLU (x− xn−1)− sn · ReLU (x− xn) + an := ψn(x)

h1 ◦ ψ1(x)

h2 ◦ ψ2(x)

hn ◦ ψn(x)

c+
n∑

i=1

hi ◦ ψi =: h(x)

h1

h2

hn

... ... ...

first one-hidden-layer block (decomposition) second block (divide and conquer): hi ≈ fi

(b) Neural network architecture of h = c+
∑n

i=1 hi ◦ ψi by using hi ≈ fi.

Figure 7: Visual representations of the decompositions of f and h are provided with c =
∑n−1

i=0 f(xi)
being a constant and si being the slope. Here, the function f is dissected into several simpler functions,
labeled as fi. Each fi represents a simplified and more manageable segment of f , allowing for the
straightforward application of subnetwork hi to closely approximate fi, even with the use of shallow
networks.

f(x) =

n∑

i=1

fi ◦ ψi(x)−
n−1∑

i=1

f(xi)

︸ ︷︷ ︸
constant

for any x ∈ [x0, xn],
260

where fi is given in Equation (3).261

Proof of Theorem 3.1. By definition of ψi in Equation (4), it is easy to check262

ψi(x) =





bi if x > xi,

L−1
i (x) if x ∈ [xi−1, xi],

ai if x < xi−1,

=⇒ ψi(x) =





bi if i ≤ j − 1,

L−1
j (x) if i = j,

ai if i ≥ j + 1,

263

for a fixed j ∈ {1, 2, · · · , n} and any x ∈ [xj−1, xj ]. It follows that264

n∑

i=1

fi ◦ ψi(x) =

n∑

i=1

f ◦ Li ◦ ψi(x) =

j−1∑

i=1

f ◦ Li ◦ ψi(x) + f ◦ Lj ◦ ψj(x) +

n∑

i=j+1

f ◦ Li ◦ ψi(x)

=

j−1∑

i=1

f ◦ Li(bi) + f ◦ Lj ◦ L−1
j (x) +

n∑

i=j+1

f ◦ Li(ai)

=

j−1∑

i=1

f(xi) + f(x) +

n∑

i=j+1

f(xi−1) = f(x) +

n−1∑

i=1

f(xi)

︸ ︷︷ ︸
constant

.

265

It follows that266

f(x) =

n∑

i=1

fi ◦ ψi(x)−
n−1∑

i=1

f(xi)

︸ ︷︷ ︸
constant

for any x ∈ [xj−1, xj ].
267

Since j is arbitrary, the above equation holds for all x = ∪n
j=1[xj−1, xj ] = [x0, xn].268
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For each smoother fi, one can use a shallow network component ϕi- a linear combination of random269

basis functions to approximate fi well on [ai, bi]. Then270

f(x) =

n∑

i=1

fi ◦ ψi(x)−
n−1∑

i=1

f(xi)

︸ ︷︷ ︸
constant

≈
n∑

i=1

ϕi ◦ ψi(x)−
n−1∑

i=1

f(xi)

︸ ︷︷ ︸
constant

=: h(x),271

h(x) is a one-hidden-layer neural network approximation of the target function f(x) that can approximate272

a complex function better than a single layer. See Figure 7 for an illustration. In practice, one can273

choose repeated decomposition using a multi-component and multi-layer network structure which is the274

motivation for MMNN. It is well-known that neural networks can approximate smooth functions well.275

For localized rapid change/oscillation, our construction shows that a small network in terms of the width276

as well as the number of components and layers can achieve adaptive decomposition and deal with it277

rather easily. Hence MMNN is effective in approximating a function with localized fine features. This278

is an important advantage in dealing with low-dimensional structures embedded in high dimensions.279

The most difficult situation is approximating global highly oscillatory functions, especially with diverse280

frequency modes, for which wider networks with more components and layers are needed to deal with281

both the complexity and curse of dimensions.282

3.1.3 Examples283

Here we use two examples to demonstrate the complexity decomposition strategy presented in the pre-284

vious section. We start with the Runge function f(x) = 1
25x2+1 and modify it to f(x) = 1

1000x2+1 , which285

has a localized rapid change near 0. As an example, we use four components n = 4, choose points286

x0, x1, x2, x3, x4 at −1,−0.2, 0, 0.2, 1, and let ai = −1 and bi = 1 for all i. In practice, each component287

is approximated by a single-layer network - a linear combination of basis functions, and trained by an288

optimization method, e.g., Adam. Our examples here are just a proof of concept for the decomposition289

of a target function into smoother components using MMNN structure in the form290

f(x) =

4∑

i=1

fi ◦ ψi(x)−
3∑

i=1

f(xi)

︸ ︷︷ ︸
constant

,291

where fi and ψi (piecewise tranformation/rescaling) are defined as in (3) and (4), respectively. These292

components are illustrated in Figure 8. Each component is relatively smooth, making it easier for293

approximation and learning through shallow networks. This approach essentially utilizes a divide-and-294

conquer principle.295

−1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2 f (x) = 1
1000x2+1

−1.0 −0.5 0.0 0.5 1.0
0.00

0.01

0.02

0.03 f1(x)

−1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25
f2(x)

−1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25
f3(x)

−1.0 −0.5 0.0 0.5 1.0
0.00

0.01

0.02

0.03 f4(x)

−1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2
zoom out of f1(x)

zoom out of f2(x)

zoom out of f3(x)

zoom out of f4(x)

−1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25 ψ1(x)

−1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25 ψ2(x)

−1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25 ψ3(x)

−1.0 −0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25 ψ4(x)

Figure 8: Illustrations of f(x) = 1
1000x2+1 and its multi-component decomposition through fi and ψi

i = 1, 2, 3, 4, where f(x) =
∑4

i=1 fi ◦ ψi(x)−
∑3

i=1 f(xi).

The second example is a globally oscillatory function of the form296

f(x) = cos2(6πx) + sin(10πx2).297

Again we illustrate using four components n = 4, selecting points x0, x1, x2, x3, x4 at −1,−0.7, 0, 0.7, 1,298

and setting ai = −1 and bi = 1 for all i. As shown in Figure 9, the target function f(x) is decomposed299

into components that are less oscillatory again facilitating their approximation and learning through300

shallow networks.301
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−1.0
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1.0
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f (x) = cos2(6πx) + sin(10πx2)

−1.0 −0.5 0.0 0.5 1.0
−1

0

1

2
f1(x)

−1.0 −0.5 0.0 0.5 1.0
−1

0

1

2

3

f2(x)

−1.0 −0.5 0.0 0.5 1.0
−1

0

1

2

3

f3(x)

−1.0 −0.5 0.0 0.5 1.0
−1

0

1

2
f4(x)

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5
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0.5

1.0

1.5

2.0

2.5

3.0
zoom out of f1(x)

zoom out of f2(x)

zoom out of f3(x)

zoom out of f4(x)
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−1.0 −0.5 0.0 0.5 1.0
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0.50

0.75

1.00

1.25 ψ2(x)

−1.0 −0.5 0.0 0.5 1.0
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0.75

1.00

1.25 ψ4(x)

Figure 9: Illustrations of f(x) = cos2(6πx) + sin(10πx2) and its decomposition components fi and ψi

such that f(x) =
∑4

i=1 fi ◦ ψi(x)−
∑3

i=1 f(xi).

3.2 High dimensional cases302

Let us now consider the extension to multi-dimension using two dimensions as an example since the303

simple dimension-by-dimension strategy applies to any dimension.304

Given x0 < x1 < · · · < xn and y0 < y1 < · · · < ym, dividing the domain of the function f(x, y)305

into small Cartesian rectangles [xi−1, xi] × [yj−1, yj ]. Let L1,i : [ai, bi] → [xi−1, xi] and L2,j : [ci, di] →306

[yj−1, yj ] be the linear maps with307

{
L1,i(ai) = xi−1,

L1,i(bi) = xi
and

{
L2,j(ci) = yj−1,

L2,j(di) = yj .
(5)308

For i = 1, 2, · · · , n and j = 1, 2, · · · ,m, we define309





fi,0(x, y) := f
(
L1,i(x), y

)
,

f0,j(x, y) := f
(
x, L2,j(y)

)
,

fi,j(x, y) := f
(
L1,i(x), L2,j(y)

)
= f0,j

(
L1,i(x), y

)
= fi,0

(
x, L2,j(y)

)
.

(6)310

It is evident that with appropriate transformation and rescaling, fi,0(x, y) is smooth in x when y is held311

constant, f0,j(x, y) is smooth in y when x is fixed, and fi,j(x, y) is smooth in both x and y. Define312

ψi(x) =





bi if x > xi,

L−1
1,i (x) if x ∈ [xi−1, xi],

ai if x < xi−1

and ϕj(y) =





dj if y > yj ,

L−1
2,j(y) if y ∈ [yj−1, yj ],

cj if y < yj−1.

(7)313

The following result provides a decomposition of f that fits into the structure of MMNN.314

Theorem 3.2. Given x0 < x1 < · · · < xn and y0 < y1 < · · · < ym, suppose L1,i,L2,j and ψi, ϕj315

are given in Equations (5) and (7), respectively. Then the function f : [x0, xn] × [y0, ym] → R can be316

expressed as317

f(x, y) =

n∑

i=1

m∑

j=1

fi,j

(
ψi(x), ϕj(y)

)
−

n∑

i=1

m−1∑

j=1

fi,0

(
ψi(x), yj

)

−
n−1∑

i=1

m∑

j=1

f0,j

(
xi, ϕj(y)

)
+

n−1∑

i=1

m−1∑

j=1

f(xi, yj)

(8)318

for all (x, y) ∈ [x0, xn]× [y0, ym], where fi,j are given in Equation (6).319

Proof of Theorem 3.2. Fixing (k, j), for any (x, y) ∈ [xk−1, xk]× [yℓ−1, yℓ], we have320

ψi(x) =





bi if i ≤ k − 1,

L−1
1,k(x) if i = k,

ai if i ≥ k + 1

and ϕj(y) =





dj if j ≤ ℓ− 1,

L−1
2,ℓ(y) if j = ℓ,

cj if j ≥ ℓ+ 1.

321
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It follows that322

n∑

i=1

fi,0

(
ψi(x), y

)
=

n∑

i=1

f
(
L1,i ◦ ψi(x), y

)

=

k−1∑

i=1

f
(
L1,i ◦ ψi(x), y

)
+ f

(
L1,k ◦ ψk(x), y

)
+

n∑

i=k+1

f
(
L1,i ◦ ψi(x), y

)

=

k−1∑

i=1

f
(
L1,i(bi), y

)
+ f

(
L1,k ◦ L−1

1,k(x), y
)
+

n∑

i=k+1

f
(
L1,i(ai), y

)

=

k−1∑

i=1

f(xi, y) + f(x, y) +

n∑

i=k+1

f(xi−1, y) = f(x, y) +

n−1∑

i=1

f(xi, y),

323

implying324

f(x, y) =

n∑

i=1

fi,0

(
ψi(x), y

)
−

n−1∑

i=1

f(xi, y).325

For each i, using the 1D decomposition technique described in Section 3.1, we find the decompositions326

for fi,0
(
ψi(x), y

)
and f(xi, y). We have327

m∑

j=1

fi,j

(
ψi(x), ϕj(y)

)
=

m∑

j=1

fi,0

(
ψi(x), L2,j ◦ ϕj(y)

)

=

ℓ−1∑

j=1

fi,0

(
ψi(x), L2,j ◦ ϕj(y)

)
+ fi,0

(
ψi(x), L2,ℓ ◦ ϕℓ(y)

)
+

m∑

j=ℓ+1

fi,0

(
ψi(x), L2,j(◦ϕj(y))

)

=

ℓ−1∑

j=1

fi,0

(
ψi(x), L2,j(dj)

)
+ fi,0

(
ψi(x), L2,ℓ ◦ L−1

2,ℓ(y)
)
+

m∑

j=ℓ+1

fi,0

(
ψi(x), L2,j(cj)

)

=

ℓ−1∑

j=1

fi,0

(
ψi(x), yj

)
+ fi,0

(
ψi(x), y

)
+

m∑

j=ℓ+1

fi,0

(
ψi(x), yj−1

)

= fi,0

(
ψi(x), y

)
+

m−1∑

j=1

fi,0

(
ψi(x), yj−1

)
,

328

implying329

fi,0

(
ψi(x), y

)
=

m∑

j=1

fi,j

(
ψi(x), ϕj(y)

)
−

m−1∑

j=1

fi,0

(
ψi(x), yj

)
.330

Moreover,331

m∑

j=1

f0,j

(
xi, ϕj(y)

)
=

m∑

j=1

f
(
xi, L2,j ◦ ϕj(y)

)

=

ℓ−1∑

j=1

f
(
xi, L2,j ◦ ϕj(y)

)
+ f

(
xi, L2,ℓ ◦ ϕℓ(y)

)
+

m∑

j=ℓ+1

f
(
xi, L2,j ◦ ϕj(y)

)

=

ℓ−1∑

j=1

f
(
xi, L2,j(dj)

)
+ f

(
xi, L2,ℓ ◦ L−1

2,ℓ(y)
)
+

m∑

j=ℓ+1

f
(
xi, L2,j(cj)

)

=

ℓ−1∑

j=1

f(xi, yj) + f(xi, y) +

m∑

j=ℓ+1

f(xi, yj−1) = f(xi, y) +

m−1∑

j=1

f(xi, yj),

332

implying333

f(xi, y) =

m∑

j=1

f0,j

(
xi, ϕj(y)

)
−

m−1∑

j=1

f(xi, yj).334
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Therefore, for any (x, y) ∈ [xk−1, xk]× [yℓ−1, yℓ],335

f(x, y) =

n∑

i=1

fi,0

(
ψi(x), y

)
−

n−1∑

i=1

f(xi, y)

=

n∑

i=1

(
m∑

j=1

fi,j

(
ψi(x), ϕj(y)

)
−

m−1∑

j=1

fi,0

(
ψi(x), yj

))
−

n−1∑

i=1

(
m∑

j=1

f0,j

(
xi, ϕj(y)

)
−

m−1∑

j=1

f(xi, yj)

)

=

n∑

i=1

m∑

j=1

fi,j

(
ψi(x), ϕj(y)

)
−

n∑

i=1

m−1∑

j=1

fi,0

(
ψi(x), yj

)
−

n−1∑

i=1

m∑

j=1

f0,j

(
xi, ϕj(y)

)
+

n−1∑

i=1

m−1∑

j=1

f(xi, yj).

336

Since k and ℓ are arbitrary, the above equation holds for all (x, y) = ∪n
k=1 ∪m

ℓ=1 [xk−1, xk]× [yℓ−1, yℓ] =337

[x0, xn]× [y0, ym].338

3.3 Related work339

Approximation Extensive research has examined the approximation capabilities of neural networks,340

focusing on various architectures to approximate diverse target functions. Early studies concentrated341

on the universal approximation power of single-hidden-layer networks [3, 10, 11], which demonstrated342

that sufficiently large neural networks could approximate specific functions with arbitrary precision343

mathematically, without quantifying the error relative to network size. Subsequent research, such344

as [1, 2, 6, 7, 19, 21, 30, 31, 32, 33, 35, 36, 37, 39], analyzed the approximation error for different345

networks in terms of size characterized by width, depth, or the number of parameters. Those studies346

have primarily concentrated on the mathematical theory that supports the existence theory for such neu-347

ral networks. However, there has been limited focus on determining the parameters within these networks348

computationally and the numerical errors, particularly those arising from finite precision in computer349

simulations. This gap motivated our current investigation, which considers practical training processes350

and numerical errors. Specifically, the balanced structure of MMNN, the choice of training parameters,351

and the associated learning strategy discussed here are intended to facilitate a smooth decomposition of352

the function, thereby promoting an efficient training process.353

Low-rank methods Low-rank structures in the weight matrix W of a fully connected neural network354

have been investigated by various groups. For example, the methods proposed in [12, 26, 28] focus355

on accelerating training and reducing memory requirements while maintaining final performance. The356

concept of low-rank structures is further extended to tensor train decomposition in [22]. The MMNN357

proposed here differs in two key aspects. First, each layer contains two matrices: A outside and W358

inside the activation functions. Each row of A represents the weights for a linear combination of a set359

of random basis functions, forming a component in each layer. The number of rows in A, which equals360

the number of components, is selected based on the complexity of the function and is typically much361

smaller than the number of columns, corresponding to the number of basis functions. Each row of (W , b)362

represents a random parameterization of a basis function, with the number of rows in W corresponding363

to the number of basis functions, usually much larger than the number of columns in W , which is the364

input dimension. Secondly, in our MMNN, only A is trained while W remains fixed with randomly365

initialized values. Theoretical studies and numerical experiments demonstrate that the architecture of366

MMNN, combined with the learning strategy, is effective in approximating complex functions.367

Random features Fixing (W , b) of each layer and use of random basis functions in the MMNNs is368

inspired by a previous approach known as random features [16, 23, 24, 27, 34]. In typical random feature369

methods, only the linear combination parameters at the output layer are trained which also leads to the370

issue of ill-conditioning of the representation. While in MMNNS matrix A and vector c of each layer371

are trained. Our MMNN employs a composition architecture and learning mechanism that enhances the372

approximation capabilities compared to random feature methods while achieving a more effective training373

process than a standard fully connected network of equivalent size. Extensive experiments demonstrate374

that our approach can strike a satisfactory balance between approximation accuracy and training cost.375

Komogolrov-Arnold (KA) representation The KA representation theorem [15] states that any376

multivariate continuous function on a hypercube can be expressed as a finite composition of continuous377
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univariate functions and the binary operation of addition. However, this elegant mathematical represen-378

tation may result in non-smooth or even fractal univariate functions in general due to this very specific379

form of representation, a computational challenge one has to address in practice. KA representation has380

been explored in several studies [13, 17, 20, 32]. A recently proposed network known as the KA network381

(KAN) utilizes spline functions to approximate the univariate functions in the KA representation. The382

proposed MMNN is motivated by a multi-component and multi-layer smooth decomposition, or a “di-383

vide and conquer” approach, employing distinct network architectures, activation functions, and training384

strategies.385

4 Numerical experiments386

In this section, we perform extensive experiments to validate our analysis and demonstrate the effec-387

tiveness of MMNNs through multi-component and multi-layer decomposition studied in Section 3. In388

particular, our tests show its ability in 1) adaptively capturing localized high-frequency features in389

Section 4.1, 2) approximating highly oscillatory functions in Section 4.2, and 3) extending to higher390

dimensions in Section 4.3 as well as some interesting learning dynamics in Section 4.4. All our experi-391

ments involve target functions that include high-frequency components in various ways and are difficult392

to handle by shallow networks (no matter how wide) as shown in our previous work [38]. Moreover, our393

experience on these tests shows that using a fully connected deep neural network would require many394

more parameters and is much harder (if possible) to train to get a comparable result. This is mainly due395

to a balanced and structured network design of MMNN in terms of 1) the network width w, which is396

the number of hidden neurons or random basis functions in each component, 2) the rank r, which is the397

number of components in each layer, and 3) the network depth l, which is the number of layers in the398

network. The use of a controllable number of collective components (through A) in each layer instead399

of a large number of individual neurons and the use of fixed and randomly chosen weights (W , b) make400

the training process more effective.401

In all tests, 1) data are sampled enough to resolve fine features in the target function, 2) the Adam402

optimizer is used in training, 3) mean squared error (MSE) is the loss function, 4) all parameters are403

initialized according to the PyTorch default initialization (see Section 2.3) unless otherwise specified, 5)404

W ’s and b’s (the parameters inside the activation functions, see Section 2.2) are fixed and only A’s and405

c’s (the parameters outside the activation functions) are trained, 6) computations are conducted on an406

NVIDIA RTX 3500 Ada Generation Laptop GPU (power cap 130W), with most experiments concluding407

within a range from a few dozen to several thousand seconds. All our MMNN setups are specified by three408

parameters (w, r, l) which depends on the function complexity. Another tuning parameter is the learning409

rate the choice of which is guided by the following criteria: 1) not too large initially due to stability, 2) a410

decreasing rate with iterations such that the learning rate becomes small near the equilibrium to achieve411

a good accuracy while not decreasing too fast (especially during a long training process for more difficult412

target functions) so that the training is stalled.413

4.1 Localized rapid changes414

We begin with two examples in 1D. The first is f(x) = arctan(100x+ 20), which is smooth but features415

a rapid transition at zero. While demonstrated in our previous work [38], a shallow network struggles to416

capture such a simple local fast transition which contains high-frequencies, we show that this function417

can be approximated easily by a composition of a smooth function on top of a (repeated) spatial decom-418

position and local rescaling using MMNN structure in Section 2.2. Our test indeed verifies that our new419

architecture can effectively capture a localized fast transition rather easily using a very small network of420

size (16, 4, 3) as shown in Figure 10. For this test, a total of 1000 data points are uniformly sampled in421

the range [−1, 1], with a mini-batch size of 100, a learning rate of 10−3, and the number of epochs set to422

2000. Figure 11 gives the error plot.423

Next, we consider a more complicated target function, f(x) = 1{|x+0.2|<0.02} · sin(50πx), which424

represents a localized fast oscillation. For this example, we will conduct two tests. The first one is to425

show the flexibility of MMNN to automatically adapt to local features. The network has a small size426

as above (16, 4, 3). Each layer has a network width of 16. In other words, each component is a linear427

combination of 16 ReLU functions which has no way to approximate such a target function well. However,428

with a multi-layer and multi-component decomposition with parameters appropriately trained by Adam,429

MMNN can adapt to the behavior of the target function as shown in Figure 12. Figure 13 gives the430

error plot. Also, the test shows that this example is more difficult to train. For this test, there are a431
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(a) Epoch 100.
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(b) Epoch 200.
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(c) Epoch 2000.

Figure 10: Illustrations of the training process.
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Figure 11: Training and
test errors (MSE).

total of 1000 uniformly sampled points in [−1, 1] with a mini-batch size of 100 and a learning rate of432

0.002 × 0.95⌊k/1000⌋, where ⌊·⌋ denotes floor operation and k = 1, 2, · · · , 20000 is the epoch number. It433

should be noted that in this test, we initialize the biases b’s to 0 and use the PyTorch default initialization434

method for the weights W . This approach, inspired by Xavier initialization, is chosen because the target435

function is locally oscillatory and the MMNN size is quite small, necessitating a setup adaptive to the436

target function to facilitate the training. For other experiments, both the biases and weights use the437

PyTorch default initialization. We then compare with least square approximation using uniform finite438

element method (FEM) basis with the same degrees of freedom. As shown in Figure 14, MMNN renders439

a better approximation due to automatic adaptation through the training process. We would like to440

remark that when training an extremely compact MMNN which does not have much flexibility and441

makes the training more subtle, the training hyperparameters, such as learning rate, min-batch size,442

and etc., need to be more carefully tuned. However, when there is some redundancy in MMNN, i.e., an443

MMNN with a slightly larger size, MMNN becomes more flexible and the training process becomes easier.444

On the other hand, when the network becomes too large, then training a large number of parameters445

and over-redundancy will lead to potential difficulties for optimization. This also shows that there is a446

trade-off between representation and optimization one needs to balance in practice.447
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(a) Epoch 500.
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(b) Epoch 1000.
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(c) Epoch 2000.
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(d) Epoch 20000.

Figure 12: Illustrations of the training process.
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Figure 13: Training and test er-
rors measured in MSE vs. epoch.
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Figure 14: (a) Least square using equally spaced 153 FEM bases.
(b) MMNN with (16+1)×4×(3−1)+(16+1) = 153 free parameters.

Now we show an example in 2D shown in Figure 15 and defined in polar coordinates by448

f(r, θ) =





0 if 0.5 + 25ρ− 25r ≤ 0,

1 if 0.5 + 25ρ− 25r ≥ 1,

0.5 + 25ρ− 25r otherwise,

where ρ = 0.1 + 0.02 cos(8πθ).449

Again a rather compact MMNN of size (100, 10, 6) can produce a good approximation. Figure 17 shows450

the error during the training process and Figure 16 shows the log plot of training and testing errors451

in MSE. For this test there are a total of 4002 uniformly sampled points in [−1, 1]2 with mini-batch452
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size of 1000 and a learning rate of 10−3 × 0.9⌊k/25⌋, where k = 1, 2, · · · , 1000 is the epoch number. We453

compare the result with piecewise linear interpolation and least square approximation using FEM basis454

on a uniform grid with the same number of degrees of freedom in Figure 18. As observed before, MMNN455

renders the best result due to its adaptivity through training.456

Figure 15: Target function.
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Figure 16: Training and test er-
rors measured in MSE.

(a) Epoch 10. (b) Epoch 50. (c) Epoch 100. (d) Epoch 1000.

Figure 17: The error during the training process.

4.2 Highly oscillatory functions457

Globally oscillatory functions with significant high-frequency components can not be approximated well458

by a shallow network when a global bounded activation function of the form σ(W · x − b), such as459

ReLU, is used. Due to almost orthogonality or high decorrelation (in terms of the inner product) between460

σ(W ·x− b) and oscillatory functions with high likelihood (in terms of a random choice of (W , b)), the461

set of parameters that can render a good approximation, namely the Rashomon set [29], becomes smaller462

and smaller (in terms of relative measure) and hence harder and harder to find as the target function463

becomes more and more oscillatory (see [38]). Although this difficulty can be alleviated by complexity464

decomposition using MMNN as shown in Section 2, it still requires a larger network in terms of width,465

rank, and layers and more training. Here we limit our tests to oscillatory functions in 1D and 2D due to466

the dramatic increase of complexity with dimensions, or the curse of dimensions, in general.467

We again start with a 1D example, f(x) = sin(50πx), x ∈ [−1, 1]. A MMNN of size (800, 40, 15)468

produces a good approximation of this highly oscillatory function, as illustrated by the error plot in469

Figure 20, with a smaller learning rate and a longer training process compared to previous examples470

with localized fine features. Due to the significant depth, we consider using ResMMNN as discussed in471

Section 2.2. For this test, a total of 1000 uniformly sampled points in [−1, 1] are used with a mini-batch472

size of 100 and a learning rate of 10−4 × 0.9⌊k/800⌋, where k = 1, 2, · · · , 40000 is the epoch number. Also,473

an interesting learning dynamics for Adam is observed from Figure 19. In the beginning, nothing seems474

to happen until about epoch 3600 when learning starts from the boundary. Then more and more features475

are captured from the boundary to the inside gradually. Eventually, all features are captured and then476

fine-tuned together to improve the overall approximation.477

Next, we consider a two-dimensional target function of the following form:478

fs(x1, x2) =

2∑

i=1

2∑

j=1

aij sin(sbixi + scijxixj) cos(sbjxj + sdijx
2
i ),479

where480

(ai,j) =

[
0.3 0.2
0.2 0.3

]
, (bi) =

[
2π
4π

]
, (ci,j) =

[
2π 4π
8π 4π

]
, and (di,j) =

[
4π 6π
8π 6π

]
.481
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(a) Network. (b) Interpolation. (c) FEM.

(d) Network (difference). (e) Interpolation (difference). (f) FEM (difference).

Figure 18: Comparison among different approximations using MMNN, interpolation, and least square
FEM. The interpolation and FEM are all based on a 72×72 = 5184 uniform grid. MMNN has (100+1)×
10× (6− 1) + (100 + 1) = 5151 free parameters. The maximum error is approximately 0.05 for MMNN,
0.31 for interpolation, and 0.38 for FEM. The corresponding MSE errors are 0.85 × 10−6, 1.95 × 10−4,
and 1.45× 10−4, respectively.
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(a) Epoch 3600.
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(b) Epoch 3800.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

true function learned network

(c) Epoch 4200.
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(d) Epoch 5000.
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(e) Epoch 10000.
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(f) Epoch 40000.

Figure 19: Illustrations of the training process.
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Figure 20: Illustrations of training
and test errors measured in MSE.

In our test, we choose s = 3 to ensure the function exhibits significant oscillations and contains diverse482

Fourier modes as illustrated by Figure 21. Given the complexity of the function, we employ a MMNN483

with size (600, 30, 15). Again, ResMMNN is used due to the depth. For this test, a total of 4002 data are484

sampled on a uniform grid in [−1, 1]2 with a mini-batch size of 1000 and a learning rate of 10−3×0.9⌊k/40⌋,485

where k = 1, 2, · · · , 2000 is the epoch number. The training process is illustrated by Figure 23. Figure 22486

shows log-error plot.487

We trained the same function using identical network settings, except we limited the domain of488

interest to a unit disc. We sampled 4522 data points uniformly distributed over the [−1, 1]2 area, then489

filtered to retain only those points that fall within the unit disk, totaling approximately 159692 (≈ 4002)490

samples. As illustrated in Figure 24, our network successfully learned the target function in the disc491

with no adjustments or modifications. This test highlights the network’s flexibility for domain geometry,492

an advantage over traditional mesh or grid-based methods, especially in higher dimensions.493

4.3 Tests in three dimension and higher494

In this section, we test a few examples in three and four dimensions. Even sampling an interesting495

function becomes challenging as the dimension becomes higher. Although our examples are limited by496

our computation power using a laptop, our tests show that MMNN performs well and is more effective497

than a fully connected network.498
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Figure 21: Illustrations of the target function.
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Figure 22: Training and test er-
rors measured in MSE.

(a) Epoch 25. (b) Epoch 50. (c) Epoch 1000. (d) Epoch 2000.

(e) Epoch 25. (f) Epoch 50. (g) Epoch 1000. (h) Epoch 2000.

Figure 23: The top row: the learned neural network; the bottom row: the differences between the learned
neural network and the target function.

The first example is a 3D function a level set of which is shown in Figure 25. Using polar coordinates499

(r, θ, ϕ), θ ∈ [0, π], ϕ ∈ [0, 2π), the target function f(x, y, z) is defined as:500

f(r, θ, ϕ) =





0 if 0.5 + 5ρ− 5r ≤ 0,

1 if 0.5 + 5ρ− 5r ≥ 1,

0.5 + 5ρ− 5r otherwise,

501

where502

ρ = ρ(θ, ϕ) = 0.5 + 0.2 sin(6θ) cos(6ϕ) sin2(θ).503

Our MMNN is of a compact size (600, 20, 8). For this test, a total of 1113 data are sampled on504

a uniform grid in [−1, 1]3 with a mini-batch size of 999 and a learning rate of 0.0005 × 0.9⌊k/6⌋ for505

epochs k = 1, 2, · · · , 300. Figure 27 gives the error plot. As shown in Figures 25 and 26, the levelsets506

corresponding to the target function f and the learned MMNN approximation h are nearly identical.507

To visually demonstrate the quality of the approximation and complex structure of the 3D function, we508

present several slices of the target function and the MMNN approximation by fixing either x, y, or z in509

Figure 28.510

Next, we consider the probability density function (PDF) of a Gaussian (normal) distribution in 4D,511

f(x) = f(x1, . . . , x4) =
exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)

√
(2π)k det(Σ)

512

where Σ is the covariance matrix. We set µ = 0 and Σ−1 = 20

[
1.0 0.9 0.8 0.7
0.9 2.0 1.9 1.8
0.8 1.9 3.0 2.9
0.7 1.8 2.9 4.0

]
. We remark that the513

eigenvalues of Σ−1 are 6.82, 9.93, 25.28, 158.05 which means that the distribution is quite anisotropic and514

concentrated near the center.515

18



(a) Approximation by MMNN. (b) Difference.
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Figure 24: Approximation in a unit disk.

Figure 25: Surface plot of the
levelset f(r, θ, ϕ) = 0.5.

Figure 26: Surface plot of the
levelset h(r, θ, ϕ) = 0.5.
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Figure 27: Training and test errors
(MSE) vs. epoch.

A compact MMNN with size of (500, 12, 6) produces a good approximation as shown in the error plot516

Figure 30. Figure 29 compares the true function f(x, y, z, u) and the MMNN approximation h(x, y, z, u)517

with z = u = 0.2. For this test a total of 354 data are sampled on a uniform grid in [−1, 1]4 with a518

mini-batch size of 352 and a learning rate at 10−3 × 0.9⌊k/6⌋ for epochs k = 1, 2, · · · , 300.519

4.4 Learning dynamics520

In this section, we show some interesting learning dynamics observed during the training process. As the521

first example in Section 4.2 and the following examples show, the training process not just learns from522

low frequency first but can also learn feature by feature, i.e., can be localized in both frequency domain523

and spatial domain. We believe this is due to the combination of MMNN’s “divide and conquer” ability524

and the Adam optimizer which utilizes momentum. More understanding is needed and will be studied525

in our future research.526

We again start with a 1D example, f(x) = sin
(
36π|x|1.5

)
, x ∈ [−1, 1]. A MMNN of size (600, 30, 8)527

produces a good approximation of this highly oscillatory function, as illustrated by the error plot in528

Figure 32. For this test, a total of 1000 uniformly sampled points in [−1, 1] are used with a mini-batch529

size of 100 and a learning rate of 10−3 × 0.9⌊k/200⌋, where k = 1, 2, · · · , 10000 is the epoch number. As530

illustrated in Figure 31, the function is less oscillatory near 0. Therefore, we might anticipate that the531

network will initially learn the part near 0 and then feature by feature from the middle to the boundary.532

The experimental results presented in Figure 33 agree with our expectations.533

Now we show an example of 2D function f(r, θ) (see Figure 34) defined in polar coordinates (r, θ) as534

f(r, θ) =





0 if 0.5 + 5ρ− 5r ≤ 0,

1 if 0.5 + 5ρ− 5r ≥ 1,

0.5 + 5ρ− 5r otherwise,

where ρ = 0.5 + 0.1 cos(π2θ2).535

Our MMNN is of a compact size (500, 20, 8). For this test, a total of 6002 data are sampled on a536

uniform grid in [−1, 1]2 with a mini-batch size of 1000 and a learning rate of 0.001× 0.9⌊k/6⌋ for epochs537

k = 1, 2, · · · , 300. Figure 35 gives the error plot. The training process shown in Figure 36 illustrates538

that an overall coarse scale or low-frequency component of the shape is learned first and then localized539

features are learned one by one from coarse to fine.540
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(a) z = 0. (b) z = 0.1. (c) y = 0.2.

(d) y = 0.3. (e) x = 0.4. (f) x = 0.5.

Figure 28: Slices of the true function f(x, y, z) vs. those of the MMNN approximation h(x, y, z).

Figure 29: True function f(x, y, z, u) versus the learned net-
work h(x, y, z, u) with z = u = 0.2.
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Figure 30: Training and test errors
(MSE) vs. epoch.

5 Further discussion541

In this section, we provide several general insights about MMNNs. First, in Section 5.1, we explore542

the advantages of MMNNs compared to fully connected networks (FCNNs) or multi-layer perceptrons543

(MLPs). Next, in Section 5.2, we offer practical guidelines for determining the appropriate MMNN size544

based on our theoretical understanding and extensive numerical experiments. Finally in Section 5.3, we545

discuss the use of alternative activation functions beyond ReLU in MMNNs.546

5.1 Advantages compared to FCNNs or MLPs547

• The two key differences between a standard FCNN or MLP and a MMNN are 1) the introduction548

of the weights A, c for different linear combinations of hidden neurons (or perceptrons) as the549

multi-components in each layer, and 2) the training strategy that fixes those randomly initialized550

W , b (random features) in the hidden neurons. Hence it is extremely easy to modify a FCNN or551

MLP to a MMNN.552

• MMNNs are much more effective than FCNNs in terms of representation, training, and accuracy553

especially for complex functions. In comparison, as shown in those experiments in Section 2.4,554

MMNNs 1) have much fewer training parameters, 2) converge much faster in training, 3) achieve555

much better accuracy. Moreover, experiments show that training process of MMNNs converges not556

only faster but also with a steady rate while FCNNs saturates pretty early to a quite low accuracy,557

as commonly observed in practices. These nice behaviors of MMNNs are due to their balanced558

structure for smooth decomposition as well as the training strategy. In practice, the introduction559

of A, c in MMNNs provides an important balance between the network width, which is the number560

of hidden neurons (basis functions) and can be very large, and the dimension of the input space,561

which is the number of components from the previous layer and can be much smaller than the562

network width. In other words, using a few linear combinations of the basis functions can capture563

smooth structures in the input space well. On the other hand, for FCNNs the two are the same564

and no balance is exerted.565
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Figure 31: Derivative of the target function.
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Figure 32: Errors (in MSE) vs. epoch.
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(a) Epoch 400.
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(b) Epoch 500.
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(e) Epoch 1000.
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(f) Epoch 1700.
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(h) Epoch 10000.

Figure 33: Illustration of the training process.

5.2 Practical guidelines for MMNN566

There are three hyperparameters for the configuration of MMNN sizes, the network width, the number567

of components (rank), and the number of layers (depth). Here are the general guidelines based on our568

mathematical construction and extensive experiments:569

1. The network width should provide enough resolution to capture fine details of the target function.570

This means that the width should be at least comparable to the size of an adaptive mesh that can571

approximate the target function well.572

2. The number of components (rank) is related to the overall complexity of the target function which573

depends on its spatial domain and Fourier domain representation as well as the input dimension.574

As indicated by our mathematical multi-component construction, it is related to the “divide and575

conquer” strategy.576

3. The number of layers (depth) is also related to the overall complexity of the target function as for577

the number of components. Rank and depth are complementary but work together effectively for578

a smooth decomposition of the target function. The rule of thumb for depth is similar to that for579

the rank.580

Here we use more concrete examples to illustrate the guidelines. For simplicity we fix the input581

dimension and domain of interest. As the domain size and dimension increases, the network size needs582

to increase correspondingly. For a smooth target function, a compact MMNN in terms of width, rank,583

and depth is enough and easy training process can render accurate results. Larger MMNNs are needed584

for target functions with localized rapid changes. Even with a relative compact size, the training process585

can allocate resources adaptive to the target function and render good approximation. The most difficult586

situation is to approximate globally highly oscillatory functions with diverse Fourier modes for which587

large MMNNs are needed. For instance, if the oscillation frequency doubles, the network width should588

increase by 2d where d is the dimension. In general the network width needs to deal with the curse of589

dimensionality just like a mesh based method. However, the growth of the number of components and590

layers with the increase of complexity seems to be relative mild (maybe polylogarithmic suggested by591

our mathematical construction).592
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Figure 34: Illustration of the target function.
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Figure 35: Training and test er-
rors (in MSE) vs. epoch.
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Figure 36: Illustration of the learning dynamics.

• Overall, for a given target function, MMNNs can work well with quite a large range of configuration593

with a trade-off between the network size and training process. For example, the training process594

for a network more on the compact size with respect to the complexity of a given target function595

may become more subtle and challenging, e.g., choosing the appropriate learning rate and batch596

size, due to the lack of flexibility (or redundancy) of the representation. On the other hand, a597

network of too large size (or redundancy) with respect to the complexity of a given target function598

requires unnecessarily expensive training cost. An interesting and important question for future599

research is how to develop a posteriori strategy to automatically adjust the network size in practice.600

• The most advantageous situation for using MMNNs is when approximating a function in relative601

high dimension which is mostly smooth except for localized fine features, e.g., a distribution in high602

dimensions concentrated on a low dimensional manifold. Through training, MMNNs can provide603

an automatic adaptive approximation of the underlying structure which can be challenging for a604

traditional mesh based method.605

• We would like to remark that learning rate scheduler can be a subtle and important issue for all606

training process in practice. For all our training process, the Step Learning Rate suffices. However,607

one could consider using other learning rate schedulers, such as the Cosine Scheduler [18] or the608

gradual warm-up strategy [5]. Exploring and designing a more efficient learning rate scheduler with609

some automatic restart mechanism is a potential interesting topic for future work.610

5.3 Beyond ReLU to other activation functions611

We also tried using different activation functions for MMNNs, e.g., GELU [9], Swish [25], Sigmoid, and612

Tanh. In general, ReLU provides the overall best results for various target functions. However, in situations613

where a smooth (e.g., Cs or real analytic) approximation is needed, one might consider using smooth614

alternatives to ReLU such as GELU or Swish, which generally yield results comparable to ReLU:615
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• For target functions that are Cs or even real analytic (and can be highly oscillatory), such as616

f(x) = cos(36πx2)− 0.6 cos(12πx2), GELU (or Swish) tends to perform slightly better than ReLU.617

• For target functions with non-differentiable points, such as f(x) = 1{|x|<0.02} · sin(50πx), GELU (or618

Swish) generally performs slightly worse than ReLU.619

• The use of GELU (or Swish) typically results in slightly longer training time compared to ReLU.620

Additionally, other popular S-shaped activation functions like Sigmoid and Tanh have demonstrated621

poor performance in our tests, possibly due to the vanishing gradient problem. For highly oscillatory622

target functions, when using Sigmoid or Tanh training errors did not even decrease during the training623

process.624

6 Conclusion625

In this work, we introduced the Multi-component and Multi-layer Neural Network (MMNN) and demon-626

strated its effectiveness in approximating complex functions. By incorporating the principles of struc-627

tured and balanced decomposition, the MMNN architecture addresses the limitations of shallow networks,628

particularly in capturing high-frequency components and localized fine features. Our proposed network629

structure as confirmed by extensive numerical experiments can approximate highly oscillatory functions630

and functions with rapid transitions efficiently and accurately. Additionally, we highlight the advantages631

of our training strategy, which optimizes only the linear combination weights of basis functions for each632

component while keeping the parameters within the activation (basis) functions fixed, leading to a more633

efficient and stable training process.634

The theoretical underpinnings and practical implementations presented in this paper suggest that635

MMNNs offer a promising direction for constructing neural networks capable of handling complex tasks636

with fewer parameters and reduced computational overhead. Future research can explore further gener-637

alizations and applications of MMNNs, as well as investigate the interplay between representation and638

optimization in more depth.639
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