
Deep Network Approximation for Smooth Functions1

Jianfeng Lu ∗ Zuowei Shen † Haizhao Yang ‡ Shijun Zhang §2

Abstract3

This paper establishes the (nearly) optimal approximation error characteriza-4

tion of deep rectified linear unit (ReLU) networks for smooth functions in terms5

of both width and depth simultaneously. To that end, we first prove that multi-6

variate polynomials can be approximated by deep ReLU networks of width O(N)7

and depth O(L) with an approximation error O(N−L). Through local Taylor ex-8

pansions and their deep ReLU network approximations, we show that deep ReLU9

networks of width O(N lnN) and depth O(L lnL) can approximate f ∈ Cs([0,1]d)10

with a nearly optimal approximation error O(∥f∥Cs([0,1]d)N−2s/dL−2s/d). Our esti-11

mate is non-asymptotic in the sense that it is valid for arbitrary width and depth12

specified by N ∈ N+ and L ∈ N+, respectively.13

Key words. Deep ReLU Network, Smooth Function, Polynomial Approximation, Func-14

tion Composition, Curse of Dimensionality.15

1 Introduction16

Deep neural networks have made significant impacts in many fields of computer17

science and engineering, especially for large-scale and high-dimensional learning prob-18

lems. Well-designed neural network architectures, efficient training algorithms, and high-19

performance computing technologies have made neural-network-based methods very suc-20

cessful in real applications. Especially in supervised learning; e.g., image classification21

and objective detection, the great advantages of neural-network-based methods over tra-22

ditional learning methods have been demonstrated. Understanding the approximation23

capacity of deep neural networks has become a key question for revealing the power of24

deep learning. A large number of experiments in real applications have shown the large25

capacity of deep network approximation from many empirical points of view, motivating26

much effort in establishing the theoretical foundation of deep network approximation.27

One of the fundamental problems is the characterization of the optimal approximation28

error of deep neural networks of arbitrary depth and width.29

∗Department of Mathematics, Department of Physics, and Department of Chemistry, Duke Univer-
sity (jianfeng@math.duke.edu).

†Department of Mathematics, National University of Singapore (matzuows@nus.edu.sg).
‡Department of Mathematics, Purdue University (haizhao@purdue.edu).
§Department of Mathematics, National University of Singapore (zhangshijun@u.nus.edu).

1



1.1 Main result30

Previously, the quantitative characterization of the approximation power of deep31

feed-forward neural networks (FNNs) with rectified linear unit (ReLU) activation func-32

tions was provided in [41]. For ReLU FNNs with width O(N) and depth O(L), the deep33

network approximation of f ∈ C([0,1]d) admits an approximation errorO(ωf(N−2/dL−2/d))34

in the Lp-norm for any p ∈ [1,∞], where ωf(⋅) is the modulus of continuity of f . In par-35

ticular, for the class of Hölder continuous functions, the approximation error is nearly36

optimal. 1○ The next question is whether the smoothness of functions can improve the37

approximation error. In this paper, we investigate the deep network approximation of38

smaller function space, such as the smooth function space Cs([0,1]d).39

In Theorem 1.1 below, we prove by construction that ReLU FNNs with width40

O(N lnN) and depth O(L lnL) can approximate f ∈ Cs([0,1]d) with a nearly optimal41

approximation error O(∥f∥Cs([0,1]d)N−2s/dL−2s/d), where the norm ∥ ⋅ ∥Cs([0,1]d) is defined42

as43

∥f∥Cs([0,1]d) ∶= max{∥∂αf∥L∞([0,1]d) ∶ ∥α∥1 ≤ s, α ∈ Nd} for any f ∈ Cs([0,1]d).44

Theorem 1.1. Given a smooth function f ∈ Cs([0,1]d) with s ∈ N+, for any N,L ∈ N+,45

there exists a function φ implemented by a ReLU FNN with width C1(N + 2) log2(8N)46

and depth C2(L + 2) log2(4L) + 2d such that47

∥φ − f∥L∞([0,1]d) ≤ C3∥f∥Cs([0,1]d)N−2s/dL−2s/d,48

where C1 = 17sd+13dd, C2 = 18s2, and C3 = 85(s + 1)d8s.49

As we can see from Theorem 1.1, the smoothness improves the approximation error50

in N and L; e.g., s ≥ d implies N−2s/dL−2s/d ≤ N−2L−2. However, we would like to remark51

that the improved approximation error is at the price of a prefactor much larger than52

dd if s ≥ d. The proof of Theorem 1.1 will be presented in Section 2.2 and its tightness53

will be discussed in Section 2.3. In fact, the logarithmic terms in width and depth in54

Theorem 1.1 can be further reduced if the approximation error is weakened. Given any55

Ñ , L̃ ∈ N+ with56

Ñ ≥ C1(1 + 2) log2(8) = 17sd+13d+2d and L̃ ≥ C2(1 + 2) log2(4) + 2d = 108s2 + 2d,57

there exist N,L ∈ N+ such that58

C1(N + 2) log2(8N) ≤ Ñ < C1((N + 1) + 2) log2 (8(N + 1))59

and60

C2(L + 2) log2(4L) + 2d ≤ L̃ < C2((L + 1) + 2) log2 (4(L + 1)) + 2d.61

It follows that62

N ≥ N + 3

4
> Ñ

4C1 log2(8N + 8) ≥ Ñ

4C1 log2(8Ñ + 8)
= Ñ

68sd+13dd log2(8Ñ + 8)
63

and64

L ≥ L + 3

4
> L̃ − 2d

4C2 log2(4L + 4) ≥ L̃ − 2d

4C2 log2(4L̃ + 4)
= L̃ − 2d

72s2 log2(4L̃ + 4)
.65

Thus, we have an immediate corollary.66

1○“nearly optimal” up to a logarithmic factor.

2



Corollary 1.2. Given a function f ∈ Cs([0,1]d) with s ∈ N+, for any Ñ , L̃ ∈ N+, there67

exists a function φ implemented by a ReLU FNN with width Ñ and depth L̃ such that68

∥φ − f∥L∞([0,1]d) ≤ C̃1∥f∥Cs([0,1]d)( Ñ
C̃2 log2(8Ñ+8))

−2s/d
( L̃−2d
C̃3 log2(4L̃+4))

−2s/d
69

for any Ñ ≥ 17sd+13d+2d and L̃ ≥ 108s2+2d, where C̃1 = 85(s+1)d8s, C̃2 = 68sd+13dd, and70

C̃3 = 72s2.71

Theorem 1.1 and Corollary 1.2 characterize the approximation error in terms of72

total number of neurons (with an arbitrary distribution in width and depth) and the73

smoothness of the target function to be approximated. The only result in this direction74

we are aware of in the literature is Theorem 4.1 of [46]. It shows that ReLU FNNs with75

width 2d + 10 and depth L achieve a nearly optimal error O(( L
lnL)−2s/d) for sufficiently76

large L when approximating functions in the unit ball of Cs([0,1]d). This result is77

essentially a special case of Corollary 1.2 by setting Ñ = O(1) and L̃ sufficiently large.78

1.2 Contributions and related work79

Our key contributions can be summarized as follows.80

(i) Upper bound: We provide a quantitative and non-asymptotic approximation81

error O(∥f∥Cs([0,1]d)N−2s/dL−2s/d) when the ReLU FNN has width O(N lnN) and82

depth O(L lnL) for functions in Cs([0,1]d) in Theorem 1.1. In real applications,83

the first question is to decide the network width and depth since they are two84

required hyper-parameters. The approximation error as a function of width and85

depth in this paper can directly answer this question, while the approximation86

results in terms of the total number of parameters in the literature cannot, because87

there are many architectures sharing the same number of parameters. Actually, an88

immediate corollary of our theorem as we shall discuss can also describe our theory89

in terms of the total number of parameters. Furthermore, our results contain90

approximation error estimates for both wide networks with fixed finite depth and91

deep networks with fixed finite width.92

(ii) Lower bound: Through the Vapnik-Chervonenkis (VC) dimension upper bound93

of ReLU FNNs in [22], we prove a lower bound94

C(N2L2(lnN)3(lnL)3)−s/d for some positive constant C95

for the approximation error of the functions in the unit ball of Cs([0,1]d) approx-96

imated by ReLU FNNs with width O(N lnN) and depth O(L lnL) in Section 2.3.97

Thus, the approximation error O(N−2s/dL−2s/d) in Theorem 1.1 is nearly optimal98

for the unit ball of Cs([0,1]d).99

(iii) Approximation of polynomials: It is proved by construction in Proposition 4.1100

that ReLU FNNs with width O(N) and depth O(L) can approximate polynomials101

on [0,1]d with an approximation error O(N−L). This is a non-trivial extension of102

the result O(2−L) for polynomial approximation by fixed-width ReLU FNNs with103

depth L in [44].104

3



(iv) Uniform approximation: The approximation error in this paper is measured in105

the L∞([0,1]d)-norm as a result of Theorem 2.1. To achieve this, given a ReLU106

FNN approximating the target function f uniformly well on [0,1]d except for a107

small region, we develop a technique to construct a new ReLU FNN with a similar108

size to approximate f uniformly well on [0,1]d in Theorem 2.1. This technique109

can be applied to improve approximation errors from the Lp-norm to the L∞-norm110

for other function spaces in general, e.g., the continuous function space in [41],111

which is of independent interest.112

In particular, if we denote the best approximation error of functions in Cs
u([0,1]d)113

approximated by ReLU FNNs with width Ñ and depth L̃ as114

εs,d(Ñ , L̃) ∶= sup
f∈Csu([0,1]d)

( inf
φ∈NN(width≤Ñ ; depth≤L̃)

∥φ − f∥L∞([0,1]d)) for any Ñ , L̃ ∈ N+,115

where Cs
u([0,1]d) denotes the unit ball of Cs([0,1]d) defined by116

Cs
u([0,1]d) ∶= {f ∈ Cs([0,1]d) ∶ ∥∂αf∥L∞([0,1]d) ≤ 1, for all α ∈ Nd with ∥α∥1 ≤ s}.117

By combining the upper and lower bounds stated above, we have118

C1(s, d) ⋅ (Ñ2L̃2ln(ÑL̃))
−s/d

≤
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

proved in Section 2.3

εs,d(Ñ , L̃) ≤ C2(s, d) ⋅ ( Ñ2L̃2

(ln Ñ ln L̃)2)
−s/d

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
shown in Corollary 1.2

,119

where C1(s, d) and C2(s, d) are two positive constants in s and d, and C2(s, d) can be120

explicitly represented by s and d.121

The expressiveness of deep neural networks has been studied extensively from many122

perspectives, e.g., in terms of combinatorics [34], topology [8], VC-dimension [7, 22, 39],123

fat-shattering dimension [2, 27], information theory [37], and classical approximation124

theory [4,5,9,12,14,15,20,21,24,29,32,35,42–45,47]. In the early works of approximation125

theory for neural networks, the universal approximation theorem [15, 23, 24] without126

approximation errors showed that, given any ε > 0, there exists a sufficiently large neural127

network approximating a target function in a certain function space within an error ε.128

For one-hidden-layer neural networks and functions with integral representations, Barron129

[5, 6] showed an asymptotic approximation error O( 1√
N
) in the L2-norm, leveraging130

an idea that is similar to Monte Carlo sampling for high-dimensional integrals. For131

very deep ReLU neural networks with width fixed as O(d) and depth O(L), Yarotsky132

[45, 46] showed that the nearly optimal approximation errors for Lipschitz continuous133

functions and functions in the unit ball of Cs([0,1]d) are O(L−2/d) and O((L/ lnL)−2s/d),134

respectively. Note that the results are asymptotic in the sense that L is required to be135

sufficiently large and the prefactors of these rates are unknown. To obtain a generic result136

that characterizes the approximation error for arbitrary width and depth with known137

prefactors to guide applications, the authors of [41] demonstrated that the nearly optimal138

approximation error for ReLU FNNs with width O(N) and depth O(L) to approximate139

Lipschitz continuous functions on [0,1]d is O(N−2/dL−2/d). Such a nearly optimal error140

is further improved to an optimal one, O((N2L2 lnN)−1/d), in a more recent paper [42].141

In this paper, we extend this generic framework to Cs([0,1]d) with a nearly optimal142

approximation error O(∥f∥Cs([0,1]d)N−2s/dL−2s/d).143

Most related works are summarized in Table 1 for the comparison of our contribu-144

tions in this paper and the results in the literature.145

4



Table 1: A summary of existing approximation errors of ReLU FNNs for Lip([0,1]d)
(the Lipschitz continuous function space) and Cs

u([0,1]d) (the unit ball of Cs([0,1]d)).

paper function class width depth approximation error Lp([0,1]d)-norm tightness valid for

[44] polynomial O(1) O(L) O(2−L) p = ∞ any L ∈ N+

this paper polynomial O(N) O(L) O(N−L) p = ∞ any N,L ∈ N+

[40] Lip([0,1]d) O(N) 3 O(N−2/d) p ∈ [1,∞) nearly tight in N any N ∈ N+

[45] Lip([0,1]d) 2d + 10 O(L) O(L−2/d) p = ∞ nearly tight in L large L ∈ N+

[41] Lip([0,1]d) O(N) O(L) O(N−2/dL−2/d) p ∈ [1,∞] nearly tight in N and L any N,L ∈ N+

[42] Lip([0,1]d) O(N) O(L) O((N2L2 lnN)−1/d) p ∈ [1,∞] tight in N and L any N,L ∈ N+

[46] Cs
u([0,1]d) 2d + 10 O(L) O((L/ lnL)−2s/d) p = ∞ neatly tight in L large L ∈ N+

this paper Cs
u([0,1]d) O(N lnN) O(L lnL) O(N−2s/dL−2s/d) p = ∞ nearly tight in N and L any N,L ∈ N+

this paper Cs
u([0,1]d) O(N) O(L) O((N/ lnN)−2s/d(L/ lnL)−2s/d) p = ∞ nearly tight in N and L any N,L ∈ N+

1.3 Discussion146

We will discuss the comparison of our theory with existing works and the application147

scope in machine learning.148

Approximation errors in O(N) and O(L) versus O(W )149

It is fundamental and indispensable to characterize deep network approximation in150

terms of width O(N) 2○ and depth O(L) simultaneously in realistic applications, while151

the approximation in terms of the number of nonzero parameters W is probably only of152

interest in theory. First, networks used in practice are specified via width and depth and,153

therefore, Theorem 1.1 can provide an error bound for such networks. However, existing154

results in W cannot serve this purpose because they may be only valid for networks with155

other widths and depths. Theories in terms of W essentially have a single variable to156

control the network size in three types of structures: 1) a fixed width N and a varying157

depth L; 2) a fixed depth L and a varying width N ; 3) both the width and depth are158

controlled by the target error ε (e.g., N is a polynomial of 1
εd

and L is a polynomial of159

ln(1
ε)). Therefore, given a network with arbitrary width N and depth L, there might160

not be a known theory in terms of W to quantify the performance of this structure.161

Second, the error characterization in terms of N and L is more useful than that in terms162

of W , because most existing optimization and generalization analyses are based on N163

and L [1, 3, 10, 13, 17, 18, 25, 26], to the best of our knowledge. Approximation results164

in terms of N and L are more consistent with optimization and generalization analysis165

tools to obtain a full error analysis.166

Most existing approximation theories for deep neural networks so far focus on the167

approximation error in the number of parameters W [4, 5, 9, 11, 12, 14, 15, 19–21, 24, 29–168

33, 35–38, 43–47]. Controlling two variables N and L in our theory is more challenging169

than controlling one variable W in the literature. The characterization of deep network170

approximation in terms of N and L can imply an approximation error in terms of W ,171

while this may not be true the other way around, e.g., our theorems cannot be derived172

from results in [46]. Let us discuss the first type of structure mentioned in the previous173

paragraph, which includes the best-known result for a nearly optimal approximation174

error, O((W / lnW )−2s/d), for functions in the unit ball of Cs([0,1]d) using ReLU FNNs175

with W parameters [46]. As an example to show how Theorem 1.1 in terms of N and176

2○For simplicity, we omit O(⋅) in the following discussion.

5



L can be applied to show a similar result in terms of W . The main idea is to specify177

the value of N and L in Theorem 1.1 to show the desired corollary. For example, if we178

let N = O(1) in Theorem 1.1, then we have the following corollary, which is essentially179

equivalent to Theorem 4.1 of [46].180

Corollary 1.3. Given any function f in the unit ball of Cs([0,1]d) with s ∈ N+, there181

exists a function φ implemented by a ReLU FNN with W parameters such that182

∥φ − f∥L∞([0,1]d) ≤ O(( W
lnW )−2s/d) for large W ∈ N+.183

As we can see in this example, it is simple to derive Corollary 1.3 above and The-184

orem 4.1 of [46] using Theorem 1.1 in this paper. However, Theorem 1.1 cannot be185

derived from any existing result that characterizes approximation errors in terms of the186

number of parameters. Therefore, Theorem 1.1 goes beyond existing results on the187

approximation of deep neural networks.188

Note that the logarithmic term in the approximation error is not significant in the189

case of s > 1 since it can be cancelled out in the sense that ( W
lnW

)−2s/d ≲ W −2s̃/d for190

any s̃ ∈ (1, s). We remark that Theorem 3.3 of [46] provides a better approximation191

error by a logarithmic term: ReLU FNNs with W nonzero parameters can approximate192

a function f in the unit ball of Cs([0,1]d) within an error O(W −2s/d). However, the193

network architecture therein is relatively complex and s-dependent as stated by the194

authors of [46]. In fact, it contains many s-dependent blocks (sub-networks), making195

it difficult to implement if s is not known in applications. In contrast, our network196

architecture in Corollary 1.2 is simple and can be pre-specified once the width Ñ and197

depth L̃ therein are given.198

Continuity of the weight selection199

We would like to discuss the continuity of the weight selection as a map Σ ∶ Fs,d →200

RW , where Fs,d denotes the unit ball of the d-dimensional Sobolev space with smooth-201

ness s. For a fixed network architecture with a fixed number of parameters W , let202

g ∶ RW → C([0,1]d) be the map of realizing a ReLU FNN from a given set of param-203

eters in RW to a function in C([0,1]d). Suppose that the map Σ is continuous such204

that ∥f − g(Σ(f))∥L∞([0,1]d) ≤ ε for all f ∈ Fs,d. Then W ≥ cε−d/s with some constant c205

depending only on s. This conclusion is given in Theorem 3 of [44], which is a corollary206

of Theorem 4.2 of [16] in a more general form. These theorems mean that the weight207

selection map Σ corresponding to our constructive proof in Theorem 1.1 in this paper is208

not continuous, since our error is better than O(W −s/d). Theorem 4.2 of [16] is essentially209

a min-max criterion to evaluate weight selection maps maintaining continuity: the ap-210

proximation error obtained by minimizing over all continuous selections Σ and network211

realizations g and maximizing over all target functions is bounded below by O(W −s/d).212

In the worst case, a continuous weight selection cannot enjoy an approximation error213

beating O(W −s/d). However, Theorem 4.2 of [16] does not exclude the possibility that214

most functions of interest in practice may still enjoy a continuous weight selection with215

the approximation error in Theorem 1.1. It would be interesting in future work to in-216

vestigate whether continuous weight selection is possible for many functions commonly217

encountered in real applications.218

6



Application scope of our theory in machine learning219

In deep learning, given a target function f , the final goal is to train a function220

φ(x;θ) approximating f well, where φ(x;θ) is a function in x ∈ X realized by a network221

architecture parameterized with θ ∈ RW . To get the best solution, one needs to identify222

the expected risk minimizer223

θD ∶= arg min
θ∈RW

RD(θ), where RD(θ) = Ex∼U(X) [`(φ(x;θ), f(x))]224

with a loss function usually taken as `(y, y′) = 1
2 ∣y−y′∣2 and an unknown data distribution225

U(X).226

In practice, only data samples {(xi, f(xi))}ni=1 instead of f and U(X) are available.227

Thus, the empirical risk minimizer θS is used to model/approximate the expected risk228

minimizer θD, where229

θS ∶= arg min
θ∈RW

RS(θ), where RS(θ) ∶=
1

n

n

∑
i=1

`(Φ(xi,θ), f(xi)). (1.1)230

In real applications, only a numerical solution (denoted as θN ) is achieved when231

a numerical optimization method is applied to solve (1.1). Hence, the actually learned232

function generated by the network is φ(x;θN ). Since RD(θN ) is the expected inference233

error over all possible data samples, it can quantify how good φ(x;θN ) is. Note that234

RD(θN )= [RD(θN ) −RS(θN )]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

GE

+[RS(θN ) −RS(θS)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

OE

+[RS(θS) −RS(θD)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ 0 by (1.1)

+[RS(θD) −RD(θD)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

GE

+RD(θD)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

AE

235

≤ RD(θD)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

Approximation error (AE)

+ [RS(θN ) −RS(θS)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Optimization error (OE)

+ [RD(θN ) −RS(θN )] + [RS(θD) −RD(θD)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Generalization error (GE)

. (1.2)236

237

Constructive approximation provides an upper bound of RD(θD) in terms of the238

network size. For example, Theorem 1.1 and its corollaries provide an upper bound239

O(∥f∥Cs([0,1]d)N−2s/dL−2s/d) of RD(θD) for Cs([0,1]d). The second term of (1.2) is240

bounded by the optimization error of the numerical algorithm applied to solve the em-241

pirical loss minimization problem in (1.1). The study of the bounds for the third and242

fourth terms is referred to as the generalization error analysis of neural networks.243

One of the key targets in the area of deep learning is to develop algorithms to244

reduce RD(θN ). Our analysis here provides an upper bound of the approximation error245

RD(θD) for smooth functions, which is crucial to control RD(θN ). Instead of deriving246

an approximator to attain the error bound, deep learning algorithms aim to identify a247

solution φ(x;θN ) reducing the generalization and optimization errors in (1.2). Solutions248

minimizing both generalization and optimization errors will lead to a good solution only249

if we also have a good upper bound estimate of RD(θD) as shown in (1.2). Independent250

of whether our analysis here leads to a good approximator, which is an interesting topic251

to pursue, the theory here does provide a key ingredient in the error analysis of deep252

learning algorithms.253

We would like to emphasize that the introduction of the ReLU activation function254

to image classification is one of the key techniques that boost the performance of deep255

learning [28] with surprising generalization, which is the main reason that we focus on256

ReLU FNNs in this paper.257

7



Organization: The rest of the present paper is organized as follows. In Section 2,258

we prove Theorem 1.1 by combining two theorems (Theorems 2.1 and 2.2) that will be259

proved later. We will also discuss the optimality of Theorem 1.1 in Section 2. Next,260

Theorem 2.1 will be proved in Section 3 while Theorem 2.2 will be shown in Section 4.261

Several propositions supporting Theorem 2.2 will be presented in Section 5. Finally,262

Section 6 concludes this paper with a short discussion.263

2 Approximation of smooth functions264

In this section, we will prove the quantitative approximation error in Theorem 1.1 by265

construction and discuss its tightness. Notation throughout the proof will be summarized266

in Section 2.1. The proof of Theorem 1.1 is mainly based on Theorems 2.1 and 2.2, which267

will be proved in Sections 3 and 4, respectively. To show the tightness of Theorem 1.1,268

we will introduce the VC-dimension in Section 2.3.269

2.1 Notation270

Now let us summarize the main notation of this paper as follows.271

• Let R, Q, and Z denote the set of real numbers, rational numbers, and integers,272

respectively.273

• Let N and N+ denote the set of natural numbers and positive natural numbers,274

respectively. That is, N+ = {1,2,3,⋯} and N = N+⋃{0}.275

• Vectors and matrices are denoted in a bold font. Standard vectorization is adopted276

in matrix and vector computation. For example, a scalar plus a vector means277

adding the scalar to each entry of the vector. Additionally, “[” and “]” are used278

to partition matrices (vectors) into blocks, e.g., A = [A11 A12
A21 A22

] and v = [
v1
⋮
vd

] =279

[v1,⋯, vd]T ∈ Rd.280

• Let 1S be the characteristic (indicator) function on a set S; i.e., 1S is equal to 1281

on S and 0 outside S.282

• Let B(x, r) ⊆ Rd be the closed ball with a center x ⊆ Rd and a radius r ≥ 0.283

• Similar to “min” and “max”, let mid(x1, x2, x3) be the middle value of three inputs284

x1, x2, and x3
3○. For example, mid(2,1,3) = 2 and mid(3,2,3) = 3.285

• The set difference of two sets A and B is denoted by A/B ∶= {x ∶ x ∈ A, x ∉ B}.286

• For a real number p ∈ [1,∞), the p-norm of x = [x1, x2,⋯, xd]T ∈ Rd is defined by287

∥x∥p ∶= (∣x1∣p + ∣x2∣p +⋯ + ∣xd∣p)
1/p
.288

3○“mid” can be defined via mid(x1, x2, x3) = x1 +x2 +x3 −max(x1, x2, x3)−min(x1, x2, x3), which can
be implemented by a ReLU FNN.

8



• For any x ∈ R, let ⌊x⌋ ∶= max{n ∶ n ≤ x, n ∈ Z} and ⌈x⌉ ∶= min{n ∶ n ≥ x, n ∈ Z}.289

• Assume n ∈ Nd; then f(n) = O(g(n)) means that there exists positive C indepen-290

dent of n, f , and g such that f(n) ≤ Cg(n) when all entries of n go to +∞.291

• The modulus of continuity of a continuous function f ∈ C([0,1]d) is defined as292

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ ∥x − y∥2 ≤ r, x,y ∈ [0,1]d} for any r ≥ 0.293

• A d-dimensional multi-index is a d-tuple α = [α1, α2,⋯, αd]T ∈ Nd. Several related294

notation are listed below.295

– ∥α∥1 = ∣α1∣ + ∣α2∣ + ⋯ + ∣αd∣;296

– xα = xα1
1 x

α2
2 ⋯xαdd , where x = [x1, x2,⋯, xd]T ;297

– α! = α1!α2!⋯αd!;298

– ∂α = ∂α1

∂x
α1
1

∂α2

∂x
α2
2

⋯ ∂αd

∂x
αd
d

.299

• For any closed cube Q ⊆ Rd and a real number r > 0, let rQ denote the closed cube300

which shares the same center of Q and whose sidelength is the product of r and301

the sidelength of Q.302

• Given any K ∈ N+ and δ ∈ (0, 1
K ), define a trifling region Ω([0,1]d,K, δ) of [0,1]d303

as304

Ω([0,1]d,K, δ) ∶=
d

⋃
i=1

{x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xi ∈ ∪K−1
k=1 ( kK − δ, kK )}. (2.1)305

In particular, Ω([0,1]d,K, δ) = ∅ if K = 1. See Figure 1 for two examples of the306

trifling region.

0.00 0.25 0.50 0.75 1.00

δ δ δ

Ω([0, 1]d, K, δ) for K = 4, d = 1

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Ω([0, 1]d, K, δ) for K = 4, d = 2

(b)

Figure 1: Two examples of the trifling region. (a) K = 4, d = 1. (b) K = 4, d = 2.

307

• Given E ⊆ Rd, let Cs(E) denote the set containing all functions, all k-th order308

partial derivatives of which exist and are continuous on E for any k ∈ N with309

0 ≤ k ≤ s. In particular, C0(E), also denoted by C(E), is the set of continuous310

9



functions on E. For the case s = ∞, C∞(E) = ⋂∞
s=0C

s(E). The Cs-norm is defined311

by312

∥f∥Cs(E) ∶= max{∥∂αf∥L∞(E) ∶ α ∈ Nd with ∥α∥1 ≤ s}.313

Generally, E is assigned as [0,1]d in this paper. In particular, the closed unit ball314

of Cs([0,1]d) is denoted by315

Cs
u([0,1]d) ∶= {f ∈ Cs([0,1]d) ∶ ∥f∥Cs([0,1]d) ≤ 1}.316

• We use “NN” to mean “functions implemented by ReLU FNNs” for short and317

use Python-type notation to specify a class of functions implemented by ReLU318

FNNs with several conditions. To be precise, we use NN(c1; c2; ⋯; cm) to denote319

the function set containing all functions implemented by ReLU FNN architectures320

satisfying m conditions given by {ci}1≤i≤m, each of which may specify the number321

of inputs (#input), the number of outputs (#output), the total number of nodes322

in all hidden layers (#neuron), the number of hidden layers (depth), the number of323

total parameters (#parameter), and the width in each hidden layer (widthvec), the324

maximum width of all hidden layers (width), etc. For example, if φ ∈ NN(#input =325

2; widthvec = [100,100]; #output = 1), then φ is a function satisfying the following326

conditions.327

– φ maps from R2 to R.328

– φ is implemented by a ReLU FNN with two hidden layers and the number of329

nodes in each hidden layer being 100.330

• Let σ ∶ R→ R denote the rectified linear unit (ReLU), i.e. σ(x) = max{0, x}. With331

the abuse of notation, we define σ ∶ Rd → Rd as σ(x) =
⎡⎢⎢⎢⎢⎢⎣

max{0, x1}
⋮

max{0, xd}

⎤⎥⎥⎥⎥⎥⎦
for any332

x = [x1,⋯, xd]T ∈ Rd.333

• For a function φ ∈ NN(#input = d; widthvec = [N1,N2,⋯,NL]; #output = 1), if334

we set N0 = d and NL+1 = 1, then the architecture of the network implementing φ335

can be briefly described as follows:336

x = h̃0
W0, b0 h1

σ h̃1 ⋯ WL−1, bL−1 hL
σ h̃L

WL, bL hL+1 = φ(x),337

where Wi ∈ RNi+1×Ni and bi ∈ RNi+1 are the weight matrix and the bias vector in338

the i-th affine linear transform Li in φ, respectively, i.e.,339

hi+1 =Wi ⋅ h̃i + bi =∶ Li(h̃i) for i = 0,1,⋯, L340

and341

h̃i = σ(hi) for i = 1,2,⋯, L.342

In particular, φ can be represented in a form of function compositions as follows343

φ = LL ○ σ ○ LL−1 ○ σ ○ ⋯ ○ σ ○ L1 ○ σ ○ L0,344

which has been illustrated in Figure 2.345

10



(x1, x2)

x1

x2

h1

h1,1

h1,2

h1,3

h1,4

h̃1

h̃1,1

h̃1,2

h̃1,3

h̃1,4

h2

h2,1

h2,2

h2,3

h2,4

h2,5

h̃2

h̃2,1

h̃2,2

h̃2,3

h̃2,4

h̃2,5

φ(x1, x2)

φ(x1, x2)

W0, b0 W1, b1 W2, b2ReLU (σ) ReLU (σ)

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 2: An example of a ReLU FNN with width 5 and depth 2.

• The expression “a network (architecture) with (of) width N and depth L” means346

– The maximum width of this network (architecture) for all hidden layers is347

no more than N .348

– The number of hidden layers of this network (architecture) is no more than349

L.350

• For any θ ∈ [0,1), suppose its binary representation is θ = ∑∞
`=1 θ`2

−` with θ` ∈351

{0,1}. We introduce a special notation bin0.θ1θ2⋯θL to denote the L-term binary352

representation of θ, i.e., bin0.θ1θ2⋯θL ∶= ∑L
`=1 θ`2

−` ≈ θ.353

2.2 Proof of Theorem 1.1354

The introduction of the trifling region Ω([0,1]d,K, δ) is due to the fact that ReLU355

FNNs cannot approximate a step function uniformly well (as the ReLU activation func-356

tion is continuous), which is also the reason for the main difficulty in obtaining approxi-357

mation errors in the L∞([0,1]d)-norm in our previous papers [40,41]. The trifling region358

is a key technique to simplify the proofs of theories in [40, 41] as well as the proof of359

Theorem 1.1.360

First, we present Theorem 2.1 to show that, as long as good uniform approximation361

by a ReLU FNN can be obtained outside the trifling region, the uniform approximation362

error can also be well controlled inside the trifling region when the network size is slightly363

increased. Second, as a simplified version of Theorem 1.1 ignoring the approximation364

error in the trifling region Ω([0,1]d,K, δ), Theorem 2.2 shows the existence of a ReLU365

FNN approximating a target smooth function uniformly well outside the trifling region.366

Finally, Theorems 2.1 and 2.2 immediately lead to Theorem 1.1. Theorem 2.1 can367

be applied to improve the theories in [40, 41] to obtain approximation errors in the368

L∞([0,1]d)-norm.369

Theorem 2.1. Given any ε > 0, N,L,K ∈ N+, and δ ∈ (0, 1
3K ], assume f ∈ C([0,1]d)370

and φ̃ is a function implemented by a ReLU FNN with width N and depth L. If371

∣φ̃(x) − f(x)∣ ≤ ε for any x ∈ [0,1]d/Ω([0,1]d,K, δ),372

then there exists a new function φ implemented by a ReLU FNN with width 3d(N + 4)373

and depth L + 2d such that374

∣φ(x) − f(x)∣ ≤ ε + d ⋅ ωf(δ) for any x ∈ [0,1]d.375

11



Theorem 2.2. Assume that f ∈ Cs([0,1]d) satisfies ∥∂αf∥L∞([0,1]d) ≤ 1 for any α ∈ Nd376

with ∥α∥1 ≤ s. For any N,L ∈ N+, there exists a function φ implemented by a ReLU377

FNN with width 16sd+1d(N + 2) log2(8N) and depth 18s2(L + 2) log2(4L) such that378

∣φ(x) − f(x)∣ ≤ 84(s + 1)d8sN−2s/dL−2s/d for any x ∈ [0,1]d/Ω([0,1]d,K, δ),379

where K = ⌊N1/d⌋2⌊L2/d⌋ and δ is an arbitrary number in (0, 1
3K ].380

We first prove Theorem 1.1 by assuming Theorems 2.1 and 2.2 are true. The proofs381

of Theorems 2.1 and 2.2 can be found in Sections 3 and 4, respectively.382

Proof of Theorem 1.1. We may assume ∥f∥Cs([0,1]d) > 0 since ∥f∥Cs([0,1]d) = 0 is a trivial383

case. Define f̃ ∶= f
∥f∥

Cs([0,1]d)
∈ Cs

u([0,1]d). Set K = ⌊N1/d⌋2⌊L2/d⌋ and choose a small384

δ ∈ (0, 1
3K ] such that385

d ⋅ ωf̃(δ) ≤ N−2s/dL−2s/d.386

Clearly, ∥∂αf̃∥L∞([0,1]d) ≤ 1 for any α ∈ Nd with ∥α∥1 ≤ s. By Theorem 2.2, there387

exists a function φ̂ implemented by a ReLU FNN with width 16sd+1d(N + 2) log2(8N)388

and depth 18s2(L + 2) log2(4L) such that389

∣φ̂(x) − f̃(x)∣ ≤ 84(s + 1)d8sN−2s/dL−2s/d =∶ ε for any x ∈ [0,1]d/Ω([0,1]d,K, δ).390

By Theorem 2.1, there exists a new function φ̃ implemented by a ReLU FNN with width391

3d(16sd+1d(N + 2) log2(8N) + 4) ≤ 17sd+13dd(N + 2) log2(8N)392

and depth 18s2(L + 2) log2(4L) + 2d such that393

∥φ̃ − f̃∥L∞([0,1]d) ≤ ε + d ⋅ ωf̃(δ) = 84(s + 1)d8sN−2s/dL−2s/d + d ⋅ ωf̃(δ)
≤ 85(s + 1)d8sN−2s/dL−2s/d.

394

Finally, set φ = ∥f∥Cs([0,1]d) ⋅ φ̃; then395

∥φ − f∥L∞([0,1]d) = ∥f∥Cs([0,1]d) ⋅ ∥φ̃ − f̃∥L∞([0,1]d)

≤ 85(s + 1)d8s∥f∥Cs([0,1]d)N−2s/dL−2s/d,
396

and φ can also be implemented by a ReLU FNN with width 17sd+13dd(N + 2) log2(8N)397

and depth 18s2(L + 2) log2(4L) + 2d. So we finish the proof.398

2.3 Optimality of Theorem 1.1399

In this section, we will show that the approximation error in Theorem 1.1 is nearly400

tight in terms of VC-dimension. The key is the VC-dimension upper bound of ReLU401

FNNs in [22] will lead to a contradiction if our approximation is not optimal. This402

idea was used in [44] to prove its tightness for ReLU FNNs of width O(d) and depth403

sufficiently large to approximate smooth functions.404

12



Let us first present the definitions of VC-dimension and related concepts. Let H be405

a class of functions mapping from a general domain X to {0,1}. We say H shatters the406

set {x1,x2,⋯,xm} ⊆ X if407

∣{[h(x1), h(x2),⋯, h(xm)]T ∈ {0,1}m ∶ h ∈H}∣ = 2m,408

where ∣ ⋅ ∣ means the size of a set. This equation means, given any θi ∈ {0,1} for i =409

1,2,⋯,m, there exists h ∈ H such that h(xi) = θi for all i. For a general function set F410

mapping from X to R, we say F shatters {x1,x2,⋯,xm} ⊆ X if T ○F does, where411

T (t) ∶= {1, t ≥ 0,

0, t < 0
and T ○F ∶= {T ○ f ∶ f ∈ F}.412

For any m ∈ N+, we define the growth function of H as413

ΠH(m) ∶= max
x1,x2,⋯,xm∈X

∣{[h(x1), h(x2),⋯, h(xm)]T ∈ {0,1}m ∶ h ∈H}∣.414

Definition 2.3 (VC-dimension). Let H be a class of functions from X to {0,1}. The415

VC-dimension of H, denoted by VCDim(H), is the size of the largest shattered set,416

namely,417

VCDim(H) ∶= sup ({0}⋃{m ∈ N+ ∶ ΠH(m) = 2m}).418

Let F be a class of functions from X to R. The VC-dimension of F , denoted by419

VCDim(F ), is defined by VCDim(F ) ∶= VCDim(T ○F ), where420

T (t) ∶= {1, t ≥ 0,

0, t < 0
and T ○F ∶= {T ○ f ∶ f ∈ F}.421

In particular, the expression “VC-dimension of a network (architecture)” means the VC-422

dimension of the function set that consists of all functions implemented by this network423

(architecture).424

Recall that Cs
u([0,1]d) denotes the unit ball of Cs([0,1]d). Theorem 2.4 below shows425

that the best possible approximation error of functions in Cs
u([0,1]d) approximated by426

functions in F is bounded by a formula characterized by VCDim(F ).427

Theorem 2.4. Given any s, d ∈ N+, there exists a (small) positive constant Cs,d deter-428

mined by s and d such that: For any ε > 0 and a function set F with all elements defined429

on [0,1]d, if VCDim(F ) ≥ 1 and430

inf
φ∈F

∥φ − f∥L∞([0,1]d) ≤ ε for any f ∈ Cs
u([0,1]d), (2.2)431

then VCDim(F ) ≥ Cs,d ε−d/s. 4○432

4○In fact, Cs,d can be expressed by s and d with a explicitly formula as we remark in the proof of
this theorem. However, the formula may be very complicated.

13



This theorem demonstrates the connection between the VC-dimension of F and433

the approximation error using elements of F to approximate functions in Cs
u([0,1]d).434

To be precise, the best possible approximation error is controlled by VCDim(F )−s/d up435

to a constant. It is shown in [22] that the VC-dimension of ReLU FNNs with a fixed436

architecture with W parameters and L layers has an upper bound O(WL lnW ). It437

follows that the VC-dimension of ReLU FNNs with width N and depth L is bounded438

by O(N2L ⋅ L ⋅ ln(N2L)) ≤ O(N2L2 ln(NL)). That is, VCDim(F ) ≤ O(N2L2 ln(NL)),439

where440

F = NN(#input = d; width ≤ N ; depth ≤ L; #output = 1).441

Hence, the approximation error of functions in Cs
u([0,1]d), approximated by ReLU FNNs442

with width N and depth L, has a lower bound443

C(s, d) ⋅ (N2L2 ln(NL))−s/d444

for some positive constant C(s, d) determined by s and d. When the width and depth445

become O(N lnN) and O(L lnL), respectively, the lower bound of the approximation446

error becomes447

C(s, d) ⋅ (N2L2(lnN)3(lnL)3)−s/d448

for some positive constant C(s, d) determined by s and d. These two lower bounds mean449

that our approximation errors in Theorem 1.1 and Corollary 1.2 are nearly optimal.450

Now let us present the detailed proof of Theorem 2.4.451

Proof of Theorem 2.4. To find a subset of F shattering O(ε−d/s) points in [0,1]d, we452

divided the proof into two steps.453

• Construct {fχ ∶ χ ∈ X } ⊆ Cs
u([0,1]d) that scatters O(ε−d/s) points, where X is a454

function set defined later.455

• Design φχ ∈ F , for each χ ∈ X , based on fχ and Equation (2.2) such that {φχ ∶456

χ ∈ X } ⊆ F also shatters O(ε−d/s) points.457

The details of these two steps can be found below.458

Step 1∶ Construct {fχ ∶ χ ∈ X } ⊆ Cs
u([0,1]d) that scatters O(ε−d/s) points.459

Let K = O(ε−1/s) be an integer determined later and divide [0,1]d into Kd non-460

overlapping sub-cubes {Qβ}β as follows:461

Qβ ∶= {x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xi ∈ [βiK ,
βi+1
K ] for i = 1,2,⋯, d}462

for any index vector β = [β1, β2,⋯, βd]T ∈ {0,1,⋯,K − 1}d.463

There exists g̃ ∈ C∞(Rd) such that g̃(0) = 1 and g̃(x) = 0 for ∥x∥2 ≥ 1/3. 5○ Then,464

g ∶= g̃/C̃s,d ∈ Cs
u([0,1]d) by setting C̃s,d ∶= ∥g̃∥Cs([0,1]d) > 0.465

Define466

X ∶= {χ ∶ χ is a map from {0,1,⋯,K − 1}d to {−1,1}}467

5○In fact, such a function g̃ is called “bump function”. An example can be attained by setting
g̃(x) = C exp( 1

∥3x∥22−1
) if ∥x∥2 < 1/3 and g̃(x) = 0 if ∥x∥2 ≥ 1/3, where C is a proper constant such that

g̃(0) = 1.

14



and468

gβ ∶=K−sg(K(x −xQβ)) for each β ∈ {0,1,⋯,K − 1}d,469

where xQβ is the center of Qβ.470

Next, for each χ ∈ X , we can define fχ via471

fχ(x) ∶= ∑
β∈{0,1,⋯,K−1}d

χ(β)gβ(x).472

Then fχ ∈ Cs
u([0,1]d) for each χ ∈ X , since it satisfies the following two conditions.473

• By the definition of gβ and χ, we have474

{x ∶ χ(β)gβ(x) ≠ 0} ⊆ B(xQβ , 1
3K ) ⊆ 2

3Qβ for each β ∈ {0,1,⋯,K − 1}d,475

which implies that fχ ∈ C∞([0,1]d).476

• For any x ∈ Qβ, β ∈ {0,1,⋯,K − 1}d, and α ∈ Nd with ∥α∥1 ≤ s,477

∂αfχ(x) = χ(β)∂αgβ(x) =K−sχ(β)K∥α∥1∂αg(K(x −xβ)),478

from which we deduce ∣∂αfχ(x)∣ = ∣K−(s−∥α∥1)∂αg(K(x −xβ))∣ ≤ 1.479

It is easy to check that {fχ ∶ χ ∈ X } ⊆ Cs
u([0,1]d) can shatter Kd = O(ε−d/s) points in480

[0,1]d.481

Step 2∶ Construct {φχ ∶ χ ∈ X } that also scatters O(ε−d/s) points.482

By Equation (2.2), for each χ ∈ X , there exists φχ ∈ F such that483

∥φχ − fχ∥L∞([0,1]d) ≤ ε + ε/2.484

Let µ(⋅) denote the Lebesgue measure of a set. Then, for each χ ∈ X , there exists485

Hχ ⊆ [0,1]d with µ(Hχ) = 0 such that486

∣φχ(x) − fχ(x)∣ ≤ 3
2ε for any x ∈ [0,1]d/Hχ.487

Set H = ⋃χ∈X Hχ; then we have µ(H) = 0 and488

∣φχ(x) − fχ(x)∣ ≤ 3
2ε for any χ ∈ X and x ∈ [0,1]d/H. (2.3)489

Clearly, there exists r ∈ (0,1) such that490

gβ(x) ≥ 1
2gβ(xQβ) > 0 for any x ∈ rQβ,491

where xQβ is the center of Qβ.492

Note that (rQβ)/H is not empty, since µ((rQβ)/H) > 0 for each β. Then, for any493

χ ∈ X and β ∈ {0,1,⋯,K − 1}d, there exists xβ ∈ (rQβ)/H such that494

∣fχ(xβ)∣ = ∣gβ(xβ)∣ ≥ 1
2 ∣gβ(xQβ)∣ = 1

2K
−sg(0) = 1

2K
−s/C̃s,d ≥ 2ε, (2.4)495

where the last inequality is attained by setting K = ⌊(4εC̃s,d)−1/s⌋. Note that it is496

necessary to verify K ≠ 0; we do this later in the proof.497

15



By Equations (2.3) and (2.4), we have, for each β ∈ {0,1,⋯,K−1}d and each χ ∈ X ,498

∣fχ(xβ)∣ ≥ 2ε > 3
2ε ≥ ∣fχ(xβ) − φχ(xβ)∣,499

implying fχ(xβ) and φχ(xβ) have the same sign. Then {φχ ∶ χ ∈ X } shatters {xβ ∶ β ∈500

{0,1,⋯,K − 1}d} since {fχ ∶ χ ∈ X } shatters {xβ ∶ β ∈ {0,1,⋯,K − 1}d}. Hence,501

VCDim(F ) ≥ VCDim({φχ ∶ χ ∈ X }) ≥Kd = ⌊(4εC̃s,d)−1/s⌋d ≥ 2−d(4εC̃s,d)−d/s,502

where the last inequality comes from the fact that ⌊x⌋ ≥ x/2 for any x ∈ [1,∞).503

Finally, by setting504

Cs,d = 2−d(4C̃s,d)−d/s = 2−d(4∥g̃∥Cs([0,1]d))
−d/s

,505

we have506

VCDim(F ) ≥ 2−d(4εC̃s,d)−d/s = 2−d(4C̃s,d)−d/sε−d/s = Cs,dε−d/s507

and508

K = ⌊(4εC̃s,d)−1/s⌋ = ⌊ε−1/s(4C̃s,d)−1/s⌋ = ⌊ε−1/s(2dCs,d)1/d⌋ ≥ 1,509

where the last inequality comes from the assumption ε ≤ (2dCs,d)s/d. Such an assumption510

is reasonable since ε > (2dCs,d)s/d is a trivial case, which implies511

VCDim(F ) ≥ 1 ≥ 2−d = Cs,d((2dCs,d)s/d)
−d/s

> Cs,dε−d/s.512

So we finish the proof.513

3 Proof of Theorem 2.1514

Intuitively speaking, Theorem 2.1 shows that if a ReLU FNN can implement a515

function g approximating the target function f well except for the trifling region, then516

we can design a new ReLU network with a similar size to approximate f well on the517

whole domain. For example, if g approximates a one-dimensional continuous function518

f well except for a region in R with a sufficiently small measure δ, then mid(g(x +519

δ), g(x), g(x − δ)) can approximate f well on the whole domain, where mid(⋅, ⋅, ⋅) is a520

function returning the middle value of three inputs and can be implemented via a ReLU521

FNN as shown in Lemma 3.1. This key idea is called the horizontal shift (translation)522

of g in this paper.523

Lemma 3.1. The middle value function mid(x1, x2, x3) can be implemented by a ReLU524

FNN with width 14 and depth 2.525

Proof. Recall the fact that526

x = σ(x) − σ(−x) and ∣x∣ = σ(x) + σ(−x) for any x ∈ R. (3.1)527

Therefore,528

max(x, y) = x + y + ∣x − y∣
2

= 1
2σ(x + y) − 1

2σ(−x − y) + 1
2σ(x − y) + 1

2σ(−x + y),
(3.2)529

16



x1

x2

x3

σ(x1 + x2)

σ(−x1 − x2)

σ(x1 − x2)

σ(−x1 + x2)

σ(x3)

σ(−x3)

σ
(
max(x1, x2) + x3

)

σ
(
−max(x1, x2)− x3

)

σ
(
max(x1, x2)− x3

)

σ
(
−max(x1, x2) + x3

)

max
(
max(x1, x2), x3

)
= max(x1, x2, x3)

Figure 3: An illustration of the network architecture implementing max(x1, x2, x3) based
on Equations (3.1) and (3.2).

for any x, y ∈ R. Thus, max(x1, x2, x3) can be implemented by the network shown in530

Figure 3.531

Clearly,532

max(x1, x2, x3) ∈ NN(#input = 3; widthvec = [6,4]).533

Similarly, we have534

min(x1, x2, x3) ∈ NN(#input = 3; widthvec = [6,4]).535

It is easy to check that536

mid(x1, x2, x3) = x1 + x2 + x3 −max(x1, x2, x3) −min(x1, x2, x3)
= σ(x1 + x2 + x3) − σ(−x1 − x2 − x3) −max(x1, x2, x3) −min(x1, x2, x3).

537

Hence,538

mid(x1, x2, x3) ∈ NN(#input = 3; widthvec = [14,10]).539

That is, mid(x1, x2, x3) can be implemented by a ReLU FNN with width 14 and depth540

2. So we finish the proof.541

The next lemma shows a simple but useful property of the mid(x1, x2, x3) function542

that helps to exclude poor approximation in the trifling region.543

Lemma 3.2. For any ε > 0, if at least two elements of {x1, x2, x3} are in B(y, ε), then544

mid(x1, x2, x3) ∈ B(y, ε).545

Proof. Without loss of generality, we may assume x1, x2 ∈ B(y, ε) and x1 ≤ x2. Then the546

proof can be divided into three cases.547

1. If x3 < x1, then x3 < x1 ≤ x2, implying mid(x1, x2, x3) = x1 ∈ B(y, ε).548

2. If x1 ≤ x3 ≤ x2, then mid(x1, x2, x3) = x3 ∈ B(y, ε) since y − ε ≤ x1 ≤ x3 ≤ x2 ≤ y + ε.549

3. If x2 < x3, then x1 ≤ x2 < x3, implying mid(x1, x2, x3) = x2 ∈ B(y, ε).550

So we finish the proof.551

17



Next, given a function g approximating f well on [0,1] except for the trifling region,552

Lemma 3.3 below shows how to use the mid(x1, x2, x3) function to construct a new553

function φ uniformly approximating f well on [0,1], leveraging the useful property of554

mid(x1, x2, x3) in Lemma 3.2.555

Lemma 3.3. Given any ε > 0, K ∈ N+, and δ ∈ (0, 1
3K ], assume f ∈ C([0,1]) and556

g ∶ R→ R is a general function with557

∣g(x) − f(x)∣ ≤ ε, i.e., g(x) ∈ B(f(x), ε) for any x ∈ [0,1]/Ω([0,1],K, δ). (3.3)558

Then559

∣φ(x) − f(x)∣ ≤ ε + ωf(δ) for any x ∈ [0,1],560

where561

φ(x) ∶= mid(g(x − δ), g(x), g(x + δ)) for any x ∈ R.562

Proof. Divide [0,1] into K small intervals denoted by Qk = [ kK , k+1
K ] for k = 0,1,⋯,K −1.563

For each k ∈ {0,1,⋯,K − 1}, we further divide Qk into four small closed intervals as564

shown in Figure 4, i.e.,565

Qk = Qk,1⋃Qk,2⋃Qk,3⋃Qk,4,566

where Qk,1 = [ kK , kK + δ], Qk,2 = [ kK + δ, k+1
K − 2δ], Qk,3 = [k+1

K − 2δ, k+1
K − δ], and Qk,4 =567

[k+1
K − δ, k+1

K ].568

δ

Qk,1

1/K − 3δ

Qk,2

δ

Qk,3

δ

Qk,4

k
K

k
K + δ k+1

K − 2δ k+1
K − δ k+1

K

Figure 4: An illustration of Qk,i for i = 1,2,3,4.

It is easy to verify that569

• Qk,i ⊆ [0,1]/Ω([0,1],K, δ) for k = 0,1,⋯,K − 1 and i = 1,2,3;570

• QK−1,4 ⊆ [0,1]/Ω([0,1],K, δ).571

To estimate the difference between φ(x) and f(x), we consider the following four572

cases of x in [0,1] for each k ∈ {0,1,⋯,K − 1}.573

Case 1∶ x ∈ Qk,1.574

If x ∈ Qk,1, then x ∈ [0,1]/Ω([0,1],K, δ) and575

x + δ ∈ Qk,2⋃Qk,3 ⊆ [0,1]/Ω([0,1],K, δ).576

It follows from Equation (3.3) that577

g(x) ∈ B(f(x), ε) ⊆ B(f(x), ε + ωf(δ))578

and579

g(x + δ) ∈ B(f(x + δ), ε) ⊆ B(f(x), ε + ωf(δ)).580

18



By Lemma 3.2, we get581

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)).582

Case 2∶ x ∈ Qk,2.583

If x ∈ Qk,2, then584

x − δ, x, x + δ ∈ Qk,1⋃Qk,2⋃Qk,3 ⊆ [0,1]/Ω([0,1],K, δ).585

It follows from Equation (3.3) that586

g(x − δ) ∈ B(f(x − δ), ε) ⊆ B(f(x), ε + ωf(δ)),587

588
g(x) ∈ B(f(x), ε) ⊆ B(f(x), ε + ωf(δ)),589

and590

g(x + δ) ∈ B(f(x + δ), ε) ⊆ B(f(x), ε + ωf(δ)).591

Then, by Lemma 3.2, we have592

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)).593

Case 3∶ x ∈ Qk,3.594

If x ∈ Qk,3, then x ∈ [0,1]/Ω([0,1],K, δ) and595

x − δ ∈ Qk,1⋃Qk,2 ⊆ [0,1]/Ω([0,1],K, δ).596

It follows from Equation (3.3) that597

g(x) ∈ B(f(x), ε) ⊆ B(f(x), ε + ωf(δ))598

and599

g(x − δ) ∈ B(f(x − δ), ε) ⊆ B(f(x), ε + ωf(δ)).600

By Lemma 3.2, we get601

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)).602

Case 4∶ x ∈ Qk,4.603

If x ∈ Qk,4, we can divide this case into two sub-cases.604

• If k ∈ {0,1,⋯,K − 2}, then x − δ ∈ Qk,3 ∈ [0,1]/Ω([0,1],K, δ) and x + δ ∈ Qk+1,1 ⊆605

[0,1]/Ω([0,1],K, δ). It follows from Equation (3.3) that606

g(x − δ) ∈ B(f(x − δ), ε) ⊆ B(f(x), ε + ωf(δ))607

and608

g(x + δ) ∈ B(f(x + δ), ε) ⊆ B(f(x), ε + ωf(δ)).609

By Lemma 3.2, we get610

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)).611

19



• If k = K − 1, then x ∈ Qk,4 = QK−1,4 ⊆ [0,1]/Ω([0,1],K, δ) and x − δ ∈ Qk,3 ⊆612

[0,1]/Ω([0,1],K, δ). It follows from Equation (3.3) that613

g(x) ∈ B(f(x), ε) ⊆ B(f(x), ε + ωf(δ))614

and615

g(x − δ) ∈ B(f(x − δ), ε) ⊆ B(f(x), ε + ωf(δ)).616

By Lemma 3.2, we get617

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)).618

Since [0,1] = ⋃K−1
k=0 (⋃4

i=1Qk,i), we have619

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)) for any x ∈ [0,1].620

Recall that φ(x) = mid(g(x − δ), g(x), g(x + δ)). Then we have621

∣φ(x) − f(x)∣ ≤ ε + ωf(δ) for any x ∈ [0,1].622

So we finish the proof.623

The next lemma below extend Lemma 3.3 to the multidimensional case.624

Lemma 3.4. Given any ε > 0, K ∈ N+, and δ ∈ (0, 1
3K ], assume f ∈ C([0,1]d) and625

g ∶ Rd → R is a general function with626

∣g(x) − f(x)∣ ≤ ε, i.e., g(x) ∈ B(f(x), ε) for any x ∈ [0,1]d/Ω([0,1]d,K, δ).627

Then628

∣φ(x) − f(x)∣ ≤ ε + d ⋅ ωf(δ) for any x ∈ [0,1]d,629

where φ ∶= φd is defined by induction through630

φi+1(x) ∶= mid(φi(x − δei+1), φi(x), φi(x + δei+1)) for i = 0,1,⋯, d − 1, (3.4)631

where φ0 = g and {ei}di=1 is the standard basis in Rd.632

Proof. For ` = 0,1,⋯, d, we define633

E` ∶= {x = [x1, x2,⋯, xd]T ∶ xi ∈ { [0,1], if i≤`,
[0,1]/Ω([0,1],K,δ), if i>` }.634

Clearly, E0 = [0,1]d/Ω([0,1]d,K, δ) and Ed = [0,1]d. See Figure 5 for the illustrations of635

E` for ` = 0,1,⋯, d when K = 4 and d = 2.636

We would like to construct a sequence of functions φ0, φ1,⋯, φd by induction, based637

on Equation (3.4), such that, for each ` ∈ {0,1,⋯, d},638

φ`(x) ∈ B(f(x), ε + ` ⋅ ωf(δ)) for any x ∈ E`. (3.5)639

20



0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

E` for ` = 0

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

E` for ` = 1

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

E` for ` = 2

Figure 5: Illustrations of E` for ` = 0,1,2 when K = 4 and d = 2.

Let us first consider the case ` = 0. Note that φ0 = g, E0 = [0,1]d/Ω([0,1]d,K, δ),640

and ∣g(x) − f(x)∣ ≤ ε for any x ∈ [0,1]d/Ω([0,1]d,K, δ). Then we have641

φ0(x) = g(x) ∈ B(f(x), ε) for any x ∈ E0.642

That is, Equation (3.5) is true for ` = 0.643

Now assume Equation (3.5) is true for ` = i. We will prove that it also holds for644

` = i + 1. By the hypothesis of induction, we have645

φi(x1,⋯, xi, t, xi+2,⋯, xd) ∈ B(f(x1,⋯, xi, t, xi+2,⋯, xd), ε + i ⋅ ωf(δ)) (3.6)646

for any x1,⋯, xi ∈ [0,1] and t, xi+2,⋯, xd ∈ [0,1]/Ω([0,1],K, δ).647

For fixed x1,⋯, xi ∈ [0,1] and xi+2,⋯, xd ∈ [0,1]/Ω([0,1],K, δ), denote648

x[i] ∶= [x1,⋯, xi, xi+2,⋯, xd]T ∈ [0,1]d−1.649

Then define650

ψx[i](t) ∶= φi(x1,⋯, xi, t, xi+2,⋯, xd) for any t ∈ R651

and652

fx[i](t) ∶= f(x1,⋯, xi, t, xi+2,⋯, xd) for any t ∈ R.653

It follows from Equation (3.6) that654

ψx[i](t) ∈ B(fx[i](t), ε + i ⋅ ωf(δ)) for any t ∈ [0,1]/Ω([0,1],K, δ).655

Then by Lemma 3.3 (set g = ψx[i] and f = fx[i] therein), we get, for any t ∈ [0,1],656

mid(ψx[i](t − δ), ψx[i](t), ψx[i](t + δ)) ∈ B(fx[i](t), ε + i ⋅ ωf(δ) + ωf
x[i]

(δ))

⊆ B(fx[i](t), ε + (i + 1)ωf(δ)).
657

That is, for any xi+1 = t ∈ [0,1],658

mid(φi(x1,⋯, xi, xi+1 − δ, xi+2,⋯, xd), φi(x1,⋯, xd), φi(x1,⋯, xi, xi+1 + δ, xi+2,⋯, xd))

∈ B(f(x1,⋯, xd), ε + (i + 1)ωf(δ)).
659

21



Note that x1,⋯, xi ∈ [0,1], xi+1 = t ∈ [0,1], and xi+2,⋯, xd ∈ [0,1]/Ω([0,1],K, δ) are660

arbitrary. Thus, for any x ∈ Ei+1, we have661

mid(φi(x − δei+1), φi(x), φi(x + δei+1)) ∈ B(f(x), ε + (i + 1)ωf(δ)),662

which implies663

φi+1(x) ∈ B(f(x), ε + (i + 1)ωf(δ)) for any x ∈ Ei+1.664

So Equation (3.5) is true for ` = i+1, which means we finish the process of mathematical665

induction.666

By the principle of induction, we have667

φ(x) ∶= φd(x) ∈ B(f(x), ε + d ⋅ ωf(δ)) for any x ∈ Ed = [0,1]d.668

Therefore,669

∣φ(x) − f(x)∣ ≤ ε + d ⋅ ωf(δ) for any x ∈ [0,1]d,670

which means we finish the proof.671

With Lemma 3.4 in hand, we are ready to prove Theorem 2.1.672

Proof of Theorem 2.1. Set φ0 = φ̃ and define φi for i ∈ {1,2,⋯, d} by induction as follows:673

φi+1(x) ∶= mid(φi(x − δei+1), φi(x), φi(x + δei+1)) for i = 0,1,⋯, d − 1,674

where {ei}di=1 is the standard basis in Rd. Then by Lemma 3.4 with φ = φd, we have675

∣φ(x) − f(x)∣ ≤ ε + d ⋅ ωf(δ) for any x ∈ [0,1]d.676

It remains to determine the network architecture implementing φ = φd. Clearly, φ0 = φ̃ ∈677

NN(width ≤ N ; depth ≤ L) implies678

φ0(⋅ − δe1), φ0(⋅), φ0(⋅ + δe1) ∈ NN(width ≤ N ; depth ≤ L).679

By defining a vector-valued function Φ0 ∶ Rd → R3 as680

Φ0(x) ∶= (φ0(x − δe1), φ0(x), φ0(x + δe1)) for any x ∈ Rd,681

we have Φ0 ∈ NN(#input = d; width ≤ 3N ; depth ≤ L; #output = 3). Recall that682

mid(⋅, ⋅, ⋅) ∈ NN(width ≤ 14; depth ≤ 2) by Lemma 3.1. Therefore, φ1 = min(⋅, ⋅, ⋅) ○Φ0683

can be implemented by a ReLU FNN with width max{3N,14} ≤ 3(N + 4) and depth684

L + 2. Similarly, φ = φd can be implemented by a ReLU FNN with width 3d(N + 4) and685

depth L + 2d. So we finish the proof.686

4 Proof of Theorem 2.2687

In this section, we prove Theorem 2.2, a weaker version of the main theorem of688

this paper (Theorem 1.1) targeting a ReLU FNN constructed to approximate a smooth689

function outside the trifling region. The main idea is to construct ReLU FNNs through690

Taylor expansions of smooth functions. We first discuss the proof sketch in Section 4.1691

and give the detailed proof in Section 4.2.692

22



4.1 Proof sketch of Theorem 2.2693

Set K = O(N2/dL2/d) and let Ω([0,1]d,K, δ) partition [0,1]d into Kd cubes Qβ694

for β ∈ {0,1,⋯,K − 1}d. As we shall see later, the introduction of the trifling region695

Ω([0,1]d,K, δ) can reduce the difficulty in constructing ReLU FNNs to achieve the op-696

timal approximation error simultaneously in width and depth, since it is only required697

to uniformly control the approximation error outside the trifling region and there is698

no requirement for the ReLU FNN inside the trifling region. In particular, for each699

β = [β1, β2,⋯, βd]T ∈ {0,1,⋯,K − 1}d, we define xβ ∶= β/K and700

Qβ ∶= {x = [x1, x2,⋯, xd]T ∶ xi ∈ [βiK ,
βi+1
K − δ ⋅ 1{βi≤K−2}] for i = 1,2,⋯, d}.701

Clearly, [0,1]d = Ω([0,1]d,K, δ)⋃( ∪β∈{0,1,⋯,K−1}d Qβ) and xβ is the vertex of Qβ with702

minimum ∥ ⋅ ∥1 norm. See Figure 6 for the illustrations of Qβ and xβ.

0.00 0.25 0.50 0.75 1.00

δ

Q0

δ

Q1

δ

Q2 Q3

Ω([0, 1]d, K, δ) for K = 4, d = 1

Qβ for β ∈ {0, 1, 2, 3}
xβ for β ∈ {0, 1, 2, 3}

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q0,1 Q0,2 Q0,3

Q1,0 Q1,1 Q1,2 Q1,3

Q2,0 Q2,1 Q2,2 Q2,3

Q3,0 Q3,1 Q3,2 Q3,3

Ω([0, 1]d, K, δ) for K = 4, d = 2

Qβ for β ∈ {0, 1, 2, 3}2

xβ for β ∈ {0, 1, 2, 3}2

(b)

Figure 6: Illustrations of Ω([0,1]d,K, δ), Qβ, and xβ for β ∈ {0,1,⋯,K − 1}d. (a) K = 4
and d = 1. (b) K = 4 and d = 2.

703
For any β ∈ {0,1,⋯,K − 1}d and x ∈ Qβ, there exists ξx ∈ (0,1) such that704

f(x) = ∑
∥α∥1≤s−1

∂αf(xβ)
α! hα

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T1

+ ∑
∥α∥1=s

∂αf(xβ+ξxh)
α! hα

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T2

=∶ T1 +T2, 6○ (4.1)705

where h(x) = x −xβ = x −β/K. Clearly, the magnitude of T2 is bounded by O(K−s) =706

O(N−2s/dL−2s/d). So we only need to construct a ReLU FNN with width O(N lnN) and707

depth O(L lnL) to approximate708

T1 = ∑
∥α∥1≤s−1

∂αf(xβ)
α! hα709

within an error O(N−2s/dL−2s/d). To approximate T1 well by ReLU FNNs, we need three710

key steps as follows.711

6○∑∥α∥1=s is short for ∑∥α∥1=s,α∈Nd . The same notation is used throughout this paper.

23



(i) Construct a ReLU FNN to implement a function Pα ∶ Rd → R approximating the712

polynomial hα well for each α ∈ Nd with ∥α∥1 ≤ s − 1.713

(ii) Construct a ReLU FNN to implement a vector-valued function Ψ ∶ Rd → Rd pro-714

jecting the whole cube Qβ to a point xβ = β
K , i.e., Ψ(x) = xβ for any x ∈ Qβ and715

each β ∈ {0,1,⋯,K − 1}d.716

(iii) Construct a ReLU FNN to implement a function φα ∶ Rd → R approximating ∂αf717

via solving a point fitting problem, i.e., φα should fit ∂αf well at all points in718

{xβ ∶ β ∈ {0,1,⋯,K − 1}d} for each α ∈ Nd with ∥α∥1 ≤ s − 1. That is, for each719

α ∈ Nd with ∥α∥1 ≤ s − 1, we need to design φα satisfying720

∣φα(xβ) − ∂αf(xβ)∣ ≤ O(N−2s/dL−2s/d) for any β ∈ {0,1,⋯,K − 1}d. (4.2)721

We will establish three propositions corresponding to these three steps above. They722

will be applied to support the construction of the desired ReLU FNNs. Their proofs will723

be available in Section 5.724

First, we establish a general proposition, Proposition 4.1 below, showing how to use725

ReLU FNNs to approximate multivariate polynomials. With Proposition 4.1 in hand,726

Step (i) is straightforward.727

Proposition 4.1. Assume P (x) = xα = xα1
1 x

α2
2 ⋯xαdd for α ∈ Nd with ∥α∥1 ≤ k ∈ N+.728

For any N,L ∈ N+, there exists a function φ implemented by a ReLU FNN with width729

9(N + 1) + k − 1 and depth 7k2L such that730

∣φ(x) − P (x)∣ ≤ 9k(N + 1)−7kL for any x ∈ [0,1]d.731

Proposition 4.1 shows that ReLU FNNs with width O(N) and depth O(L) are732

able to approximate polynomials with an error O(N−L). This reveals the power of733

depth in ReLU FNNs for approximating polynomials, from the perspective of function734

compositions. The starting point of a good approximation of functions is to approximate735

polynomials with high accuracy. In classical approximation theory, the approximation736

power of any numerical scheme depends on the degree of polynomials that can be locally737

reproduced. Being able to approximate polynomials by ReLU FNNs with high accuracy738

plays a vital role in the proof of Theorem 1.1. It is interesting to study whether there739

is any other function space with reasonable size, besides polynomial space, having an740

exponential error O(N−L) when approximated by ReLU FNNs. Obviously, the space of741

smooth functions is too big due to the optimality of Theorem 1.1 as shown in Section 2.3.742

Proposition 4.1 can be generalized to the case of polynomials defined on an arbitrary743

hypercube [a, b]d. Let us give an example for the polynomial xy below. Its proof will be744

provided later in Section 5.1.745

Lemma 4.2. For any N,L ∈ N+ and a, b ∈ R with a < b, there exists a function φ746

implemented by a ReLU FNN with width 9N + 1 and depth L such that747

∣φ(x, y) − xy∣ ≤ 6(b − a)2N−L for any x, y ∈ [a, b].748

24



Second, our goal is to construct a step function Ψ mapping x ∈ Qβ to xβ = β
K for any749

β ∈ {0,1,⋯,K − 1}d. We only need to approximate one-dimensional step functions, be-750

cause in the multidimensional case we can simply set Ψ(x) = [ψ(x1), ψ(x2),⋯, ψ(xd)]T ,751

where ψ is a one-dimensional step function. Therefore, to implement Step (ii), we752

need to construct ReLU FNNs with width O(N) and depth O(L) to approximate one-753

dimensional step functions with O(K) = O(N2/dL2/d) “steps” as shown in Proposition 4.3754

below.755

Proposition 4.3. For any N,L, d ∈ N+ and δ ∈ (0, 1
3K ] with K = ⌊N1/d⌋2⌊L2/d⌋, there756

exists a one-dimensional function φ implemented by a ReLU FNN with width 4⌊N1/d⌋+3757

and depth 4L + 5 such that758

φ(x) = k if x ∈ [ kK , k+1
K − δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.759

Next, the aim of Step (iii) is to construct φα implemented by a ReLU FNN such that760

Equation (4.2) holds for each α. To this end, we establish a proposition, Proposition 4.4761

below, to show that ReLU FNNs with width O(sN lnN) and depth O(L lnL) can be762

constructed to fit N2L2 points within an error N−2sL−2s.763

Proposition 4.4. Given any N,L, s ∈ N+ and ξi ∈ [0,1] for i = 0,1,⋯,N2L2 − 1, there764

exists a function φ implemented by a ReLU FNN with width 16s(N + 1) log2(8N) and765

depth 5(L + 2) log2(4L) such that766

(i) ∣φ(i) − ξi∣ ≤ N−2sL−2s for i = 0,1,⋯,N2L2 − 1;767

(ii) 0 ≤ φ(x) ≤ 1 for any x ∈ R.768

The proofs of Propositions 4.1, 4.3, and 4.4 can be found in Sections 5.1, 5.2, and769

5.3, respectively. The main ideas of proving Theorem 1.1 are summarized in Table 2.770

Table 2: A list of sub-networks for approximating smooth functions. Recall that h =
x −Ψ(x) = x −xβ for x ∈ Qβ.

target function function implemented by network width depth approximation error

step function Ψ(x) O(N) O(L) no error outside Ω([0,1]d,K, δ)
x1x2 ϕ(x1, x2) O(N) O(L) E1 = 216(N + 1)−2s(L+1)

hα Pα(h) O(N) O(L) E2 = 9s(N + 1)−7sL

∂αf(Ψ(x)) φα(Ψ(x)) O(N lnN) O(L lnL) E3 = 2N−2sL−2s

∑
∥α∥≤s−1

∂αf(Ψ(x))
α! hα ∑

∥α∥≤s−1
ϕ(φα(Ψ(x))

α! , Pα(h)) O(N lnN) O(L lnL) O(E1 + E2 + E3)

f(x) φ(x) ∶= ∑
∥α∥≤s−1

ϕ(φα(Ψ(x))
α! , Pα(x −Ψ(x))) O(N lnN) O(L lnL) O(∥h∥−s2 + E1 + E2 + E3)

≤ O(K−s) = O(N−2s/dL−2s/d)

Finally, we would like to compare our analysis with that in [46]. Both [46] and our771

analysis rely on local Taylor expansions as in Equation (4.1) to approximate the target772

function f . Both analysis methods construct ReLU FNNs to approximate polynomials773

and encode the Taylor expansion coefficients into ReLU FNNs. However, the way to lo-774

calize the Taylor expansion (i.e., defining the local neighborhood such that the expansion775

is valid) and the approach to constructing ReLU FNNs are different. We will discuss the776

details as follows.777

25



Localization. In [46], a “two-scale” partition procedure and a standard triangula-778

tion divide [0,1]d into simplexes and a partition of unity is constructed using compactly779

supported functions that are linear on each simplex, which implies that these functions780

in the partition of unity can be represented by ReLU FNNs. Taylor expansions of f781

are constructed within each support of the functions in the partition of unity. In this782

paper, we simply divide the domain into small hypercubes of uniform size as visualized783

in Figure 6. Taylor expansions of f are constructed within each hypercube. The reader784

can understand our approach as a simple way to construct a partition of unity using785

piecewise constant functions with binary values. The introduction of the trifling region786

allows us to simply construct ReLU FNNs to approximate these piecewise constant func-787

tions without caring about the approximation error within the trifling region. Hence, our788

construction can be much simplified and makes it easy to estimate all constant prefactors789

in our error estimates, which is challenging in [46].790

ReLU FNNs for Taylor expansions. In [46], very deep ReLU FNNs with width791

O(1) are constructed to approximate polynomials in local Taylor expansions, and hence,792

the optimal approximation error in width was not explored in [46]. In this paper, we793

construct ReLU FNNs with arbitrary width and depth to approximate polynomials in794

local Taylor expansions using Proposition 4.1, which allows us to explore the optimal795

approximation error in width and is more challenging. In [46], the coefficients of adjacent796

local Taylor expansions, i.e., ∂αf in Equation (4.1), are encoded into ReLU FNNs via bit797

extraction, which is the key to achieving a better approximation error of ReLU FNNs to798

approximate f than the original local Taylor expansions, since the number of coefficients799

can be significantly reduced via encoding. Actually, the error in depth by bit extraction800

is nearly optimal. In this paper, the approximation to ∂αf is reduced to a point fitting801

problem that can be solved by constructing ReLU FNNs using bit extraction as sketched802

out in the previous paragraphs. Hence, we can also achieve the optimal approximation803

error in depth. The key to achieving the optimal approximation error in width in the804

above approximation is the application of Lemma 5.4 that essentially fits O(N2) samples805

with ReLU FNNs of width O(N) and depth 2. Due to the simplicity of our analysis, we806

can construct ReLU FNNs with arbitrary width and depth to approximate f and specify807

all constant prefactors in our approximation error.808

4.2 Constructive proof809

According to the key ideas of proving Theorem 2.2 summarized in Section 4.1, let810

us present the detailed proof.811

Proof of Theorem 2.2. The detailed proof can be divided into four steps as follows.812

Step 1∶ Set up.813

Set K = ⌊N1/d⌋2⌊L2/d⌋ and let Ω([0,1]d,K, δ) partition [0,1]d into Kd cubes Qβ for814

β ∈ {0,1,⋯,K − 1}d. In particular, for each β = [β1, β2,⋯, βd]T ∈ {0,1,⋯,K − 1}d, we815

define xβ ∶= β/K and816

Qβ ∶= {x = [x1, x2,⋯, xd]T ∶ xi ∈ [βiK ,
βi+1
K − δ ⋅ 1{βi≤K−2}] for i = 1,2,⋯, d}.817

Clearly, [0,1]d = Ω([0,1]d,K, δ)⋃( ∪β∈{0,1,⋯,K−1}d Qβ) and xβ is the vertex of Qβ with818

minimum ∥ ⋅ ∥1 norm. See Figure 6 for the illustrations of Qβ and xβ.819

26



By Proposition 4.3, there exists ψ ∈ NN(width ≤ 4N + 3; depth ≤ 4N + 5) such that820

ψ(x) = k if x ∈ [ kK , k+1
K − δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.821

Then for each β ∈ {0,1,⋯,K − 1}d, ψ(xi) = βi for all x ∈ Qβ for i = 1,2,⋯, d.822

Define823

Ψ(x) ∶= [ψ(x1), ψ(x2),⋯, ψ(xd)]
T /K for any x ∈ [0,1]d,824

then825

Ψ(x) = β/K = xβ if x ∈ Qβ for β ∈ {0,1,⋯,K − 1}d.826

For any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d, by the Taylor expansion, there exists827

ξx ∈ (0,1) such that828

f(x) = ∑
∥α∥1≤s−1

∂αf(Ψ(x))
α! hα + ∑

∥α∥1=s

∂αf(Ψ(x)+ξxh)
α! hα, where h = x −Ψ(x).829

Step 2∶ Construct the desired function φ.830

By Lemma 4.2, there exists831

ϕ ∈ NN(width ≤ 9(N + 1) + 1; depth ≤ 2s(L + 1))832

such that833

∣ϕ(x1, x2) − x1x2∣ ≤ 216(N + 1)−2s(L+1) =∶ E1 for any x1, x2 ∈ [−3,3]. (4.3)834

For each α ∈ Nd with ∥α∥1 ≤ s, by Proposition 4.1, there exists835

Pα ∈ NN(width ≤ 9(N + 1) + s − 1; depth ≤ 7s2L)836

such that837

∣Pα(x) −xα∣ ≤ 9s(N + 1)−7sL =∶ E2 for any x ∈ [0,1]d. (4.4)838

For each i ∈ {0,1,⋯,Kd − 1}, define839

η(i) = [η1, η2,⋯, ηd]T ∈ {0,1,⋯,K − 1}d840

such that∑d
j=1 ηjK

j−1 = i. Such a map η is a bijection from {0,1,⋯,Kd−1} to {0,1,⋯,K−841

1}d. For each α ∈ Nd with ∥α∥1 ≤ s − 1, define842

ξα,i = (∂αf(η(i)K ) + 1)/2 for i ∈ {0,1,⋯,Kd − 1}.843

Then ∥∂αf∥L∞([0,1]d) ≤ 1 implies ξα,i ∈ [0,1] for i = 0,1,⋯,Kd − 1 and each α. Note that844

Kd = (⌊N1/d⌋2⌊L2/d⌋)d ≤ N2L2. By Proposition 4.4, there exists845

φ̃α ∈ NN(width ≤ 16s(N + 1) log2(8N); depth ≤ 5(L + 2) log2(4L))846

such that, for each α ∈ Nd with ∥α∥1 ≤ s − 1, we have847

∣φ̃α(i) − ξα,i∣ ≤ N−2sL−2s for i = 0,1,⋯,Kd − 1.848

27



For each α ∈ Nd with ∥α∥1 ≤ s − 1, define849

φα(x) ∶= 2φ̃α(
d

∑
j=1

xjK
j−1) − 1 for any x = [x1, x2,⋯, xd]T ∈ Rd.850

It is easy to verify that851

φα ∈ NN(width ≤ 16s(N + 1) log2(8N); depth ≤ 5(L + 2) log2(4L)).852

Then, for each α ∈ Nd with ∥α∥1 ≤ s−1 and each η = η(i) = [η1, η2,⋯, ηd]T ∈ {0,1,⋯,K −853

1}d corresponding to i = ∑d
j=1 ηjK

j−1 ∈ {0,1,⋯,Kd − 1}, we have854

∣φα( ηK ) − ∂αf( ηK )∣ = ∣2φ̃α(
d

∑
j=1

ηjK
j−1) − 1 − (2ξα,i − 1)∣

= 2∣φ̃α(i) − ξα,i∣ ≤ 2N−2sL−2s.

855

Therefore, for each β ∈ {0,1,⋯,K − 1}d and each α ∈ Nd with ∥α∥1 ≤ s − 1, we have856

∣φα(xβ) − ∂αf(xβ)∣ = ∣φα( βK ) − ∂αf( βK )∣ ≤ 2N−2sL−2s =∶ E3. (4.5)857

Now we can construct the desired function φ as858

φ(x) ∶= ∑
∥α∥1≤s−1

ϕ(φα(Ψ(x))
α! , Pα(x −Ψ(x))) for any x ∈ Rd. (4.6)859

It remains to estimate the approximation error and determine the size of the network860

implementing φ.861

Step 3∶ Estimate approximation error.862

Fix β ∈ {0,1,⋯,K − 1}d, let us estimate the approximation error for a fixed x ∈ Qβ.863

See Table 2 for a summary of the approximation errors. Recall that Ψ(x) = xβ and864

h = x −Ψ(x) = x −xβ. It is easy to check that ∣f(x) − φ(x)∣ is bounded by865

RRRRRRRRRRR
∑

∥α∥1≤s−1

∂αf(Ψ(x))
α! hα + ∑

∥α∥1=s

∂αf(Ψ(x)+ξxh)
α! hα − ∑

∥α∥1≤s−1

ϕ(φα(Ψ(x))
α! , Pα(x −Ψ(x)))

RRRRRRRRRRR
≤ ∑

∥α∥1=s
∣∂
αf(xβ+ξxh)

α! hα∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I1

+ ∑
∥α∥1≤s−1

∣∂
αf(xβ)
α! hα − ϕ(φα(xβ)

α! , Pα(h))∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I2

=∶ I1 +I2.
866

Recall the fact that867

∑
∥α∥1=s

1 = ∣{α ∈ Nd ∶ ∥α∥1 = s}∣ ≤ (s + 1)d−1 7○868

and869

∑
∥α∥1≤s−1

1 =
s−1

∑
i=0

( ∑
∥α∥1=i

1) ≤
s−1

∑
i=0

(i + 1)d−1 ≤ s ⋅ (s − 1 + 1)d−1 = sd.870

7○In fact, we have ∣{α ∈ Nd ∶ ∥α∥1 = s}∣ = (s+d−1
d−1

), implying (s/d+ 1)d−1 ≤ ∑∥α∥1=s 1 ≤ (s+ 1)d−1. Thus,
the lower bound of the estimate is still exponentially large in d. To the best of our knowledge, we cannot
avoid a constant prefactor that is exponentially large in d when Taylor expansion is used in the analysis.

28



For the first part I1, we have871

I1 = ∑
∥α∥1=s

∣∂
αf(xβ+ξxh)

α! hα∣ ≤ ∑
∥α∥1=s

∣ 1
α!h

α∣ ≤ (s + 1)d−1K−s.872

For the second part I2, we have873

I2 = ∑
∥α∥1≤s−1

∣∂
αf(xβ)
α! hα − ϕ(φα(xβ)

α! , Pα(h))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I2(α)

=∶ ∑
∥α∥1≤s−1

I2(α).
874

Fix α ∈ Nd with ∥α∥1 ≤ s − 1, we have875

I2(α) = ∣∂
αf(xβ)
α! hα − ϕ(φα(xβ)

α! , Pα(h))∣

≤ ∣∂
αf(xβ)
α! hα − ϕ(∂

αf(xβ)
α! , Pα(h))∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I2,1(α)

+ ∣ϕ(∂
αf(xβ)
α! , Pα(h)) − ϕ(φα(xβ)

α! , Pα(h))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I2,2(α)

=∶ I2,1(α) +I2,2(α).

876

Note that E2 = 9s(N + 1)−7sL ≤ 9s(2)−7s ≤ 2. By hα ∈ [0,1] and Equation (4.4), we877

have Pα(h) ∈ [−2,3] ⊆ [−3,3]. Then by ∂αf(xβ) ∈ [−1,1] and Equations (4.3) and (4.4),878

we have879

I2,1(α) = ∣∂
αf(xβ)
α! hα − ϕ(∂

αf(xβ)
α! , Pα(h))∣

≤ ∣∂
αf(xβ)
α! hα − ∂αf(xβ)

α! Pα(h)∣ + ∣∂
αf(xβ)
α! Pα(h) − ϕ(∂

αf(xβ)
α! , Pα(h))∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤ E1 by Eq. (4.3)

≤ 1
α!

∣hα − Pα(h)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤ E2 by Eq. (4.4)

+E1 ≤ 1
α!E2 + E1 ≤ E1 + E2.

880

To estimate I2,2(α), we need the following fact derived from Equation (4.3):881

∣ϕ(x1, x2) − ϕ(x̃1, x2)∣ ≤ ∣ϕ(x1, x2) − x1x2∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ E1 by Eq. (4.3)

+ ∣ϕ(x̃1, x2) − x̃1x2∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ E1 by Eq. (4.3)

+∣x1x2 − x̃1x2∣

≤ 2E1 + 3∣x1 − x̃1∣,
(4.7)882

for any x1, x̃1, x2 ∈ [−3,3].883

Since E3 = 2N−2sL−2s ≤ 2 and ∂αf(xβ) ∈ [−1,1], we have φα(xβ) ∈ [−3,3] by884

Equation (4.5). Then by Pα(h) ∈ [−3,3] and Equations (4.7) and (4.5), we have885

I2,2(α) = ∣ϕ(∂
αf(xβ)
α! , Pα(h)) − ϕ(φα(xβ)

α! , Pα(h))∣

≤ 2E1 + 3 ∣∂
αf(xβ)
α! − φα(xβ)

α! ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ E3 by Eq. (4.5)

≤ 2E1 + 3E3.886

29



Therefore, we get887

∣f(x) − φ(x)∣ ≤ I1 +I2 ≤ I1 + ∑
∥α∥1≤s−1

I2(α) ≤ I1 + ∑
∥α∥1≤s−1

(I2,1(α) +I2,2(α))

≤ (s + 1)d−1K−s + sd((E1 + E2) + (2E1 + 3E3))

≤ (s + 1)d(K−s + 3E1 + E2 + 3E3).

888

Since β ∈ {0,1,⋯,K − 1}d and x ∈ Qβ are arbitrary and889

[0,1]d = Ω([0,1]d,K, δ)⋃( ∪β∈{0,1,⋯,K−1}d Qβ),890

we have, for any x ∈ [0,1]d/Ω([0,1]d,K, δ),891

∣f(x) − φ(x)∣ ≤ (s + 1)d(K−s + 3E1 + E2 + 3E3).892

Recall that K = ⌊N1/d⌋2⌊L2/d⌋ ≥ N2/dL2/d
8 and893

(N + 1)−7sL ≤ (N + 1)−2s(L+1) ≤ (N + 1)−2s2−2sL ≤ N−2sL−2s.894

Then we have895

(s + 1)d(K−s + 3E1 + E2 + 3E3)

= (s + 1)d(K−s + 648(N + 1)−2s(L+1) + 9s(N + 1)−7sL + 6N−2sL−2s)

≤ (s + 1)d(8sN−2s/dL−2s/d + (654 + 9s)N−2sL−2s)

≤ (s + 1)d(8s + 654 + 9s)N−2s/dL−2s/d ≤ 84(s + 1)d8sN−2s/dL−2s/d.

896

Step 4∶ Determine the size of the network implementing φ.897

It remains to estimate the width and depth of the network implementing φ. Recall898

that, for α ∈ Nd with ∥α∥1 ≤ s − 1,899

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ψ ∈ NN(width ≤ d(4N + 3); depth ≤ 4L + 5),
φα ∈ NN(width ≤ 16s(N + 1) log2(8N); depth ≤ 5(L + 2) log2(4L)),
Pα ∈ NN(width ≤ 9(N + 1) + s − 1; depth ≤ 7s2L),
ϕ ∈ NN(width ≤ 9(N + 1) + 1; depth ≤ 2s(L + 1)).

900

x

Ψ(x)

x

φα(Ψ(x))

x−Ψ(x)

φα(Ψ(x))
α!

Pα
(
x−Ψ(x)

)
ϕ

(
φα

(
Ψ(x)

)

α!
, Pα

(
x−Ψ(x)

))Ψ

Pα

φα

ϕ

Figure 7: An illustration of the sub-network architecture implementing each component

of φ, ϕ(φα(Ψ(x))
α! , Pα(x −Ψ(x))) for each α ∈ Nd with ∥α∥ ≤ s − 1.

30



By Equation (4.6) and Figure 7, it easy to verify that φ can be implemented by a901

ReLU FNN with width902

∑
∥α∥1≤s−1

16sd(N + 2) log2(8N) ≤ sd ⋅ 16sd(N + 2) log2(8N)

= 16sd+1d(N + 2) log2(8N)
903

and depth904

(4L + 5) + 2s(L + 1) + 7s2L + 5(L + 2) log2(4L) + 3 ≤ 18s2(L + 2) log2(4L)905

as desired. So we finish the proof.906

5 Proofs of Propositions in Section 4.1907

In this section, we will prove all propositions in Section 4.1.908

5.1 Proof of Proposition 4.1 for polynomial approximation909

To prove Proposition 4.1, we will construct ReLU FNNs to approximate multivariate910

polynomials following the four steps below.911

• f(x) = x2. We approximate f(x) = x2 by the combinations and compositions of912

“sawtooth” functions as shown in Figures 8 and 9.913

• f(x, y) = xy. To approximate f(x, y) = xy, we use the result of the previous step914

and the fact that xy = 2((x+y2 )2 − (x2)2 − (y2)2).915

• f(x1, x2,⋯, xk) = x1x2⋯xk. We approximate f(x1, x2,⋯, xk) = x1x2⋯xk for any916

k ≥ 2 via mathematical induction based on the result of the previous step.917

• A general polynomial P (x) = xα = xα1
1 x

α2
2 ⋯xαdd with ∥α∥1 ≤ k. Any one-term918

polynomial of degree ≤ k can be written as Cz1z2⋯zk with some entries equaling919

1, where C is a constant and z = [z1, z2,⋯, zk]T can be attained via an affine linear920

map with x as the input. Then use the result of the previous step.921

The idea of using “sawtooth” functions (see Figure 8) was first raised in [44] for922

approximating x2 using FNNs with width 6 and depth O(L) and achieving an error923

O(2−L); our construction is different from and more general than that in [44], working924

for ReLU FNNs of width O(N) and depth O(L) for any N and L, and achieving an925

error O(N−L). As discussed below Proposition 4.1, this O(N−L) approximation error of926

polynomial functions shows the power of depth in ReLU FNNs via function composition.927

First, let us show how to construct ReLU FNNs to approximate f(x) = x2.928

Lemma 5.1. For any N,L ∈ N+, there exists a function φ implemented by a ReLU FNN929

with width 3N and depth L such that930

∣φ(x) − x2∣ ≤ N−L for any x ∈ [0,1].931

31



Proof. Define a set of “sawtooth” functions Ti ∶ [0,1] → [0,1] by induction as follows.932

Set933

T1(x) = { 2x, if x ∈ [0, 1
2],

2(1 − x), if x ∈ (1
2 ,1],

934

and935

Ti = Ti−1 ○ T1 for i = 2,3,⋯.936

It is easy to check that Ti has 2i−1 “sawteeth” and937

Tm+n = Tm ○ Tn for any m,n ∈ N+.938

See Figure 8 for illustrations of Ti for i = 1,2,3,4.

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T1

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T2

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T3

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T4

Figure 8: Examples of “sawtooth” functions T1, T2, T3, and T4.

939
Define piecewise linear functions fs ∶ [0,1] → [0,1] for s ∈ N+ satisfying the following940

two requirements (see Figure 9 for several examples of fs).941

• fs( j
2s ) = ( j

2s
)2

for j = 0,1,2,⋯,2s.942

• fs(x) is linear between any two adjacent points of { j
2s ∶ j = 0,1,2,⋯,2s}.943

0 1/2 1

0.0

0.2

0.4

0.6

0.8

1.0 x2

f1(x)

0 1/4 2/4 3/4 1

0.0

0.2

0.4

0.6

0.8

1.0 x2

f2(x)

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

0.0

0.2

0.4

0.6

0.8

1.0 x2

f3(x)

0 1/8 2/8
0.00

0.02

0.04

0.06

0.08

0.10

x2

f3(x)

Figure 9: Illustrations of f1, f2, and f3 for approximating x2.

Recall the fact944

0 ≤ tx2
1 + (1 − t)x2

2 − (tx1 + (1 − t)x2)
2

≤ (x2 − x1)2

4
for any t, x1, x2 ∈ [0,1].945

Thus, we have946

0 ≤ fs(x) − x2 ≤ (2−s)2

4
= 2−2(s+1) for any x ∈ [0,1] and s ∈ N+. (5.1)947

32



Note that fi−1(x) = fi(x) = x2 for x ∈ { j
2i−1 ∶ j = 0,1,2,⋯,2i−1} and the graph of fi−1 − fi948

is a symmetric “sawtooth” between any two adjacent points of { j
2i−1 ∶ j = 0,1,2,⋯,2i−1}.949

It is easy to verify that950

fi−1(x) − fi(x) = Ti(x)
22i

for any x ∈ [0,1] and i = 2,3,⋯.951

Therefore, for any x ∈ [0,1] and s ∈ N+, we have952

fs(x) = f1(x) +
s

∑
i=2

(fi − fi−1) = x − (x − f1(x)) −
s

∑
i=2

Ti(x)
22i

= x −
s

∑
i=1

Ti(x)
22i

.953

Given N ∈ N+, there exists a unique k ∈ N+ such that (k − 1)2k−1 + 1 ≤ N ≤ k2k.954

For this k, using s = Lk, we can construct a ReLU FNN as shown in Figure 10 to955

implement a function φ = fLk approximating x2 well. Note that Ti can be implemented956

by a one-hidden-layer ReLU FNN with width 2i. Hence, the network in Figure 10 has957

width k2k + 1 ≤ 3N 8○ and depth 2L.958

x

T1

T2

Tk

x

Tk+1

Tk+2

Tk+k

x−
k∑

i=1

Ti(x)
22i

Tjk+1

Tjk+2

Tjk+k

x−
jk∑

i=1

Ti(x)
22i

T(j+1)k+1

T(j+1)k+2

T(j+1)k+k

x−
(j+1)k∑

i=1

Ti(x)
22i

T(L−1)k+1

T(L−1)k+2

T(L−1)k+k

x−
(L−1)k∑

i=1

Ti(x)
22i

x−
Lk∑

i=1

Ti(x)
22i

= fLk(x) =: φ(x)

Input 1 2 3 4 2(j+1) 2(j+1)+1 2(j+2) 2L Output

Tk Tk

Tk Tk

Tk Tk
Tk

T2

T1
... ... ... ... ...· · · · · ·

Figure 10: An illustration of the target network architecture for approximating x2 on
[0,1]. Ti can be implemented by a one-hidden-layer ReLU FNN with width 2i for
i = 1,2,⋯,K. The red numbers below the architecture indicate the order of hidden
layers.

As shown in Figure 10, the (2`)-th hidden layer of the network has the identify959

function as activation functions for ` = 1,2,⋯, L. Thus, the network in Figure 10 can960

be interpreted as a ReLU FNN with width 3N and depth L. In fact, if all activation961

functions in a certain hidden layer are identity maps, the depth can be reduced by one via962

combining two adjacent linear transforms into one. For example, suppose W1 ∈ RN1×N2 ,963

W2 ∈ RN2×N3 , and % is an identity map that can be applied to vectors or matrices964

elementwisely; then W1%(W2x) =W3x for any x ∈ RN3 , where W3 =W1 ⋅W2 ∈ RN1×N3 .965

It remains to estimate the approximation error of φ(x) ≈ x2. By Equation (5.1), for966

any x ∈ [0,1], we have967

∣φ(x) − x2∣ = ∣fLk(x) − x2∣ ≤ 2−2(Lk+1) ≤ 2−2Lk ≤ N−L,968

where the last inequality comes from N ≤ k2k ≤ 22k. So we finish the proof.969

8○This inequality is clear for k = 1,2,3,4. In the case k ≥ 5, we have k2k + 1 ≤ k2k+1
N

N ≤ (k+1)2k

(k−1)2k−1
N ≤

2k+1
k−1

N ≤ 3N .

33



We have constructed a ReLU FNN to approximate f(x) = x2. By the fact that970

xy = 2((x+y2 )2 − (x2)2 − (y2)2), it is easy to construct a new ReLU FNN to approximate971

f(x, y) = xy as follows.972

Lemma 5.2. For any N,L ∈ N+, there exists a function φ implemented by a ReLU FNN973

with width 9N and depth L such that974

∣φ(x, y) − xy∣ ≤ 6N−L for any x, y ∈ [0,1].975

Proof. By Lemma 5.1, there exists a function ψ implemented by a ReLU FNN with976

width 3N and depth L such that977

∣x2 − ψ(x)∣ ≤ N−L for any x ∈ [0,1].978

Inspired by the fact979

xy = 2((x+y2 )2 − (x2)2 − (y2)2) for any x, y ∈ R,980

we construct the desired function φ as981

φ(x, y) ∶= 2(ψ(x+y2 ) − ψ(x2) − ψ(
y
2)) for any x, y ∈ R. (5.2)982

Then φ can be implemented by the network architecture in Figure 11.983

x

y

x
2

y
2

x+y
2

ψ(x2 )

ψ(y2 )

ψ(x+y
2 )

φ(x, y)

ψ

ψ

ψ

Figure 11: An illustration of the network architecture implementing φ for approximating
xy on [0,1]2.

It follows from ψ ∈ NN(width ≤ 3N ; depth ≤ L) that the network in Figure 11 is984

with width 9N and depth L + 2. Similar to the discussion in the proof of Lemma 5.1,985

the network in Figure 11 can be interpreted as a ReLU FNN with width 9N and depth986

L, since two of the hidden layers have the identify function as their activation functions.987

Moreover, for any x, y ∈ [0,1],988

∣xy − φ(x, y)∣ = ∣2((x+y2 )2 − (x2)2 − (y2)2) − 2(ψ(x+y2 ) − ψ(x2) − ψ(
y
2))∣

≤ 2 ∣(x+y2 )2 − ψ(x+y2 )∣ + 2 ∣(x2)2 − ψ(x2)∣ + 2 ∣(y2)2 − ψ(y2)∣ ≤ 6N−L.
989

Therefore, we have finished the proof.990

Now let us prove Lemma 4.2, which shows how to construct a ReLU FNN to approx-991

imate f(x, y) = xy on [a, b]2 with arbitrary a < b, i.e., a rescaled version of Lemma 5.2.992

34



Proof of Lemma 4.2. By Lemma 5.2, there exists a function ψ implemented by a ReLU993

FNN with width 9N and depth L such that994

∣ψ(x̃, ỹ) − x̃ỹ∣ ≤ 6N−L for any x̃, ỹ ∈ [0,1].995

By setting x̃ = x−a
b−a and ỹ = y−a

b−a for any x, y ∈ [a, b], we have x̃, ỹ ∈ [0,1], implying996

∣ψ(x−ab−a ,
y−a
b−a ) − x−a

b−a
y−a
b−a ∣ ≤ 6N−L for any x, y ∈ [a, b].997

It follows that, for any x, y ∈ [a, b],998

∣(b − a)2ψ(x−ab−a ,
y−a
b−a ) + a(x + y) − a2 − xy∣ ≤ 6(b − a)2N−L.999

Define, for any x, y ∈ R,1000

φ(x, y) ∶= (b − a)2ψ(x−ab−a ,
y−a
b−a ) + a ⋅ σ(x + y + 2∣a∣) − a2 − 2a∣a∣.1001

Then φ can be implemented by the network architecture in Figure 12.1002

x

y

x−a
b−a

y−a
b−a

x+ y + 2|a|

ψ
(

x−a
b−a ,

y−a
b−a

)

σ(x+ y + 2|a|)

φ(x, y)

ψ

Figure 12: An illustration of the network architecture implementing φ for approximating
xy on [a, b]2. Two of the hidden layers have the identify function as their activation
functions, since the red “σ” comes from the red arrow “Ð→”, where the red arrow “Ð→”
is a ReLU FNN with width 1 and depth L.

It follows from ψ ∈ NN(width ≤ 9N ; depth ≤ L) that the network in Figure 12 is1003

with width 9N +1 and depth L+2. Similar to the discussion in the proof of Lemma 5.1,1004

the network in Figure 12 can be interpreted as a ReLU FNN with width 9N + 1 and1005

depth L, since two of the hidden layers have the identify function as their activation1006

functions.1007

Note that x + y + 2∣a∣ ≥ 0 for any x, y ∈ [a, b], implying1008

φ(x, y) = (b − a)2ψ(x−ab−a ,
y−a
b−a ) + a(x + y) − a2 for any x, y ∈ [a, b].1009

Hence,1010

∣φ(x, y) − xy∣ ≤ 6(b − a)2N−L for any x, y ∈ [a, b].1011

So we finish the proof.1012

The next lemma shows how to construct a ReLU FNN to approximate a multivariate1013

function f(x1, x2,⋯, xk) = x1x2⋯xk on [0,1]k.1014

Lemma 5.3. For any N,L, k ∈ N+ with k ≥ 2, there exists a function φ implemented by1015

a ReLU FNN with width 9(N + 1) + k − 1 and depth 7kL(k − 1) such that1016

∣φ(x) − x1x2⋯xk∣ ≤ 9(k − 1)(N + 1)−7kL for any x = [x1, x2,⋯, xk]T ∈ [0,1]k.1017

35



Proof. By Lemma 4.2, there exists a function φ1 implemented by a ReLU FNN with1018

width 9(N + 1) + 1 and depth 7kL such that1019

∣φ1(x, y) − xy∣ ≤ 6(1.2)2(N + 1)−7kL ≤ 9(N + 1)−7kL for any x, y ∈ [−0.1,1.1]. (5.3)1020

Next, we construct a sequence of functions φi ∶ [0,1]i+1 → [0,1] for i ∈ {1,2,⋯, k − 1} by1021

induction such that1022

(i) φi can be implemented by a ReLU FNN with width 9(N + 1) + i and depth 7kLi1023

for each i ∈ {1,2,⋯, k − 1}.1024

(ii) For any i ∈ {1,2,⋯, k − 1} and x1, x2,⋯, xi+1 ∈ [0,1], it holds that1025

∣φi(x1,⋯, xi+1) − x1x2⋯xi+1∣ ≤ 9i(N + 1)−7kL. (5.4)1026

First, let us consider the case i = 1, it is obvious that the two required conditions1027

are true: 1) 9(N + 1) + i = 9(N + 1) + 1 and 7kLi = 7kL if i = 1; 2) Equation (5.3) implies1028

Equation (5.4) for i = 1.1029

Now assume φi has been defined; we then define1030

φi+1(x1,⋯, xi+2) ∶= φ1(φi(x1,⋯, xi+1), σ(xi+2)) for any x1,⋯, xi+2 ∈ R.1031

Note that φi ∈ NN(width ≤ 9(N + 1) + i; depth ≤ 7kLi) and φ1 ∈ NN(width ≤ 9(N + 1) +1032

1; depth ≤ 7kL). Then φi+1 can be implemented via a ReLU FNN with width1033

max{9(N + 1) + i + 1,9(N + 1) + 1} = 9(N + 1) + (i + 1)1034

and depth 7kLi + 7kL = 7kL(i + 1).1035

By the hypothesis of induction, we have1036

∣φi(x1,⋯, xi+1) − x1x2⋯xi+1∣ ≤ 9i(N + 1)−7kL. (5.5)1037

Recall the fact that 9i(N + 1)−7kL ≤ 9k2−7k ≤ 9k 2−7
k ≤ 0.1 for any N,L, k ∈ N+ and1038

i ∈ {1,2,⋯, k − 1}. It follows that1039

φi(x1,⋯, xi+1) ∈ [−0.1,1.1] for any x1,⋯, xi+1 ∈ [0,1].1040

Therefore, by Equations (5.3) and (5.5), we have1041

∣φi+1(x1,⋯, xi+2) − x1x2⋯xi+2∣
= ∣φ1(φi(x1,⋯, xi+1), σ(xi+2)) − x1x2⋯xi+2∣
≤ ∣φ1(φi(x1,⋯, xi+1), xi+2) − φi(x1,⋯, xi+1)xi+2∣ + ∣φi(x1,⋯, xi+1)xi+2 − x1x2⋯xi+2∣
≤ 9(N + 1)−7kL + 9i(N + 1)−7kL = 9(i + 1)(N + 1)−7kL,

1042

for any x1, x2,⋯, xi+2 ∈ [0,1], which means we finish the process of induction.1043

Now let φ ∶= φk−1, by the principle of induction, we have1044

∣φ(x1,⋯, xk) − x1x2⋯xk∣ ≤ 9(k − 1)(N + 1)−7kL for any x1,⋯, xk ∈ [0,1].1045

So φ is the desired function implemented by a ReLU FNN with width 9(N + 1) + k − 11046

and depth 7kL(k − 1), which means we finish the proof.1047

36



With Lemma 5.3 in hand, we are ready to prove Proposition 4.1 for approximating1048

general multivariate polynomials by ReLU FNNs.1049

Proof of Proposition 4.1. The case k = 1 is trivial, so we assume k ≥ 2 below. Set1050

k̃ = ∥α∥1 ≤ k, denote α = [α1, α2,⋯, αd]T , and let [z1, z2,⋯, zk̃]T ∈ Rk̃ be the vector such1051

that1052

z` = xj if
j−1

∑
i=1

αi < ` ≤
j

∑
i=1

αi for j = 1,2,⋯, d.1053

That is,1054

[z1, z2,⋯, zk̃]T = [
α1 times
³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x1,⋯, x1,

α2 times
³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x2,⋯, x2,⋯,

αd times
³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xd,⋯, xd ]

T ∈ Rk̃.1055

Then we have P (x) = xα = z1z2⋯zk̃.1056

We construct the target ReLU FNN in two steps. First, there exists an affine linear1057

map L ∶ Rd → Rk that duplicates x to form a new vector [z1, z2,⋯, zk̃,1,⋯,1]T ∈ Rk,1058

i.e., L(x) = [z1, z2,⋯, zk̃,1,⋯,1]T ∈ Rk. Second, by Lemma 5.3, there exists a function1059

ψ ∶ Rk → R implemented by a ReLU FNN with width 9(N + 1) + k − 1 and depth1060

7kL(k − 1) such that ψ maps [z1, z2,⋯, zk̃,1,⋯,1]T ∈ Rk to z1z2⋯zk̃ within an error1061

9(k−1)(N+1)−7kL. Hence, we can construct the desired function via φ ∶= ψ○L. Then φ can1062

be implemented by a ReLU FNN with width 9(N+1)+k−1 and depth 7kL(k−1) ≤ 7k2L,1063

and1064

∣φ(x) − P (x)∣ = ∣φ(x) −xα∣ = ∣ψ ○ L(x) − xα1
1 x

α2
2 ⋯xαdd ∣

= ∣ψ(z1, z2,⋯, zk̃,1,⋯,1) − z1z2⋯zk̃∣
≤ 9(k − 1)(N + 1)−7kL ≤ 9k(N + 1)−7kL

1065

for any x1, x2,⋯, xd ∈ [0,1]. So, we finish the proof.1066

5.2 Proof of Proposition 4.3 for step function approximation1067

To prove Proposition 4.3 in this sub-section, we will discuss how to pointwisely1068

approximate step functions by ReLU FNNs except for the trifling region. Before proving1069

Proposition 4.3, let us first introduce a basic lemma about fitting O(N1N2) samples1070

using a two-hidden-layer ReLU FNN with O(N1 +N2) neurons.1071

Lemma 5.4. For any N1,N2 ∈ N+, given N1(N2 + 1) + 1 samples (xi, yi) ∈ R2 with1072

x0 < x1 < ⋯ < xN1(N2+1) and yi ≥ 0 for i = 0,1,⋯,N1(N2+1), there exists φ ∈ NN(#input =1073

1; widthvec = [2N1,2N2 + 1]) satisfying the following conditions:1074

1. φ(xi) = yi for i = 0,1,⋯,N1(N2 + 1).1075

2. φ is linear on each interval [xi−1, xi] for i ∉ {(N2 + 1)j ∶ j = 1,2,⋯,N1}.1076

The above lemma is Lemma 2.2 of [40]; and the reader is referred to [40] for its1077

proof. Essentially, this lemma shows the equivalence of one-hidden-layer ReLU FNNs of1078

size O(N2) and two-hidden-layer ones of size O(N) to fit O(N2) samples.1079

The next lemma below shows that special shallow and wide ReLU FNNs can be1080

represented by deep and narrow ones. This lemma was proposed as Proposition 2.21081

in [41].1082

37



Lemma 5.5. For any N,L, d ∈ N+, it holds that1083

NN(#input = d; widthvec = [N,NL]; #output = 1)
⊆ NN(#input = d; width ≤ 2N + 2; depth ≤ L + 1; #output = 1).1084

With Lemmas 5.4 and 5.5 in hand, let us present the detailed proof of Proposi-1085

tion 4.3.1086

Proof of Proposition 4.3. We divide the proof into two cases: d = 1 and d ≥ 2.1087

Case 1∶ d = 1.1088

In this case, K = ⌊N1/d⌋2⌊L2/d⌋ = N2L2. Denote M = N2L and consider the sample1089

set1090

{(1,M − 1), (2,0)}⋃{(mM ,m) ∶m = 0,1,⋯,M − 1}
⋃{(m+1

M − δ,m) ∶m = 0,1,⋯,M − 2}.1091

Its size is 2M + 1 = N ⋅ ((2NL− 1)+ 1)+ 1. By Lemma 5.4 (set N1 = N and N2 = 2NL− 11092

therein), there exists1093

φ1 ∈ NN(widthvec = [2N,2(2NL − 1) + 1])
= NN(widthvec = [2N,4NL − 1])1094

such that1095

• φ1(M−1
M ) = φ1(1) =M − 1 and φ1(mM ) = φ1(m+1

M − δ) =m for m = 0,1,⋯,M − 2;1096

• φ1 is linear on [M−1
M ,1] and each interval [mM , m+1

M − δ] for m = 0,1,⋯,M − 2.1097

Then1098

φ1(x) =m if x ∈ [mM , m+1
M − δ ⋅ 1{m≤M−2}] for m = 0,1,⋯,M − 1. (5.6)1099

Now consider another sample set1100

{( 1
M , L − 1), (2,0)}⋃{( `

ML , `) ∶ ` = 0,1,⋯, L − 1}
⋃{( `+1

ML − δ, `) ∶ ` = 0,1,⋯, L − 2}.1101

Its size is 2L + 1 = 1 ⋅ ((2L − 1) + 1) + 1. By Lemma 5.4 (set N1 = 1 and N2 = 2L − 11102

therein), there exists1103

φ2 ∈ NN(widthvec = [2,2(2L − 1) + 1])
= NN(widthvec = [2,4L − 1])1104

such that1105

• φ2(L−1
ML) = φ2( 1

M ) = L − 1 and φ2( `
ML) = φ2( `+1

ML − δ) = ` for ` = 0,1,⋯, L − 2;1106

• φ2 is linear on [L−1
ML ,

1
M ] and each interval [ `

ML ,
`+1
ML − δ] for ` = 0,1,⋯, L − 2.1107

38



It follows that, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1,1108

φ2(x − m
M ) = ` for x ∈ [mL+`ML ,

mL+`+1
ML − δ ⋅ 1{`≤L−2}]. (5.7)1109

K =ML implies that any k ∈ {0,1,⋯,K−1} can be unique represented by k =mL+`1110

for m ∈ {0,1,⋯,M − 1} and ` ∈ {0,1,⋯, L − 1}. Then the desired function φ can be1111

implemented by ReLU FNN as shown in Figure 13.1112

x

φ1(x) = m

x

m

x− m
M

m

φ2(x− m
M ) = `

mL+ ` = k =: φ(x)
φ1

φ2

Figure 13: An illustration of the network architecture implementing φ based on Equa-
tions (5.6) and (5.7) with x ∈ [ kK , k+1

K − δ ⋅1{k≤K−2}] = [mL+`ML ,
mL+`+1
ML − δ ⋅1{m≤M−2 or `≤L−2}],

where k =mL + ` for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.

Clearly,1113

φ(x) = k if x ∈ [ kK , k+1
K − δ ⋅ 1{k≤K−2}] for k ∈ {0,1,⋯,K − 1}.1114

By Lemma 5.5, φ1 ∈ NN(widthvec = [2N,4NL − 1]) ⊆ NN(width ≤ 4N + 2; depth ≤1115

2L + 1) and φ2 ∈ NN(widthvec = [2,4L − 1]) ⊆ NN(width ≤ 6; depth ≤ 2L + 1), implying1116

φ ∈ NN(width ≤ max{4N +2+1,6+1} = 4N +3; depth ≤ (2L+1)+2+(2L+1)+1 = 4L+5).1117

So we finish the proof for the case d = 11118

Case 2∶ d ≥ 2.1119

Now we consider the case when d ≥ 2. Consider the sample set1120

{(1,K − 1), (2,0)}⋃{( kK , k) ∶ k = 0,1,⋯,K − 1}
⋃{(k+1

K − δ, k) ∶ k = 0,1,⋯,K − 2},1121

whose size is 2K +1 = ⌊N1/d⌋((2⌊N1/d⌋⌊L2/d⌋−1)+1)+1. By Lemma 5.4 (set N1 = ⌊N1/d⌋1122

and N2 = 2⌊N1/d⌋⌊L2/d⌋ − 1 therein), there exists1123

φ ∈ NN(widthvec = [2⌊N1/d⌋,2(2⌊N1/d⌋⌊L2/d⌋ − 1) + 1])
= NN(widthvec = [2⌊N1/d⌋,4⌊N1/d⌋⌊L2/d⌋ − 1])1124

such that1125

• φ(K−1
K ) = φ(1) =K − 1, and φ( kK ) = φ(k+1

K − δ) = k for k = 0,1,⋯,K − 2;1126

• φ is linear on [K−1
K ,1] and each interval [ kK , k+1

K − δ] for k = 0,1,⋯,K − 2.1127

Then1128

φ(x) = k if x ∈ [ kK , k+1
K − δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.1129

By Lemma 5.5,1130

φ ∈ NN(widthvec = [2⌊N1/d⌋,4⌊N1/d⌋⌊L2/d⌋ − 1])
⊆ NN(width ≤ 4⌊N1/d⌋ + 2; depth ≤ 2⌊L2/d⌋ + 1)
⊆ NN(width ≤ 4⌊N1/d⌋ + 3; depth ≤ 4L + 5).

1131

which means we have finished the proof for the case d ≥ 2.1132

39



5.3 Proof of Proposition 4.4 for point fitting1133

In this sub-section, we will discuss how to use ReLU FNNs to fit a collection of points1134

in R2. 9○ It is trivial to fit n points via one-hidden-layer ReLU FNNs with O(n) param-1135

eters. However, to prove Proposition 4.4, we need to fit O(n) points with much fewer1136

parameters, which is the main difficulty of our proof. Our proof below is mainly based1137

on the “bit extraction” technique and the composition architecture of neural networks.1138

Let us first introduce a basic lemma based on the “bit extraction” technique, which1139

is actually Lemma 2.6 of [41].1140

Lemma 5.6. For any N,L ∈ N+, any θm,` ∈ {0,1} for m = 0,1,⋯,M−1 and ` = 0,1,⋯, L−1141

1, where M = N2L, there exists a function φ implemented by a ReLU FNN with width1142

4N + 3 and depth 3L + 3 such that1143

φ(m,`) =
`

∑
j=0

θm,j for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.1144

Next, let us introduce Lemma 5.7, a variant of Lemma 5.6 for a different mapping1145

for the “bit extraction”. Its proof is based on Lemmas 5.4, 5.5, and 5.6.1146

Lemma 5.7. For any N,L ∈ N+ and any θi ∈ {0,1} for i = 0,1,⋯,N2L2 − 1, there exists1147

a function φ implemented by a ReLU FNN with width 8N + 6 and depth 5L+ 7 such that1148

φ(i) = θi for i = 0,1,⋯,N2L2 − 1.1149

Proof. The case L = 1 is clear. We assume L ≥ 2 below.1150

Denote M = N2L, for each i ∈ {0,1,⋯,N2L2−1}, there exists a unique representation1151

i = mL + ` for m ∈ {0,1,⋯,M − 1} and ` ∈ {0,1,⋯, L − 1}. Thus, we can define, for1152

m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1,1153

am,` ∶= θi, where i =mL + `.1154

Then, for m = 0,1,⋯,M − 1, we set bm,0 = 0 and bm,` = am,`−1 for ` = 1,2,⋯, L − 1.1155

By Lemma 5.6, there exist φ1, φ2 ∈ NN(width ≤ 4N + 3; depth ≤ 3L + 3) such that1156

φ1(m,`) =
`

∑
j=0

am,j and φ2(m,`) =
`

∑
j=0

bm,j1157

for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.1158

We consider the sample set1159

{(mL,m) ∶m = 0,1,⋯,M}⋃{((m + 1)L − 1,m) ∶m = 0,1,⋯,M − 1}.1160

Its size is 2M + 1 = N ⋅ ((2NL− 1)+ 1)+ 1. By Lemma 5.4 (set N1 = N and N2 = 2NL− 11161

therein), there exists1162

ψ ∈ NN(widthvec = [2N,2(2NL − 1) + 1])
= NN(widthvec = [2N,4NL − 1])1163

such that1164

9○Fitting a collection of points {(xi, yi)}i in R2 means that the target ReLU FNN takes a value close
to yi at the location xi.

40



• ψ(ML) =M and ψ(mL) = ψ((m + 1)L − 1) =m for m = 0,1,⋯,M − 1;1165

• ψ is linear on each interval [mL, (m + 1)L − 1] for m = 0,1,⋯,M − 1.1166

It follows that1167

ψ(x) =m if x ∈ [mL, (m + 1)L − 1] for m = 0,1,⋯,M − 1,1168

implying1169

ψ(mL + `) =m for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.1170

For i = 0,1,⋯,N2L2 − 1, by representing i = mL + ` for m = 0,1,⋯,M − 1 and1171

` = 0,1,⋯, L− 1, we have ψ(i) = ψ(mL+ `) =m and i−Lψ(i) = `, from which we deduce1172

φ1(ψ(i), i −Lψ(i)) − φ2(ψ(i), i −Lψ(i))

= φ1(m,`) − φ2(m,`) =
`

∑
j=0

am,j −
`

∑
j=0

bm,j

=
`

∑
j=0

am,j −
`

∑
j=1

am,j−1 − b0 = am,` = θi.

(5.8)1173

Therefore, the desired function φ can be implemented by the network architecture1174

described in Figure 14.1175

i

ψ(i)

i

ψ(i)

i− Lψ(i)

φ1
(
ψ(i), i− Lψ(i)

)

φ2
(
ψ(i), i− Lψ(i)

) θi =: φ(i)
ψ φ1

φ2

Figure 14: An illustration of the network architecture implementing the desired function
φ based on Equation (5.8).

Note that1176

φ1, φ2 ∈ NN(width ≤ 4N + 3; depth ≤ 3L + 3).1177

And by Lemma 5.5,1178

ψ ∈ NN(widthvec = [2N,4NL − 1])
⊆ NN(width ≤ 4N + 2; depth ≤ 2L + 1).1179

Hence, the network architecture shown in Figure 14 is with width max{4L+2+1,2(4L+1180

3)} = 8N + 6 and depth (2L + 1) + 2 + (3L + 3) + 1 = 5L + 7, implying φ ∈ NN(width ≤1181

8N + 6; depth ≤ 5L + 7). So we finish the proof.1182

With Lemma 5.7 in hand, we are now ready to prove Proposition 4.4.1183

Proof of Proposition 4.4. Set J = ⌈2s log2(NL + 1)⌉ ∈ N+. For each ξi ∈ [0,1], there exist1184

ξi,1, ξi,2,⋯, ξi,J ∈ {0,1} such that1185

∣ξi − bin0.ξi,1ξi,2⋯ξi,J ∣ ≤ 2−J for i = 0,1,⋯,N2L2 − 1.1186

41



By Lemma 5.7, there exist1187

φ1, φ2,⋯, φJ ∈ NN(width ≤ 8N + 6; depth ≤ 5L + 7)1188

such that1189

φj(i) = ξi,j for i = 0,1,⋯,N2L2 − 1 and j = 1,2,⋯, J .1190

Define1191

φ̃(x) ∶=
J

∑
j=1

2−jφj(x) for any x ∈ R.1192

It follows that, for i = 0,1,⋯,N2L2 − 1,1193

∣φ̃(i) − ξi∣ = ∣
J

∑
j=1

2−jφj(i) − ξi∣ = ∣
J

∑
j=1

2−jξi,j − ξi∣

= ∣bin0.ξi,1ξi,2⋯ξi,J − ξi∣ ≤ 2−J ≤ N−2sL−2s,

1194

where the last inequality comes from1195

2−J = 2−⌈2s log2(NL+1)⌉ ≤ 2−2s log2(NL+1) = (NL + 1)−2s ≤ N−2sL−2s.1196

Now let us estimate the width and depth of the network implementing φ̃. Recall1197

that1198

J = ⌈2s log2(NL + 1)⌉ ≤ 2s(1 + log2(NL + 1)) ≤ 2s(1 + log2(2N) + log2L)
≤ 2s(1 + log2(2N))(1 + log2L) ≤ 2s⌈log2(4N)⌉⌈log2(2L)⌉,

1199

and φj ∈ NN(width ≤ 8N + 6; depth ≤ 5L + 7) for each j.1200

i i

φ1(i)

φm(i)

i

φm+1(i)

φm+m(i)

∑m
j=1 2

−jφj(i)

i

φ2m+1(i)

φ2m+m(i)

∑2m
j=1 2

−jφj(i)

i

φ(n−1)m+1(i)

φ(n−1)m+m(i)

∑(n−1)m
j=1 2−jφj(i)

∑nm
j=1 2

−jφj(i) =: φ̃(i)

... ... ... ...· · ·

φ1

φm

φm+1

φm+m

φ2m+1

φ2m+m

Figure 15: An illustration of the network architecture implementing φ̃ = ∑J
j=1 2−jφj for

any i ∈ {0,1,⋯,N2L2 − 1}. We assume J = mn, where m = 2s⌈log2(4N)⌉ and n =
⌈log2(2L)⌉, since we can set φJ+1 = ⋯ = φnm = 0 if J < nm.

As we can see from Figure 15, φ̃ = ∑J
j=1 2−jφj can be implemented by a ReLU FNN1201

with width1202

(8N + 6)m + (1 +m + 1) = (8N + 6)2s⌈log2(4N)⌉ + 2s⌈log2(4N)⌉ + 2

≤ 16s(N + 1) log2(8N)1203

and depth1204

((5L + 7) + 1)n = (5L + 8)⌈log2(2L)⌉ ≤ (5N + 8) log2(4L).1205

42



Finally, we define1206

φ(x) ∶= min{σ(φ̃(x)),1} = min{max{0, φ̃(x)},1} for any x ∈ R.1207

Then 0 ≤ φ(x) ≤ 1 for any x ∈ R and φ can be implemented by a ReLU FNN with width1208

16s(N + 1) log2(8N) and depth (5L + 8) log2(4L) + 3 ≤ 5(L + 2) log2(4L). See Figure 161209

for the network architecture implementing φ. Note that1210

φ̃(i) =
J

∑
j=1

2−jφj(i) =
J

∑
j=1

2−jξi,j ∈ [0,1] for i = 0,1,⋯,N2L2 − 1.1211

i φ̃(i) σ
(
φ̃(i)

)

σ
(
σ(φ̃(i)) + 1

)

σ
(
− σ(φ̃(i))− 1

)

σ
(
σ(φ̃(i))− 1

)

σ
(
− σ(φ̃(i)) + 1

)

min
{
σ(φ̃(i)), 1

}
= φ(i)φ̃

Figure 16: An illustration of the network architecture implementing the desired function
φ based on the fact that min{x1, x2} = x1+x2−∣x1−x2∣

2 = σ(x1+x2)−σ(−x1−x2)−σ(x1−x2)−σ(−x1+x2)
2 .

It follows that1212

∣φ(i) − ξi∣ = ∣min{max{0, φ̃(i)},1} − ξi∣ = ∣φ̃(i) − ξi∣ ≤ N−2sL−2s,1213

for i = 0,1,⋯,N2L2 − 1. The proof is complete.1214

6 Conclusions1215

This paper has established a nearly optimal approximation error of ReLU FNNs1216

in terms of both width and depth to approximate smooth functions. It is shown that1217

ReLU FNNs with width O(N lnN) and depth O(L lnL) can approximate functions in1218

the unit ball of Cs([0,1]d) with an approximation error O(N−2s/dL−2s/d). Through VC-1219

dimension, it is also proved that this approximation error is asymptotically nearly tight1220

for the closed unit ball of Cs([0,1]d).1221

We would like to remark that our analysis is for the fully connected feed-forward1222

neural networks with the ReLU activation function. It would be an interesting direction1223

for further study to generalize our results to neural networks with other architectures1224

(e.g., convolutional neural networks and ResNet) and activation functions (e.g., tanh1225

and sigmoid functions). These will be subjects of future work.1226

Acknowledgments1227

The work of J. Lu is supported in part by the National Science Foundation via1228

grants DMS-1415939, CCF-1934964, and DMS-2012286. Z. Shen is supported by Tan1229

Chin Tuan Centennial Professorship. H. Yang H. Yang was partially supported by the1230

National Science Foundation under award DMS-1945029.1231

43



References1232

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in1233

overparameterized neural networks, going beyond two layers. arXiv e-prints, page1234

arXiv:1811.04918, November 2018.1235

[2] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foun-1236

dations. Cambridge University Press, New York, NY, USA, 1st edition, 2009.1237

[3] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained1238

analysis of optimization and generalization for overparameterized two-layer neural1239

networks. In ICML, 2019.1240

[4] Chenglong Bao, Qianxiao Li, Zuowei Shen, Cheng Tai, Lei Wu, and Xueshuang1241

Xiang. Approximation analysis of convolutional neural networks. 2019.1242

[5] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal1243

function. IEEE Transactions on Information Theory, 39(3):930–945, May 1993.1244

[6] Andrew R. Barron and Jason M. Klusowski. Approximation and estimation for1245

high-dimensional deep learning networks. arXiv e-prints, page arXiv:1809.03090,1246

September 2018.1247

[7] Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC-dimension bounds1248

for piecewise polynomial networks. Neural Computation, 10:2159–2173, 1998.1249

[8] M. Bianchini and F. Scarselli. On the complexity of neural network classifiers: A1250

comparison between shallow and deep architectures. IEEE Transactions on Neural1251

Networks and Learning Systems, 25(8):1553–1565, Aug 2014.1252

[9] Helmut. Bölcskei, Philipp. Grohs, Gitta. Kutyniok, and Philipp. Petersen. Optimal1253

approximation with sparsely connected deep neural networks. SIAM Journal on1254

Mathematics of Data Science, 1(1):8–45, 2019.1255

[10] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent1256

for wide and deep neural networks. CoRR, abs/1905.13210, 2019.1257

[11] Liang Chen and Congwei Wu. A note on the expressive power of deep rectified linear1258

unit networks in high-dimensional spaces. Mathematical Methods in the Applied1259

Sciences, 42(9):3400–3404, 2019.1260

[12] Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Efficient approx-1261

imation of deep ReLU networks for functions on low dimensional manifolds. In1262

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,1263

editors, Advances in Neural Information Processing Systems 32, pages 8174–8184.1264

Curran Associates, Inc., 2019.1265

[13] Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much1266

over-parameterization is sufficient to learn deep ReLU networks? CoRR,1267

arXiv:1911.12360, 2019.1268

44



[14] Charles K. Chui, Shao-Bo Lin, and Ding-Xuan Zhou. Construction of neural net-1269

works for realization of localized deep learning. Frontiers in Applied Mathematics1270

and Statistics, 4:14, 2018.1271

[15] George Cybenko. Approximation by superpositions of a sigmoidal function. MCSS,1272

2:303–314, 1989.1273

[16] Ronald A. Devore. Optimal nonlinear approximation. Manuskripta Math, pages1274

469–478, 1989.1275

[17] Weinan E, Chao Ma, and Qingcan Wang. A priori estimates of the population risk1276

for residual networks. ArXiv, abs/1903.02154, 2019.1277

[18] Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-1278

layer neural networks. Communications in Mathematical Sciences, 17(5):1407–1425,1279

2019.1280

[19] Weinan E and Qingcan Wang. Exponential convergence of the deep neural network1281

approximation for analytic functions. CoRR, abs/1807.00297, 2018.1282

[20] Rémi Gribonval, Gitta Kutyniok, Morten Nielsen, and Felix Voigtlaender. Approxi-1283

mation spaces of deep neural networks. arXiv e-prints, page arXiv:1905.01208, May1284

2019.1285

[21] Ingo Gühring, Gitta Kutyniok, and Philipp Petersen. Error bounds for approx-1286

imations with deep ReLU neural networks in W s,p norms. arXiv e-prints, page1287

arXiv:1902.07896, Feb 2019.1288

[22] Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension1289

bounds for piecewise linear neural networks. In Satyen Kale and Ohad Shamir,1290

editors, Proceedings of the 2017 Conference on Learning Theory, volume 65 of Pro-1291

ceedings of Machine Learning Research, pages 1064–1068, Amsterdam, Netherlands,1292

07–10 Jul 2017. PMLR.1293

[23] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural1294

Networks, 4(2):251–257, 1991.1295

[24] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward1296

networks are universal approximators. Neural Networks, 2(5):359–366, 1989.1297

[25] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-1298

vergence and generalization in neural networks. CoRR, abs/1806.07572, 2018.1299

[26] Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient de-1300

scent to achieve arbitrarily small test error with shallow ReLU networks. ArXiv,1301

abs/1909.12292, 2020.1302

[27] Michael J. Kearns and Robert E. Schapire. Efficient distribution-free learning of1303

probabilistic concepts. J. Comput. Syst. Sci., 48(3):464–497, June 1994.1304

45



[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification1305

with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,1306

and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,1307

volume 25, pages 1097–1105. Curran Associates, Inc., 2012.1308

[29] Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning via dynamical systems: An1309

approximation perspective. Journal of European Mathematical Society, to appear.1310

[30] Shiyu Liang and R. Srikant. Why deep neural networks? CoRR, abs/1610.04161,1311

2016.1312

[31] Hadrien Montanelli and Qiang Du. New error bounds for deep networks using sparse1313

grids. SIAM Journal on Mathematics of Data Science, 1(1):78–92, 2019.1314

[32] Hadrien Montanelli and Haizhao Yang. Error bounds for deep ReLU networks using1315

the Kolmogorov–Arnold superposition theorem. Neural Networks, 129:1–6, 2020.1316

[33] Hadrien Montanelli, Haizhao Yang, and Qiang Du. Deep ReLU networks over-1317

come the curse of dimensionality for bandlimited functions. arXiv e-prints, page1318

arXiv:1903.00735, March 2019.1319

[34] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the1320

number of linear regions of deep neural networks. In Z. Ghahramani, M. Welling,1321

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural1322

Information Processing Systems 27, pages 2924–2932. Curran Associates, Inc., 2014.1323

[35] Ryumei Nakada and Masaaki Imaizumi. Adaptive approximation and generalization1324

of deep neural network with intrinsic dimensionality. Journal of Machine Learning1325

Research, 21(174):1–38, 2020.1326

[36] J. A. A. Opschoor, Ch. Schwab, and J. Zech. Exponential ReLU DNN expression1327

of holomorphic maps in high dimension. Technical Report 2019-35, Seminar for1328

Applied Mathematics, ETH Zürich, Switzerland., 2019.1329

[37] Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise1330

smooth functions using deep ReLU neural networks. Neural Networks, 108:296–1331

330, 2018.1332

[38] T. Poggio, H. N. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. Why and when1333

can deep—but not shallow—networks avoid the curse of dimensionality: A review.1334

International Journal of Automation and Computing, 14:503–519, 2017.1335

[39] Akito Sakurai. Tight bounds for the VC-dimension of piecewise polynomial net-1336

works. In Advances in Neural Information Processing Systems, pages 323–329.1337

Neural information processing systems foundation, 1999.1338

[40] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Nonlinear approximation via com-1339

positions. Neural Networks, 119:74–84, 2019.1340

46



[41] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation1341

characterized by number of neurons. Communications in Computational Physics,1342

28(5):1768–1811, 2020.1343

[42] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate of1344

ReLU networks in terms of width and depth. Journal de Mathématiques Pures et1345

Appliquées, to appear.1346

[43] Taiji Suzuki. Adaptivity of deep ReLU network for learning in Besov and mixed1347

smooth Besov spaces: optimal rate and curse of dimensionality. In International1348

Conference on Learning Representations, 2019.1349

[44] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks.1350

Neural Networks, 94:103–114, 2017.1351

[45] Dmitry Yarotsky. Optimal approximation of continuous functions by very deep1352

ReLU networks. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet,1353

editors, Proceedings of the 31st Conference On Learning Theory, volume 75 of Pro-1354

ceedings of Machine Learning Research, pages 639–649. PMLR, 06–09 Jul 2018.1355

[46] Dmitry Yarotsky and Anton Zhevnerchuk. The phase diagram of approximation1356

rates for deep neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.1357

Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,1358

volume 33, pages 13005–13015. Curran Associates, Inc., 2020.1359

[47] Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied and1360

Computational Harmonic Analysis, 48(2):787–794, 2020.1361

47


	Introduction
	Main result
	Contributions and related work
	Discussion

	Approximation of smooth functions
	Notation
	Proof of Theorem 1.1
	Optimality of Theorem 1.1

	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof sketch of Theorem 2.2
	Constructive proof

	Proofs of Propositions in Section 4.1
	Proof of Proposition 4.1 for polynomial approximation
	Proof of Proposition 4.3 for step function approximation
	Proof of Proposition 4.4 for point fitting

	Conclusions

