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Abstract4

This paper quantitatively characterizes the approximation power of deep feed-5

forward neural networks (FNNs) in terms of the number of neurons. It is shown6

by construction that ReLU FNNs with width O(max{d⌊N1/d⌋, N +1}) and depth7 O(L) can approximate an arbitrary Hölder continuous function of order α ∈ (0,1]8

on [0,1]d with a nearly tight approximation rate O(√dN−2α/dL−2α/d) measured9

in Lp-norm for any N,L ∈ N+ and p ∈ [1,∞]. More generally for an arbitrary10

continuous function f on [0,1]d with a modulus of continuity ωf(⋅), the construc-11

tive approximation rate is O(√dωf(N−2/dL−2/d)). We also extend our analy-12

sis to f on irregular domains or those localized in an ε-neighborhood of a dM-13

dimensional smooth manifold M ⊆ [0,1]d with dM ≪ d. Especially, in the14

case of an essentially low-dimensional domain, we show an approximation rate15 O(ωf( ε
1−δ

√
d
dδ
+ ε) + √

dωf( √

d
(1−δ)

√

dδ
N−2/dδL−2/dδ)) for ReLU FNNs to approxi-16

mate f in the ε-neighborhood, where dδ = O(dM ln(d/δ)
δ2

) for any δ ∈ (0,1) as a17

relative error for a projection to approximate an isometry when projectingM to18

a dδ-dimensional domain.19

Key words. Deep ReLU Neural Networks, Hölder Continuity, Modulus of Continuity,20

Approximation Theory, Low-Dimensional Manifold, Parallel Computing.21

1 Introduction22

The approximation theory of neural networks has been an active research topic in the23

past few decades. Previously, as a special kind of ridge function approximation, shallow24

neural networks with one hidden layer and various activation functions (e.g., wavelets25

pursuits [10,45], adaptive splines [19,54], radial basis functions [8,18,25,52,64], sigmoid26

functions [7,13–15,29,37,38,41,44]) were widely discussed and admit good approximation27

properties, e.g., the universal approximation property [16, 29, 30], lessening the curse28
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of dimensionality [4, 21, 22], and providing attractive approximation rate in nonlinear29

approximation [10,18,19,25,45,54,64].30

The introduction of deep networks with more than one hidden layers has made sig-31

nificant impacts in many fields in computer science and engineering including computer32

vision [35] and natural language processing [1]. New scientific computing tools based on33

deep networks have also emerged and facilitated large-scale and high-dimensional prob-34

lems that were impractical previously [20,24]. The design of deep ReLU FNNs is the key35

of such a revolution. These breakthroughs have stimulated broad research topics from36

different points of views to study the power of deep ReLU FNNs, e.g. in terms of combi-37

natorics [50], topology [6], Vapnik-Chervonenkis (VC) dimension [5,27,57], fat-shattering38

dimension [2,34], information theory [53], classical approximation theory [4,16,30,61,66],39

optimization [32,33,51] etc.40

Particularly in approximation theory, non-quantitative and asymptotic approx-41

imation rates of ReLU FNNs have been proposed for various types of functions. For42

example, smooth functions [23,39,43,65], piecewise smooth functions [53], band-limited43

functions [49], continuous functions [66], solutions to partial differential equations [31].44

However, to the best of our knowledge, existing theories [17,23,39,43,47,49,53,62,65,66]45

can only provide implicit formulas in the sense that the approximation error contains46

an unknown prefactor, or work only for sufficiently large N and L larger than some47

unknown numbers. For example, [66] estimated an approximation rate c(d)L−2α/d via a48

narrow and deep ReLU FNN, where c(d) is an unknown number depending on d, and49

L is required to be larger than a sufficiently large unknown number L . For another50

example, given an approximation error ε, [53] proved the existence of a ReLU FNN with51

a constant but still unknown number of layers approximating a Cβ function within the52

target error. These works can be divided into two cases: 1) FNNs with varying width53

and only one hidden layer [18,25,40,64] (visualized by the region in in Figure 1); 2)54

FNNs with a fixed width of O(d) and a varying depth larger than an unknown number55

L [43, 66] (represented by the region in in Figure 1).56

As far as we know, the first quantitative and non-asymptotic approximation57

rate of deep ReLU FNNs was obtained in [61]. Specifically, [61] identified an explicit58

formulas of the approximation rate59

⎧⎪⎪⎨⎪⎪⎩

2λN−2α, when L ≥ 2 and d = 1,

2(2
√
d)αλN−2α/d, when L ≥ 3 and d ≥ 2,

(1.1)60

for ReLU FNNs with an arbitrary width N ∈ N+ and a fixed depth L ∈ N+ to approximate61

a Hölder continuous function f of order α with a Hölder constant λ (visualized in the62

region shown by in Figure 1). The approximation rate O(N−2α/d) is tight in terms63

of N and increasing L cannot improve the approximation rate in N . The success of deep64

FNNs in a broad range of applications has motivated a well-known conjecture that the65

depth L has an important role in improving the approximation power of deep FNNs.66

In particular, a very important question in practice would be, given an arbitrary L67

and N , what is the explicit formula to characterize the approximation error so as to see68

whether the network is large enough to meet the accuracy requirement. Due to the highly69
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nonlinear structure of deep FNNs, it is still a challenging open problem to characterize70

N and L simultaneously in the approximation rate.71

To answer the question just above, we establish the first framework that is able to72

quantify the approximation power of deep ReLU FNNs essentially with arbitrary width73

N and depth L, achieving a nearly optimal approximation rate, 19
√
dωf(N−2/dL−2/d),74

for continuous functions f ∈ C([0,1]d). Our result is based on new analysis techniques75

merely based on the structure of FNNs and a modified bit extraction technique inspired76

by [5], instead of designing FNNs to approximate traditional approximation basis like77

polynomials and splines as in the existing literature [26,39,43,47,48,53,55,56,59,62,65,78

66]. The approximation rate obtained here admits an explicit formula to compute the79

prefactor when ωf(⋅) is known. For example, in the case of Hölder continuous functions of80

order α with a Hölder constant λ (denoted as the class Bλ(Cα([0,1]d))), ωf(r) ≤ λrα for81

r ≥ 0, resulting in the approximation rate 19
√
dλN−2α/dL−2α/d as mentioned previously.82

As a consequence, existing works for the function class C([0,1]d) are special cases of our83

result (see Figure 1 for a comparison).84

1 2 3 L depthL

O(d)

widthN

O
(N
−

1/
d
)

O(L−2/d)O
(N
−

2/
d
) O(N−2/dL−2/d)

Figure 1: A summary of existing and our new results on the approximation rate of ReLU

FNNs for continuous functions. Existing results [18, 25, 40, 43, 61, 64, 66] are applicable

in the areas in , , and ; our new result is suitable for almost all areas when

L ≥ 2.

Our key contributions can be summarized as follows.85

1. Upper bound: We provide a quantitative and non-asymptotic approximation rate86

19
√
dωf(N−2/dL−2/d) in terms of width O(N) and depth O(L) for functions in87

C([0,1]d) in Theorem 1.1.88

2. Lower bound: Through the nearly tight VC-dimension bounds of ReLU FNNs [27],89

we show that the approximation rate 19
√
dωf(N−2α/dL−2α/d) in terms of N and L90

is nearly optimal for Bλ(Cα([0,1]d)) in Theorem 2.3.91

3. The approximation rate in terms of the width and depth in this paper is more92

generic and useful than the one characterized by the number of nonzero parameters93

denoted as W in the literature. First, the characterization in terms of width and94

depth implies the one in terms of W , while it is not true the other way around.95

Second, our theory can provide practical guidance for choosing network sizes in96

realistic applications while theories in terms of W cannot tell how large a network97
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should be to guarantee a target accuracy, since there are too many networks of98

different sizes sharing the same number of parameters but with different accuracies.99

4. Finally, three aspects of neural networks in practice are discussed: 1) neural net-100

work approximation in a high-dimensional irregular domain; 2) neural network101

approximation in the case of a low-dimensional data structure; 3) the optimal102

ReLU FNN in parallel computation.103

Our main result, Theorem 1.1 below, shows that ReLU FNNs with width O(N)104

and depth O(L) can approximate f with an approximation rate 19
√
dωf(N−2/dL−2/d),105

where ωf(⋅) is the modulus of continuity of f defined via106

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ x,y ∈ [0,1]d, ∥x − y∥2 ≤ r}, for any r ≥ 0.107

Theorem 1.1. Given f ∈ C([0,1]d), for any L ∈ N+, N ∈ N+, and p ∈ [1,∞], there exists108

a function φ implemented by a ReLU FNN with width C1 max{d⌊N1/d⌋, N +1} and depth109

12L +C2 such that110

∥f − φ∥Lp([0,1]d) ≤ 19
√
dωf(N−2/dL−2/d),111

where C1 = 12 and C2 = 14 if p ∈ [1,∞); C1 = 3d+3 and C2 = 14 + 2d if p =∞.112

When Theorem 1.1 is applied to f ∈ Bλ(Cα([0,1]d)), the approximation rate is113

19
√
dλN−2α/dL−2α/d, because ωf(r) ≤ λrα for any r ≥ 0. An immediate question following114

the constructive approximation is how much we can improve the approximation rate. In115

fact, the approximation rate of f ∈ Bλ(Cα([0,1]d)) is asymptotically tight based on116

VC-dimension as we shall see later.117

In most real applications of neural networks, though the target function f is defined118

in a high-dimensional domain, e.g., [0,1]d, where d could be tens of thousands or even119

millions, only the approximation error of f in a neighborhood of a dM-dimensional120

manifold M with dM ≪ d is concerned. Hence, we extend Theorem 1.1 to the case121

when the domain of f is localized in an ε-neighborhood of a compact dM-dimensional122

Riemannian submanifold M ⊆ [0,1]d having condition number 1/τ , volume V , and123

geodesic covering regularity R. The ε-neighborhood is defined as124

Mε ∶= {x ∈ [0,1]d ∶ inf{∥x − y∥2 ∶ y ∈M} ≤ ε}, for ε ∈ (0,1). (1.2)125

Let dδ = O (dM ln(dVRτ−1δ−1)
δ2 ) = O(dM ln(d/δ)

δ2
) be an integer for any δ ∈ (0,1) such that126

dM ≤ dδ ≤ d. We show an approximation rate127

2ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + 19

√
dωf( 2

√

d
(1−δ)

√

dδ
N−2/dδL−2/dδ)128

for ReLU FNNs to pointwisely approximate f on Mε. The key ideas of the proof is the129

application of Theorem 3.1 in [3], which provides a nearly isometric projection A ∈ Rdδ×d130

that maps points in M ⊆ [0,1]d to a dδ-dimensional domain with131

(1 − δ)∣x1 −x2∣ ≤ ∣Ax1 −Ax2∣ ≤ (1 + δ)∣x1 −x2∣, for any x1,x2 ∈M,132
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and the application of Theorem 1.1 in this paper, which constructs the desired ReLU133

FNN with a size depending on dδ instead of d to lessen the curse of dimensionality.134

When δ is closer to 1, dδ is closer to dM but the isometric property of the projection is135

weakened; when δ is closer to 0, the isometric property becomes better but dδ could be136

larger than d, in which case we can simply enforce dδ = d and choose the identity map137

as the projection. Hence, δ ∈ (0,1) is a parameter to make a balance between isometry138

and dimension reduction.139

Theorem 1.2. Let f be a continuous function on [0,1]d and M ⊆ [0,1]d be a com-140

pact dM-dimensional Riemannian submanifold. For any N ∈ N+, L ∈ N+, ε ∈ (0,1),141

and δ ∈ (0,1), there exists a function φ implemented by a ReLU FNN with width142

3dδ+3 max{dδ⌊N1/dδ⌋, N + 1} and depth 12L + 14 + 2dδ such that143

∣f(x) − φ(x)∣ ≤ 2ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + 19

√
dωf( 2

√

d
(1−δ)

√

dδ
N−2/dδL−2/dδ), (1.3)144

for any x ∈Mε, where Mε is defined in Equation (1.2)145

The approximation rate of deep neural networks for functions defined precisely on146

low-dimensional smooth manifolds has been studied in [60] for C2 functions and in [9,11]147

for Lipschitz continuous functions. Considering that it might be more reasonable to148

assume data located in a small neighborhood of low-dimensional smooth manifold in149

real applications, we introduce the ε-neighborhood of the manifold M in Theorem 1.2.150

In general, existing results are again asymptotic and they cannot be applied to estimate151

the approximation accuracy of a ReLU FNN with arbitrarily given width N and depth L,152

since there is no explicit formula without unknown constants to specify the exact error153

bound. For example, [9] provides an approximation rate c1 (NL)−c2/dδ with unknown154

constants (e.g., c1 and c2) and requires NL greater than an unknown large number. The155

demand of an explicit error estimation motivates Theorem 1.2 in this paper. When data156

are concentrating aroundM, ε is very small and the dominant term of the approximation157

error in (1.3) is 19
√
dωf( 2

√

d
(1−δ)

√

dδ
N−2/dδL−2/dδ) implying that the approximation via deep158

ReLU FNNs can lessen the curse of dimensionality.159

The analysis above provides a general guide for selecting the width and depth of160

ReLU FNNs to approximate continuous functions, especially when the computation is161

conducted with parallel computing, which is usually the case in real applications [12,58].162

As we shall see later, when the approximation accuracy and the parallel computing163

efficiency are considered together, very deep FNNs become less attractive than those164

with O(1) depth.165

The approximation theories in this paper assume that the target function f is fully166

accessible, making it possible to estimate the approximation error and identify an asymp-167

totically optimal ReLU FNN with a given budget of neurons to minimize the approx-168

imation error. In real applications, usually only a limited number of possibly noisy169

observations of f is available, resulting in a regression problem in statistics. In the latter170

case, the problem is usually formulated in a stochastic setting with randomly generated171

noisy observations and the regression error contains mainly two components: bias and172

variance. The bias is the difference of the expectation of an estimated function and its173
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ground truth f . The approximation theories in this paper play an important role in174

characterizing the power of neural networks when they are applied to solve regression175

problems by providing a lower bound of the regression bias.176

The rest of this paper is organized as follows. We first prove Theorem 1.1 and show177

its optimality in Section 2 when assuming Theorem 2.1 is true. Next, Theorem 2.1 is178

proved in Section 3. In Section 4, three aspects of neural networks in practice will be179

discussed: 1) neural network approximation in a high-dimensional irregular domain; 2)180

neural network approximation in the case of a low-dimensional data structure; 3) the181

optimal ReLU FNN in parallel computation. Finally, Section 5 concludes this paper182

with a short discussion.183

2 Approximation of continuous functions184

In this section, we prove Theorem 1.1 and discuss its optimality when assume The-185

orem 2.1 is true. Notations throughout the proof will be summarized in Section 2.1.186

2.1 Notations187

Let us summarize all basic notations used in this paper as follows.188

• Matrices are denoted by bold uppercase letters. For instance, A ∈ Rm×n is a real189

matrix of size m × n, and AT denotes the transpose of A. Vectors are denoted190

as bold lowercase letters. For example, v =
⎡⎢⎢⎢⎢⎣

v1
⋮
vd

⎤⎥⎥⎥⎥⎦
= [v1,⋯, vd]T ∈ Rd is a column191

vector with v(i) = vi being the i-th element. Besides, “[” and “]” are used to192

partition matrices (vectors) into blocks, e.g., A = [A11 A12
A21 A22

].193

• For any p ∈ [1,∞), the p-norm of a vector x = [x1, x2,⋯, xd]T ∈ Rd is defined by194

∥x∥p ∶= (∣x1∣p + ∣x2∣p +⋯ + ∣xd∣p)
1/p
.195

• Let µ(⋅) be the Lebesgue measure.196

• Let 1S be the characteristic function on a set S, i.e., 1S is equal to 1 on S and 0197

outside of S.198

• The set difference of two sets A and B is denoted by A/B ∶= {x ∶ x ∈ A, x ∉ B}.199

• For any ξ ∈ R, let ⌊ξ⌋ ∶= max{i ∶ i ≤ ξ, i ∈ Z} and ⌈ξ⌉ ∶= min{i ∶ i ≥ ξ, i ∈ Z}.200

• Assume n ∈ Nd, then f(n) = O(g(n)) means that there exists positive C indepen-201

dent of n, f , and g such that f(n) ≤ Cg(n) when all entries of n go to +∞.202
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• Let σ ∶ R→ R denote the rectified linear unit (ReLU), i.e. σ(x) = max{0, x}. With203

the abuse of notations, we define σ ∶ Rd → Rd as σ(x) =
⎡⎢⎢⎢⎢⎢⎣

max{0, x1}
⋮

max{0, xd}

⎤⎥⎥⎥⎥⎥⎦
for any204

x = [x1,⋯, xd]T ∈ Rd.205

• Given K ∈ N+ and δ ∈ (0, 1
K ), define a trifling region Ω([0,1]d,K, δ) of [0,1]d as206

Ω([0,1]d,K, δ) ∶=
d

⋃
i=1

{x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xi ∈ ∪K−1
k=1 ( kK − δ, kK )}. (2.1)207

In particular, Ω([0,1]d,K, δ) = ∅ if K = 1. See Figure 2 for two examples of trifling208

regions.209

0.0 0.2 0.4 0.6 0.8 1.0

δ δ δ δ

Ω([0, 1]d, K, δ) for K = 5, d = 1

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Ω([0, 1]d, K, δ) for K = 4, d = 2

(b)

Figure 2: Two examples of trifling regions. (a) K = 5, d = 1. (b) K = 4, d = 2.

• Let Cα([0,1]d) be the set containing all Hölder continuous functions on [0,1]d of or-210

der α ∈ (0,1]. In particular, the λ-ball in Cα([0,1]d) is denoted by Bλ(Cα([0,1]d))211

for any λ > 0.212

• We will useNN to denote a function implemented by a ReLU FNN for short and use213

Python-type notations to specify a class of functions implemented by ReLU FNNs214

with several conditions, e.g., NN (c1; c2; ⋯; cm) is a set of functions implemented215

by ReLU FNNs satisfying m conditions given by {ci}1≤i≤m, each of which may216

specify the number of inputs (#input), the number of outputs (#output), the217

total number of neurons in all hidden layers (#neuron), the number of hidden218

layers (depth), the total number of parameters (#parameter), and the width in219

each hidden layer (widthvec), the maximum width of all hidden layers (width),220

etc. For example, if φ ∈ NN (#input = 2; widthvec = [100,100]; #output = 1),221

then φ is a functions satisfies222

– φ maps from R2 to R.223

– φ can be implemented by a ReLU FNN with two hidden layers and the number224

of nodes in each hidden layer is 100.225

• [n]L is short for [n,n,⋯, n] ∈ NL. For example,226

NN (#input = d; widthvec = [100,100]) = NN (#input = d; widthvec = [100]2).227
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• For a function φ ∈ NN (#input = d; widthvec = [N1,N2,⋯,NL]; #output = 1), if228

we set N0 = d and NL+1 = 1, then the architecture of the network implementing φ229

can be briefly described as follows:230

x = h̃0
W0, b0 h1

σÐ→ h̃1 ⋯ WL−1, bL−1 hL
σÐ→ h̃L WL, bL hL+1 = φ(x),231

where Wi ∈ RNi+1×Ni and bi ∈ RNi+1 are the weight matrix and the bias vector in232

the i-th (affine) linear transform Li in φ, respectively, i.e.,233

hi+1 =Wi ⋅ h̃i + bi =∶ Li(h̃i), for i = 0,1,⋯, L,234

and235

h̃i = σ(hi), for i = 1, . . . , L.236

In particular, φ can be represented in a form of function compositions as follows237

φ = LL ○ σ ○LL−1 ○ σ ○ ⋯ ○ σ ○L1 ○ σ ○L0,238

which has been illustrated in Figure 3.

(x1, x2)

x1

x2

h1

h1,1

h1,2

h1,3

h1,4

h̃1

h̃1,1

h̃1,2

h̃1,3

h̃1,4

h2

h2,1

h2,2

h2,3

h2,4

h2,5

h̃2

h̃2,1

h̃2,2

h̃2,3

h̃2,4

h̃2,5

φ(x1, x2)

φ(x1, x2)

W0, b0 W1, b1 W2, b2ReLU (σ) ReLU (σ)

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 3: An example of a ReLU network with width 5 and depth 2.

239

• The expression “an FNN with width N and depth L” means240

– The maximum width of this FNN for all hidden layers is no more than N .241

– The number of hidden layers of this FNN is no more than L.242

• For θ ∈ [0,1), suppose its binary representation is θ = ∑∞

`=1 θ`2
−` with θ` ∈ {0,1}, we243

introduce a special notation bin0.θ1θ2⋯θL to denote the L-term binary represen-244

tation of θ, i.e., bin0.θ1θ2⋯θL ∶= ∑L
`=1 θ`2

−`.245

2.2 Proof of Theorem 1.1246

We essentially construct piecewise constant functions to approximate continuous247

functions in the proof. However, it is impossible to construct a piecewise constant func-248

tion via ReLU FNNs due to the continuity of ReLU FNNs. Thus, we introduce the249

trifling region Ω([0,1]d,K, δ), defined in Equation (2.1), and use ReLU FNNs to im-250

plement piecewise constant functions outside of the trifling region. To prove Theorem251

1.1, we first establish a theorem showing how to construct ReLU FNNs to pointwisely252

approximate continuous functions except for the trifling region.253
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Theorem 2.1. Given f ∈ C([0,1]d), for any L ∈ N+ and N ∈ N+, there exists a function254

φ implemented by a ReLU FNN with width max{4d⌊N1/d⌋ + 3d, 12N + 8} and depth255

12L + 14 such that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(
√
d) and256

∣f(x) − φ(x)∣ ≤ 18
√
dωf(N−2/dL−2/d), for any x ∈ [0,1]d/Ω([0,1]d,K, δ),257

where K = ⌊N1/d⌋2⌊L2/d⌋ and δ is an arbitrary number in (0, 1
3K ].258

With Theorem 2.1 that will be proved in Section 3, we can easily prove Theorem259

1.1 for the case p ∈ [1,∞). In the early version of this paper, which focuses on contin-260

uous functions as target functions, we only considered the case p ∈ [1,∞) since it was261

challenging to control the approximation error in the trifling region. Later in [42] when262

we considered smooth functions as target functions, we invented a technique that can263

handle the error in the trifling region as in the lemma below. Therefore, we are now able264

to control the approximation error for p =∞. The results in this paper are for continuous265

functions, to which the results in [42] are not applicable; the results in [42] characterize266

how the smoothness of target functions helps to enhance the approximation capacity of267

ReLU FNNs, which is not addressed in this paper. It is interesting to point out that the268

approximation rate O(N−2/dL−2/d) for continuous functions in this paper is even better269

than the rate O(( N
lnN )−2/d( L

lnL)−2/d) for functions in C1([0,1]d) in [42].270

Lemma 2.2 (Theorem 2.1 of [42]). Given ε > 0, N,L,K ∈ N+, and δ ∈ (0, 1
3K ], assume271

f ∈ C([0,1]d) and φ̃ can be implemented by a ReLU FNN with width N and depth L. If272

∣f(x) − φ̃(x)∣ ≤ ε, for any x ∈ [0,1]d/Ω([0,1]d,K, δ),273

then there exists a function φ implemented by a new ReLU FNN with width 3d(N + 4)274

and depth L + 2d such that275

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ), for any x ∈ [0,1]d.276

Now we are ready to prove Theorem 1.1 by assuming Theorem 2.1 is true, which277

will be proved later in Section 3.2.278

Proof of Theorem 1.1. Let us first consider the case p ∈ [1,∞). We may assume f is279

not a constant function since it is a trivial case. Then ωf(r) > 0 for any r > 0. Set280

K = ⌊N1/d⌋2⌊L2/d⌋ and choose a small δ ∈ (0, 1
3K ] such that281

Kdδ(2∣f(0)∣ + 2ωf(
√
d))p = ⌊N1/d⌋2⌊L2/d⌋dδ(2∣f(0)∣ + 2ωf(

√
d))p

≤ (ωf(N−2/dL−2/d))p.
282

By Theorem 2.1, there exists a function φ implemented by a ReLU FNN with width283

max{4d⌊N1/d⌋ + 3d, 12N + 8} ≤ 12 max{d⌊N1/d⌋, N + 1}284

and depth 12L + 14 such that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(
√
d) and285

∣f(x) − φ(x)∣ ≤ 18
√
dωf(N−2/dL−2/d), for any x ∈ [0,1]d/Ω([0,1]d,K, δ),286
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It follows from µ(Ω([0,1]d,K, δ)) ≤Kdδ and ∥f∥L∞([0,1]d) ≤ ∣f(0)∣ + ωf(
√
d) that287

∥f − φ∥p
Lp([0,1]d)

= ∫
Ω([0,1]d,K,δ)

∣f(x) − φ(x)∣pdx + ∫
[0,1]d/Ω([0,1]d,K,δ)

∣f(x) − φ(x)∣pdx

≤Kdδ(2∣f(0)∣ + 2ωf(
√
d))p + (18

√
dωf(N−2/dL−2/d))p

≤ (ωf(N−2/dL−2/d))p + (18
√
dωf(N−2/dL−2/d))p

≤ (19
√
dωf(N−2/dL−2/d))p.

288

Hence, ∥f − φ∥Lp([0,1]d) ≤ 19
√
dωf(N−2/dL−2/d).289

Next, let us discuss the case p = ∞. Set K = ⌊N1/d⌋2⌊L2/d⌋ and choose a small290

δ ∈ (0, 1
3K ] such that291

d ⋅ ωf(δ) ≤ ωf(N−2/dL−2/d).292

By Theorem 2.1, there exists a function φ̃ implemented by a ReLU FNN with width293

max{4d⌊N1/d⌋ + 3d, 12N + 8} and depth 12L + 14 such that294

∣f(x) − φ̃(x)∣ ≤ 18
√
dωf(N−2/dL−2/d) ∶= ε, for x ∈ [0,1]d/Ω([0,1]d,K, δ),295

By Lemma 2.2, there exists a function φ implemented by a ReLU FNN with width296

3d(max{4d⌊N1/d⌋ + 3d, 12N + 8} + 4) ≤ 3d+3 max{d⌊N1/d⌋, N + 1}297

and depth 12L + 14 + 2d such that298

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ) ≤ 19
√
dωf(N−2/dL−2/d), for any x ∈ [0,1]d.299

So we finish the proof.300

2.3 Optimality of Theorem 1.1301

This section will show that the approximation rate in Theorem 1.1 is nearly tight302

and there is no room to improve for the function class Bλ(Cα([0,1]d)). Theorem 2.3303

below shows that the approximation rate O(ωf(N−(2/d+ρ)L−(2/d+ρ))) for any ρ > 0 is304

unachievable, implying the approximation rate in Theorem 1.1 is nearly tight for the305

function class Bλ(Cα([0,1]d)).306

Theorem 2.3. Given any ρ > 0 and C > 0, there exists f ∈ Bλ(Cα([0,1]d)) such that,307

for any J0 > 0, there exist N,L ∈ N with NL ≥ J0 satisfying308

inf
φ∈NN (#input=d; width≤N ; depth≤L)

∥φ − f∥L∞([0,1]d) ≥ CλN−(2α/d+ρ)L−(2α/d+ρ).309

In fact, we can show a stronger result than Theorem 2.3. Under the same con-310

ditions as in Theorem 2.3, for any H ∈ [0,1]d with µ(H) ≤ 2−(d+K
d
+1)K−d, where K =311

⌊(NL)2/d+ρ/(2α)⌋, it can be proved that312

inf
φ∈NN (#input=d; width≤N ; depth≤L)

∥φ − f∥L∞([0,1]d/H)
≥ CλN−(2α/d+ρ)L−(2α/d+ρ). (2.2)313

We will prove (2.2) by contradiction, then Theorem 2.3 holds as a consequence. Assuming314

Equation (2.2) is false, we have the following claim.315
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Claim 2.4. There exist ρ > 0 and C > 0 such that given any f ∈ Bλ(Cα([0,1]d)),316

there exists J0 = J0(ρ,C, f) > 0 such that, for any N,L ∈ N with NL ≥ J0, there exist317

φ ∈ NN (#input = d; width ≤ N ; depth ≤ L) and H ∈ [0,1]d with µ(H) ≤ 2−(d+K
d
+1)K−d,318

where K = ⌊(NL)2/d+ρ/(2α)⌋, satisfying319

∥f − φ∥L∞([0,1]d/H)
≤ CλN−(2α/d+ρ)L−(2α/d+ρ).320

Now let us disprove this claim to show Theorem 2.3 and Equation (2.2) are true.321

Disproof of Claim 2.4. Without the loss of generality, we assume λ = 1; in the case of322

λ ≠ 1, the proof is similar. We will disprove Claim 2.4 using the VC dimension. Recall323

that the VC dimension of a class of functions is defined as the cardinality of the largest324

set of points that this class of functions can shatter. Denote the VC dimension of a325

function set F by VCDim(F ). By [27] and the fact326

NN (width ≤ N ; depth ≤ L) ⊆ NN (#parameter ≤ (LN + d + 2)(N + 1)),327

there exists C1 > 0 such that328

VCDim(NN (#input = d; width ≤ N ; depth ≤ L))
≤ C1(LN + d + 2)(N + 1)L ln ((LN + d + 2)(N + 1))
=∶ bu(N,L).

(2.3)329

Then we will use Claim 2.4 to estimate a lower bound of330

VCDim(NN (#input = d; width ≤ N ; depth ≤ L)), (2.4)331

and this lower bound is asymptotically larger than bu(N,L), which leads to a contradic-332

tion.333

More precisely, we will construct {fχ ∶ χ ∈ B} ⊆ B1(Cα([0,1]d)), which can shat-334

ter b`(N,L) ∶= Kd points, where B is a set defined later. Then by Claim 2.4, there335

exists {φχ ∶ χ ∈ B} such that this set can shatter b`(N,L) points. Finally, b`(N,L) =336

Kd = ⌊(NL)2/d+ρ/(2α)⌋d is asymptotically larger than bu(N,L) = C1(LN + d + 2)(N +337

1)L ln ((LN + d + 2)(N + 1)), which leads to a contradiction. More details can be found338

below.339

Step 1∶ Construct {fχ ∶ χ ∈ B} ⊆ B1(Cα([0,1]d)) that scatters b`(N,L) points.340

Divide [0,1]d into Kd non-overlapping sub-cubes {Qβ}β as follows:341

Qβ ∶= {x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xi ∈ [βi−1
K , βiK ], i = 1,2,⋯, d},342

for any index vector β = [β1, β2,⋯, βd]T ∈ {1,2,⋯,K}d.343

Let Q(x0, η) ⊆ [0,1]d be a hypercube, whose center and sidelength are x0 and η,344

respectively. Then we define a function ζQ on [0,1]d corresponding to Q = Q(x0, η) ⊆345

[0,1]d such that:346

• ζQ(x0) = (η/2)α/2;347
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• ζQ(x) = 0 for any x ∉ Q/∂Q, where ∂Q is the boundary of Q;348

• ζQ is linear on the line that connects x0 and x, for any x ∈ ∂Q.349

Define350

B ∶= {χ ∶ χ is a map from {1,2,⋯,K}d to {−1,1}}.351

For each χ ∈ B, we define352

fχ(x) ∶= ∑
β∈{1,2,⋯,K}d

χ(β)ζQβ
(x),353

where ζQβ
(x) is the associated function introduced just above. It is easy to check that354

{fχ ∶ χ ∈ B} ⊆ B1(Cα([0,1]d)) can shatter b`(N,L) =Kd points.355

Step 2∶ Construct {φχ ∶ χ ∈ B} that scatters b`(N,L) points.356

By Claim 2.4, there exist ρ > 0 and C2 > 0 such that, for any fχ ∈ {fχ ∶ χ ∈ B} there357

exists Jχ > 0 such that for all N,L ∈ N with NL ≥ Jχ, there exist φχ ∈ NN (#input =358

d; width ≤ N ; depth ≤ L) and Hχ with µ(Hχ) ≤ 2−(d+K
d
+1)K−d such that359

∣fχ(x) − φχ(x)∣ ≤ C2(NL)−α(2/d+ρ/α), for any x ∈ [0,1]d/Hχ.360

Set H = ∪χ∈BHχ and J1 = maxχ∈B Jχ. Then it holds that361

µ(H) ≤ 2K
d

2−(d+K
d
+1)K−d = (2K)−d/2. (2.5)362

It follows that for all χ ∈ B and N,L ∈ N with NL ≥ J1, we have363

∣fχ(x) − φχ(x)∣ ≤ C2(NL)−α(2/d+ρ/α), for any x ∈ [0,1]d/H. (2.6)364

For each index vector β ∈ {1,2,⋯,K}d and any x ∈ 1
2Qβ, where 1

2Qβ denotes the365

cube whose sidelength is half of that of Qβ sharing the same center of Qβ, since Qβ has366

a sidelength 1
K = ⌊(NL)2/d+ρ/(2α)⌋−1, we have367

∣fχ(x)∣ = ∣ζQβ
(x)∣ ≥ ∣ζQβ

(xQβ
)∣/2 = ( 1

2K
)α /4 = 1

22+α ⌊(NL)2/d+ρ/(2α)⌋−α, (2.7)368

where xQβ
is the center of Qβ. For fixed d, α, and ρ, there exists J2 > 0 large enough369

such that, for any N,L ∈ N with NL ≥ J2, we have370

1
22+α ⌊(NL)2/d+ρ/(2α)⌋−α > C2(NL)−α(2/d+ρ/α). (2.8)371

By Equation (2.5), for any β ∈ {1,2,⋯,K}d, we have372

µ(H) ≤ (2K)−d/2 < (2K)−d = µ(1
2Qβ),373

which means (1
2Qβ) ∩ ([0,1]d/H) is not empty. Therefore, there exists xβ ∈ (1

2Qβ) ∩374

([0,1]d/H) for each β ∈ {1,2,⋯,K}d such that375

∣fχ(xβ)∣ ≥ 1
22+α ⌊(NL)2/d+ρ/(2α)⌋−α > C2(NL)−α(2/d+ρ/α) ≥ ∣fχ(xβ) − φχ(xβ)∣,376
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for any N,L ∈ N with NL ≥ J0 = max{J1, J2}, where the first, the second, and the377

last inequalities come from (2.7), (2.8), and (2.6), respectively. In other words, for any378

χ ∈ B and β ∈ {1,2,⋯,K}d, fχ(xβ) and φχ(xβ) have the same sign. Then {φχ ∶ χ ∈ B}379

shatters {xβ ∶ β ∈ {1,2,⋯,K}d} since {fχ ∶ χ ∈ B} shatters {xβ ∶ β ∈ {1,2,⋯,K}d} as380

discussed in Step 1. Hence,381

VCDim({φχ ∶ χ ∈ B}) ≥Kd = b`(N,L), (2.9)382

for any N,L ∈ N with NL ≥ J0,383

Step 3∶ Contradiction.384

By Equation (2.3) and (2.9), for any N,L ∈ N with NL ≥ J0, we have385

b`(N,L) ≤ VCDim({φχ ∶ χ ∈ B})
≤ VCDim(NN (#input = d; width ≤ N ; depth ≤ L)) ≤ bu(N,L),

386

implying that387

⌊(NL)2/d+ρ/(2α)⌋d ≤ C1(LN + d + 2)(N + 1)L ln ((LN + d + 2)(N + 1)),388

which is a contradiction for sufficiently large N,L ∈ N. So we finish the proof.389

By Theorem 2.3, for any ρ > 0, the approximation rate cannot be better than390

O(N−(2α/d+ρ)L−(2/α+ρ)), if we use FNNs in NN (#input = d; width ≤ N ; depth ≤ L) to391

approximate functions in Bλ(Cα([0,1]d)). By a similar argument, we can show that the392

approximation rate cannot be O(N−2α/dL−(2/α+ρ)) nor O(N−(2α/d+ρ)L−2α/d). Hence, the393

approximation rate in Theorem 1.1 is nearly tight.394

3 Proof of Theorem 2.1395

In this section, we will prove Theorem 2.1. We first present the key ideas in Section396

3.1. Based on two propositions in Section 3.1, the detailed proof is presented in Section397

3.2. Finally, the proofs of two propositions in Section 3.1 can be found in Section 3.3398

and 3.4.399

3.1 Key ideas of proving Theorem 2.1400

We will show that an almost piecewise constant function φ implemented by a ReLU401

FNN is enough to achieve the desired approximation rate in Theorem 1.1. Given an402

arbitrary f ∈ C([0,1]d), we introduce a piecewise constant function fp ≈ f serving as an403

intermediate approximant in our construction in the sense that404

f ≈ fp on [0,1]d, and fp ≈ φ on [0,1]d/Ω([0,1]d,K, δ).405

The approximation in f ≈ fp is a simple and standard technique in constructive approxi-406

mation. For example, given arbitrary N and L, uniformly partition [0,1]d into O(N2L2)407
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Figure 4: An illustration of f , fp, φ, xβ, Qβ, and the trifling region Ω([0,1]d,K, δ) in the

one-dimensional case for β ∈ {0,1,⋯,K −1}d, where K = N2L2 and d = 1 with N = 2 and

L = 2. f is the target function; fp is the piecewise constant function approximating f ; φ

is a function, implemented by a ReLU FNN, approximating f ; and xβ is a representative

of Qβ. The measure of the trifling region Ω([0,1]d,K, δ) can be arbitrarily small as we

shall see in the proof of Theorem 1.1.

pieces and define fp using this partition. Then the approximation error of fp ≈ f scales408

like O(N−2/dL−2/d). We will address the approximation in fp ≈ φ with the same error409

scaling and a limited budget of the FNN size, e.g., O(NL) neurons, based on the fact410

that fp can be approximately implemented by a ReLU FNN in [0,1]d/Ω([0,1]d,K, δ),411

where Ω([0,1]d,K, δ) is the trifling region near the discontinuous locations of fp with an412

arbitrarily small Lebesgue measure (see Figure 4 for an illustration). The introduction413

of the trifling region is to ease the construction of a deep ReLU FNN to implement the414

desired φ, which is a piecewise linear and continuous function, to approximate the dis-415

continuous function fp by removing the difficulty near discontinuous points, essentially416

smoothing fp by restricting the approximation domain in [0,1]d/Ω([0,1]d,K, δ).417

Now let us discuss the detailed steps of construction. First, divide [0,1]d into a union418

of important regions {Qβ}β and the trifling region Ω([0,1]d,K, δ), where each Qβ is419

associated with a representative xβ ∈ Qβ such that f(xβ) = fp(xβ) for each index vector420

β ∈ {0,1, . . . ,K − 1}d, where K = O(N2/dL2/d) is the partition number per dimension421

(see Figure 6 for examples for d = 1 and d = 2). Next, we design a vector function422

Φ1(x) constructed via Φ1(x) = [φ1(x1), φ1(x2),⋯, φ1(xd)]
T

to project the whole cube423

Qβ to a d-dimensional index β for each β, where each one-dimensional function φ1 is424

a step function implemented by a ReLU FNN. The final step is to solve a point fitting425

problem. To be precise, we construct a function φ2 implemented by a ReLU FNN to426

map β approximately to fp(xβ) = f(xβ). Then φ2 ○Φ1(x) = φ2(β) ≈ fp(xβ) = f(xβ)427

for any x ∈ Qβ and each β, implying φ ∶= φ2 ○ Φ1 ≈ fp ≈ f on [0,1]d/Ω([0,1]d,K, δ).428

We would like to point out that we only need to care about the values of φ2 at a set429

of points {0,1,⋯,K − 1}d in the construction of φ2 according to our design φ = φ2 ○Φ1430

as illustrated in Figure 5. Therefore, it is unnecessary to care about the values of φ2431

sampled outside the set {0,1,⋯,K − 1}d, which is a key point to ease the design of a432

ReLU FNN to implement φ2 as we shall see later.433

Finally, we discuss how to implement Φ1 and φ2 by deep ReLU FNNs with width434
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Φ1(x)=βÔ⇒
for x∈Qβ

A set of
d-dimensional indices:
β ∈ {0,1,⋯,K − 1}d

φ2(β)≈f(xβ)Ô⇒ A set of function values
at representatives:{f(xβ) ∶ β ∈ {0,1,⋯,K − 1}d}

Figure 5: An illustration of the desired function φ = φ2 ○ Φ1. Note that φ ≈ f on

[0,1]d/Ω([0,1]d,K, δ), since φ(x) = φ2 ○Φ1(x) = φ2(β) ≈ f(xβ) for any x ∈ Qβ and each

β ∈ {0,1,⋯,K − 1}d.

O(N) and depth O(L) using two propositions as we shall prove in Section 3.3 and 3.4435

later. We first construct a ReLU FNN with desired width and depth by Proposition 3.1436

to implement a one-dimensional step function φ1. Then Φ1 can be attained via defining437

Φ1(x) = [φ1(x1), φ1(x2),⋯, φ1(xd)]
T
, for any x = [x1, x2,⋯, xd]T ∈ Rd.438

Proposition 3.1. For any N,L, d ∈ N+ and δ ∈ (0, 1
3K ] with K = ⌊N1/d⌋2⌊L2/d⌋, there439

exists a one-dimensional function φ implemented by a ReLU FNN with width 4⌊N1/d⌋+3440

and depth 4L + 5 such that441

φ(x) = k, if x ∈ [ kK , k+1
K − δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.442

The construction of φ2 is a direct result of Proposition 3.2 below, the proof of which443

relies on the bit extraction technique in [5].444

Proposition 3.2. Given any ε > 0 and arbitrary N,L,J ∈ N+ with J ≤ N2L2, assume445

{yj ≥ 0 ∶ j = 0,1,⋯, J − 1} is a sample set with ∣yj − yj−1∣ ≤ ε for j = 1,2,⋯, J − 1. Then446

there exists φ ∈ NN (#input = 1; width ≤ 12N + 8; depth ≤ 4L + 9; #output = 1) such447

that448

(i) ∣φ(j) − yj ∣ ≤ ε for j = 0,1,⋯, J − 1;449

(ii) 0 ≤ φ(x) ≤ max{yj ∶ j = 0,1,⋯, J − 1} for any x ∈ R.450

With the above propositions ready, let us prove Theorem 2.1 in Section 3.2. We451

further assume that ωf(r) > 0 for any r > 0, excluding a simple case when f is a constant452

function.453

3.2 Proof of Theorem 2.1454

We essentially construct an almost piecewise constant function implemented by a455

ReLU FNN with O(NL) neurons to approximate f . We may f is not a constant since456

it is a trivial case. Then ωf(r) > 0 for any r > 0. It is clear that ∣f(x) − f(0)∣ ≤ ωf(
√
d)457

for any x ∈ [0,1]d. Define f̃ = f − f(0) + ωf(
√
d), then 0 ≤ f̃(x) ≤ 2ωf(

√
d) for any458

x ∈ [0,1]d. Let M = N2L, K = ⌊N1/d⌋2⌊L2/d⌋, and δ be an arbitrary number in (0, 1
3K ].459

The proof can be divided into four steps as follows:460
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1. Divide [0,1]d into a union of sub-cubes {Qβ}β∈{0,1,⋯,K−1}d and the trifling region461

Ω([0,1]d,K, δ), and denote xβ as the vertex of Qβ with minimum ∥ ⋅ ∥1 norm;462

2. Construct a sub-network to implement a vector function Φ1 projecting the whole463

cube Qβ to the d-dimensional index β for each β, i.e., Φ1(x) = β for all x ∈ Qβ;464

3. Construct a sub-network to implement a function φ2 mapping the index β approx-465

imately to f̃(xβ). This core step can be further divided into three sub-steps:466

3.1. Construct a sub-network to implement ψ1 bijectively mapping the index set467

{0,1,⋯,K − 1}d to an auxiliary set A1 ⊆ { j
2Kd ∶ j = 0,1,⋯,2Kd} defined later468

(see Figure 7 for an illustration);469

3.2. Determine a continuous piecewise linear function g with a set of breakpoints470

A1 ∪A2 ∪ {1} satisfying: 1) assign the values of g at breakpoints in A1 based471

on {f̃(xβ)}β, i.e., g ○ψ1(β) = f̃(xβ); 2) assign the values of g at breakpoints472

in A2 ∪ {1} to reduce the variation of g for applying Proposition 3.2;473

3.3. Apply Proposition 3.2 to construct a sub-network to implement a function ψ2474

approximating g well on A1 ∪A2 ∪ {1}. Then the desired function φ2 is given475

by φ2 = ψ2 ○ ψ1 satisfying φ2(β) = ψ2 ○ ψ1(β) ≈ g ○ ψ1(β) = f̃(xβ);476

4. Construct the final target network to implement the desired function φ such that477

φ(x) = φ2 ○Φ1(x) + f(0) − ωf(
√
d) ≈ f̃(xβ) + f(0) − ωf(

√
d) = f(xβ) for x ∈ Qβ.478

The details of these steps can be found below.479

Step 1∶ Divide [0,1]d into {Qβ}β∈{0,1,⋯,K−1}d and Ω([0,1]d,K, δ).480

Define xβ ∶= β/K and481

Qβ ∶= {x = [x1,⋯, xd]T ∈ [0,1]d ∶ xi ∈ [βiK ,
βi+1
K − δ ⋅ 1{βi≤K−2}], i = 1,⋯, d}482

for each d-dimensional index β = [β1,⋯, βd]T ∈ {0,1,⋯,K−1}d. Recall that Ω([0,1]d,K, δ)483

is the trifling region defined in Equation (2.1). Apparently, xβ is the vertex of Qβ with484

minimum ∥ ⋅ ∥1 norm and485

[0,1]d = ( ∪β∈{0,1,⋯,K−1}d Qβ) ∪Ω([0,1]d,K, δ),486

see Figure 6 for illustrations.487

Step 2∶ Construct Φ1 mapping x ∈ Qβ to β.488

By Proposition 3.1, there exists φ1 ∈ NN (width ≤ 4⌊N1/d⌋ + 3; depth ≤ 4L + 5) such489

that490

φ1(x) = k, if x ∈ [ kK , k+1
K − δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.491

It follows that φ1(xi) = βi if x = [x1, x2,⋯, xd]T ∈ Qβ for each β = [β1, β2,⋯, βd]T .492

By defining493

Φ1(x) ∶= [φ1(x1), φ1(x2),⋯, φ1(xd)]
T
, for any x = [x1, x2,⋯, xd]T ∈ Rd,494
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Figure 6: Illustrations of Ω([0,1]d,K, δ), Qβ, and xβ for β ∈ {0,1,⋯,K − 1}d. (a) K = 5

and d = 1. (b) K = 4 and d = 2.

we have Φ1(x) = β if x ∈ Qβ for β ∈ {0,1,⋯,K − 1}d.495

Step 3∶ Construct φ2 mapping β approximately to f̃(xβ).496

The construction of the sub-network implementing φ2 is essentially based on Propo-497

sition 3.2. To meet the requirements of applying Proposition 3.2, we first define two498

auxiliary set A1 and A2 as499

A1 ∶= { i
Kd−1 + k

2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1}500

and501

A2 ∶= { i
Kd−1 + K+k

2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1}.502

Clearly, A1 ∪A2 ∪ {1} = { j
2Kd ∶ j = 0,1,⋯,2Kd} and A1 ∩A2 = ∅. See Figure 6 for an503

illustration of A1 and A2. Next, we further divide this step into three sub-steps.504

Step 3.1∶ Construct ψ1 bijectively mapping {0,1,⋯,K − 1}d to A1.505

Inspired by the binary representation, we define506

ψ1(x) ∶= xd
2Kd +

d−1

∑
i=1

xi
Ki , for any x = [x1, x2,⋯, xd]T ∈ Rd. (3.1)507

Then ψ1 is a linear function bijectively mapping the index set {0,1,⋯,K − 1}d to508

{ βd
2Kd +

d−1

∑
i=1

βi
Ki ∶ β ∈ {0,1,⋯,K − 1}d}

= { i
Kd−1 + k

2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1} = A1.

509

Step 3.2∶ Construct g to satisfy g ○ ψ1(β) = f̃(xβ) and to meet the requirements of510

applying Proposition 3.2.511

Let g ∶ [0,1]→ R be a continuous piecewise linear function with a set of breakpoints512

{ j
2Kd ∶ j = 0,1,⋯,2Kd} = A1 ∪A2 ∪ {1} and the values of g at these breakpoints satisfy513

the following properties:514
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Figure 7: An illustration of A1, A2, {1}, and g for d = 2 and K = 4.

• The values of g at the breakpoints in A1 are set as515

g(ψ1(β)) = f̃(xβ), for any β ∈ {0,1,⋯,K − 1}d; (3.2)516

• At the breakpoint 1, let g(1) = f̃(1), where 1 = [1,1,⋯,1]T ∈ Rd;517

• The values of g at the breakpoints in A2 are assigned to reduce the variation of g,518

which is a requirement of applying Proposition 3.2. Note that519

{ i
Kd−1 − K+1

2Kd ,
i

Kd−1} ⊆ A1 ∪ {1}, for i = 1,2,⋯,Kd−1,520

implying the values of g at i
Kd−1−K+1

2Kd and i
Kd−1 have been assigned for i = 1,2,⋯,Kd−1.521

Thus, the values of g at the breakpoints in A2 can be successfully assigned by522

letting g linear on each interval [ i
Kd−1 − K+1

2Kd ,
i

Kd−1 ] for i = 1,2,⋯,Kd−1, since523

A2 ⊆ ∪K
d−1

i=1 [ i
Kd−1 − K+1

2Kd ,
i

Kd−1 ].524

Apparently, such a function g exists (see Figure 7 for an example) and satisfies525

∣g( j
2Kd ) − g( j−1

2Kd )∣ ≤ max{ωf( 1
K ), ωf(

√
d)/K} ≤ ωf(

√

d
K ), for j = 1,2,⋯,2Kd,526

and527

0 ≤ g( j
2Kd ) ≤ 2ωf(

√
d), for j = 0,1,⋯,2Kd.528

Step 3.3∶ Construct ψ2 approximating g well on A1 ∪A2 ∪ {1}.529

Since 2Kd = 2(⌊N1/d⌋2⌊L2/d⌋)d ≤ 2(N2L2) ≤ N2L̃2, where L̃ = 2L, by Proposition 3.2530

(set yj = g( j
2K2 ) and ε = ωf(

√

d
K ) > 0 therein), there exists ψ̃2 ∈ NN (#input = 1; width ≤531

12N + 8; depth ≤ 4L̃ + 9) = NN (#input = 1; width ≤ 12N + 8; depth ≤ 8L + 9) such that532

∣ψ̃2(j) − g( j
2Kd )∣ ≤ ωf(

√

d
K ), for j = 0,1,⋯,2Kd − 1,533

and534

0 ≤ ψ̃2(x) ≤ max{g( j
2Kd ) ∶ j = 0,1,⋯,2Kd − 1} ≤ 2ωf(

√
d), for any x ∈ R.535

By defining ψ2(x) ∶= ψ̃2(2Kdx) for any x ∈ R, we have ψ2 ∈ NN (#input = 1; width ≤536

12N + 8; depth ≤ 8L + 9),537

0 ≤ ψ2(x) = ψ̃2(2Kdx) ≤ 2ωf(
√
d), for any x ∈ R, (3.3)538
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and539

∣ψ2( j
2Kd ) − g( j

2Kd )∣ = ∣ψ̃2(j) − g( j
2Kd )∣ ≤ ωf(

√

d
K ), for j = 0,1,⋯,2Kd − 1. (3.4)540

Let us end Step 3 by defining the desired function φ2 as φ2 ∶= ψ2 ○ψ1. Note that ψ1 ∶541

Rd → R is a linear function and ψ2 ∈ NN (#input = 1; width ≤ 12N + 8; depth ≤ 8L + 9).542

Thus, φ2 ∈ NN (#input = d; width ≤ 12N + 8; depth ≤ 8L + 9). By Equation (3.2) and543

(3.4), we have544

∣φ2(β) − f̃(xβ)∣ = ∣ψ2(ψ1(β)) − g(ψ1(β))∣ ≤ ωf(
√

d
K ), (3.5)545

for any β ∈ {0,1,⋯,K − 1}d. Equation (3.3) and φ2 = ψ2 ○ ψ1 implies546

0 ≤ φ2(x) ≤ 2ωf(
√
d), for any x ∈ Rd. (3.6)547

Step 4∶ Construct the final network to implement the desired function φ.548

Define φ ∶= φ2 ○Φ1 + f(0) − ωf(
√
d). Since φ1 ∈ NN (width ≤ 4⌊N1/d⌋ + 3; depth ≤549

4L+5]), we have Φ1 ∈ NN (#input = d; width ≤ 4d⌊N1/d⌋+3d; depth ≤ 4L+5; #output =550

d). Note that φ2 ∈ NN (#input = d; width ≤ 12N + 8; depth ≤ 8L + 9). Thus, φ =551

φ2 ○Φ1 + f(0) − ωf(
√
d) is in552

NN (width ≤ max{4d⌊N1/d⌋ + 3d,12N + 8}; depth ≤ (4L + 5) + (8L + 9) = 12L + 14).553

Now let us estimate the approximation error. Note that f = f̃ + f(0)−ωf(
√
d). By554

Equation (3.5), for any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d, we have555

∣f(x) − φ(x)∣ = ∣f̃(x) − φ2(Φ1(x))∣ = ∣f̃(x) − φ2(β)∣
≤ ∣f̃(x) − f̃(xβ)∣ + ∣f̃(xβ) − φ2(β)∣
≤ ωf(

√

d
K ) + ωf(

√

d
K ) ≤ 2ωf(8

√
dN−2/dL−2/d),

556

where the last inequality comes from the fact K = ⌊N1/d⌋2⌊L2/d⌋ ≥ N2/dL2/d
8 for any N,L ∈557

N+. Recall the fact ωf(nr) ≤ nωf(r) for any n ∈ N+ and r ∈ [0,∞). Therefore, for any558

x ∈ ∪β∈{0,1,⋯,K−1}dQβ=[0,1]d/Ω([0,1]d,K, δ), we have559

∣f(x) − φ(x)∣ ≤ 2ωf(8
√
dN−2/dL−2/d) ≤ 2⌈8

√
d⌉ωf(N−2/dL−2/d)

≤ 18
√
dωf(N−2/dL−2/d).

560

It remains to show the upper bound of φ. By Equation (3.6) and φ = φ2○Φ1+f(0)−561

ωf(
√
d), it holds that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(

√
d). Thus, we finish the proof.562

3.3 Proof of Proposition 3.1563

Lemma 3.3. For any N1,N2 ∈ N+, given N1(N2 + 1) + 1 samples (xi, yi) ∈ R2 with564

x0 < x1 < ⋯ < xN1(N2+1) and yi ≥ 0 for i = 0,1,⋯,N1(N2+1), there exists φ ∈ NN (#input =565

1; widthvec = [2N1,2N2 + 1]; #output = 1) satisfying the following conditions.566
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(i) φ(xi) = yi for i = 0,1,⋯,N1(N2 + 1);567

(ii) φ is linear on each interval [xi−1, xi] for i ∉ {(N2 + 1)j ∶ j = 1,2,⋯,N1}.568

In fact, Lemma 3.3 is a part of Lemma 2.2 in [61]. For the purpose of being self-569

contained, we present it as follows.570

Lemma (Lemma 2.2 of [61]). For any m,n ∈ N+, given any m(n+1)+1 samples (xi, yi) ∈571

R2 with x0 < x1 < x2 < ⋯ < xm(n+1) and yi ≥ 0 for i = 0,1,⋯,m(n + 1), there exists572

φ ∈ NN (#input = 1; widthvec = [2m,2n + 1]; #output = 1) satisfying the following573

conditions.574

(i) φ(xi) = yi for i = 0,1,⋯,m(n + 1);575

(ii) φ is linear on each interval [xi−1, xi] for i ∉ {(n + 1)j ∶ j = 1,2,⋯,m};576

(iii) sup
x∈[x0, xm(n+1)]

∣φ(x)∣ ≤ 3 max
i∈{0,1,⋯,m(n+1)}

yi
n

∏
k=1

(1 + max{xj(n+1)+n−xj(n+1)+k−1∶j=0,1,⋯,m−1}

min{xj(n+1)+k−xj(n+1)+k−1∶j=0,1,⋯,m−1} ).577

Lemma 3.4. Given any N,L, d ∈ N+, it holds that578

NN (#input = d; widthvec = [N,NL]; #output = 1)
⊆ NN (#input = d; width ≤ 2N + 2; depth ≤ L + 1; #output = 1).579

Proof. The key idea to prove Proposition 3.4 is to re-assemble O(L) sub-FNNs in the580

shallower FNN in the left of Figure 8 to form a deeper one with width O(N) and depth581

O(L) on the right of Figure 8.

g

·
··

h1

h2

hL

Ô⇒

0 2 4 6

−1

0

1

g

h1

g

h2

g

h3

g

h4

g

· · ·

· · ·

· · ·
Figure 8: An illustration of the main idea to prove Lemma 3.4.

582
For any φ ∈ NN (#input = d; widthvec = [N,NL]; #output = 1), φ can be imple-583

mented by a ReLU FNN described as584

x
W0, b0

σ g
W1, b1

σ h
W2, b2 φ(x),585

where g and h are the output of the first hidden layer and the second hidden layer,586

respectively. Note that587

g = σ(W0 ⋅x + b0), h = σ(W1 ⋅ g + b1), and φ(x) =W2 ⋅h + b2.588
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We can evenly divide h ∈ RNL×1, b1 ∈ RNL×1, W1 ∈ RNL×N , and W2 ∈ R1×NL into L parts589

as follows:590

h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

⋮
hL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1

b1,2

⋮
b1,L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1,1

W1,2

⋮
W1,L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,591

and W2 = [W2,1,W2,2,⋯,W2,L], where h` ∈ RN×1, b1,` ∈ RN×1, W1,` ∈ RN×N , and W2,` ∈592

R1×N for ` = 1,2,⋯, L. Then, for ` = 1,2,⋯, L, we have593

h` = σ(W1,` ⋅ g + b1,`) and φ(x) =W2 ⋅h + b2 =
L

∑
j=1

W2,j ⋅hj + b2. (3.7)594

595

Define596

s0 ∶= 0, and s` ∶=
`

∑
j=1

W2,j ⋅hj, for ` = 1,2,⋯, L.597

Then φ(x) =W2 ⋅h + b2 = sL + b2 and598

s` = s`−1 +W2,` ⋅h`, for ` = 1,2,⋯, L. (3.8)599

Hence, it is easy to check that φ can also be implemented by the deep network shown600

in Figure 9. It is clear that the network has the architecture of Figure 9 is with width

x g

h1

g

σ(s1)

σ(−s1)

h2

g

σ(s2)

σ(−s2)

h3

g

· · ·

σ(sL−1)

σ(−sL−1)

hL

g

sL + b2 = φ(x)

Figure 9: A illustration of the desired network based on Equation (3.7) and (3.8), and

the fact x = σ(x)−σ(−x) for any x ∈ R. We omit the activation function (σ) if the input

is non-negative.

601

2N + 2 and depth L + 1. So, we finish the proof.602

With Lemma 3.3 and 3.4 in hand, we are ready to present the detailed proof of603

Proposition 3.1.604

Proof of Proposition 3.1. We divide the proof into two cases: d = 1 and d ≥ 2.605

Case 1∶ d = 1.606

In this case, K = ⌊N1/d⌋2⌊L2/d⌋ = N2L2. Denote M = N2L and consider the sample607

set608

{(1,M − 1), (2,0)} ∪ {(mM ,m) ∶m = 0,1,⋯,M − 1} ∪ {(m+1
M − δ,m) ∶m = 0,1,⋯,M − 2}.609
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Its size is 2M + 1 = N ⋅ ((2NL− 1)+ 1)+ 1. By Lemma 3.3 (set N1 = N and N2 = 2NL− 1610

therein), there exists φ1 ∈ NN (widthvec = [2N,2(2NL − 1) + 1]) = NN (widthvec =611

[2N,4NL − 1]) such that612

• φ1(M−1
M ) = φ1(1) =M − 1 and φ1(mM ) = φ1(m+1

M − δ) =m for m = 0,1,⋯,M − 2;613

• φ1 is linear on [M−1
M ,1] and each interval [mM , m+1

M − δ] for m = 0,1,⋯,M − 2.614

Then615

φ1(x) =m, if x ∈ [mM , m+1
M − δ ⋅ 1{m≤M−2}], for m = 0,1,⋯,M − 1. (3.9)616

Now consider the another sample set617

{( 1
M , L − 1), (2,0)} ∪ {( `

ML , `) ∶ ` = 0,1,⋯, L − 1} ∪ {( `+1
ML − δ, `) ∶ ` = 0,1,⋯, L − 2}.618

Its size is 2L+1 = 1 ⋅((2L−1)+1)+1. By Lemma 3.3 (set N1 = 1 and N2 = 2L−1 therein),619

there exists φ2 ∈ NN (widthvec = [2,2(2L − 1) + 1]) = NN (widthvec = [2,4L − 1]) such620

that621

• φ2(L−1
ML) = φ2( 1

M ) = L − 1 and φ2( `
ML) = φ2( `+1

ML − δ) = ` for ` = 0,1,⋯, L − 2;622

• φ2 is linear on [L−1
ML ,

1
M ] and each interval [ `

ML ,
`+1
ML − δ] for ` = 0,1,⋯, L − 2.623

It follows that, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1,624

φ2(x − m
M ) = `, for x ∈ [mL+`ML ,

mL+`+1
ML − δ ⋅ 1{`≤L−2}]. (3.10)625

The fact K = ML implies each k ∈ {0,1,⋯,K − 1} can be unique represented by626

k = mL + ` for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1. Then the desired function φ can627

be implemented by a ReLU FNN shown in Figure 10. Clearly,628

φ(x) = k, if x ∈ [ kK , kK − δ ⋅ 1{k≤K−2}] for k ∈ {0,1,⋯,K − 1}.629

By Lemma 3.4, φ1 ∈ NN (widthvec = [2N,4NL−1]) ⊆ NN (width ≤ 4N+2; depth ≤ 2L+1)630

and φ2 ∈ NN (widthvec = [2,4L − 1]) ⊆ NN (width ≤ 6; depth ≤ 2L + 1), implying631

φ ∈ NN (width ≤ max{4N +2+1,6+1} = 4N +3; depth ≤ (2L+1)+2+(2L+1)+1 = 4L+5).632

So we finish the proof for the case d = 1.

x

φ1(x) = m

x

m

x− m
M

m

φ2(x− m
M ) = `

mL+ ` = k =: φ(x)
φ1

φ2

Figure 10: An illustration of the ReLU FNN implementing φ based on Equation (3.9)

and (3.10) with x ∈ [ kK , kK − δ ⋅ 1{k≤K−2}] = [mL+`ML ,
mL+`+1
ML − δ ⋅ 1{m≤M−2 or `≤L−2}], where

k =mL+` for m = 0,1,⋯,M −1 and ` = 0,1,⋯, L−1. “φ1” and “φ2” near “Ð→” represent

the respective ReLU FNN implementing itself. We omit the activation function ReLU if

the input of a neuron is non-negative.

633
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Case 2∶ d ≥ 2.634

Now we consider the case when d ≥ 2. Consider the sample set635

{(1,K − 1), (2,0)} ∪ {( kK , k) ∶ k = 0,1,⋯,K − 1} ∪ {(k+1
K − δ, k) ∶ k = 0,1,⋯,K − 2},636

whose size is 2K +1 = ⌊N1/d⌋((2⌊N1/d⌋⌊L2/d⌋−1)+1)+1. By Lemma 3.3 (set N1 = ⌊N1/d⌋637

and N2 = 2⌊N1/d⌋⌊L2/d⌋ − 1 therein), there exists φ in638

NN (widthvec = [2⌊N1/d⌋,2(2⌊N1/d⌋⌊L2/d⌋ − 1) + 1])
⊆ NN (widthvec = [2⌊N1/d⌋,4⌊N1/d⌋⌊L2/d⌋ − 1])639

such that640

• φ(K−1
K ) = φ(1) =K − 1, and φ( kK ) = φ(k+1

K − δ) = k for k = 0,1,⋯,K − 2;641

• φ is linear on [K−1
K ,1] and each interval [ kK , k+1

K − δ] for k = 0,1,⋯,K − 2.642

Then643

φ(x) = k, if x ∈ [ kK , k+1
K − δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.644

By Lemma 3.4,645

φ ∈ NN (widthvec = [2⌊N1/d⌋,4⌊N1/d⌋⌊L2/d⌋ − 1])
⊆ NN (width ≤ 4⌊N1/d⌋ + 2; depth ≤ 2⌊L2/d⌋ + 1)
⊆ NN (width ≤ 4⌊N1/d⌋ + 3; depth ≤ 4L + 5).

646

which means we finish the proof for the case d ≥ 2.647

3.4 Proof of Proposition 3.2648

The proof of Proposition 3.2 is based on the bit extraction technique in [5, 27]. In649

fact, we modify this technique to extract the sum of many bits rather than one bit and650

this modification can be summarized in Lemma 3.5 and 3.6 below.651

Lemma 3.5. For any L ∈ N+, there exists a function φ in652

NN (#input = 2; width ≤ 7; depth ≤ 2L + 1; #output = 1)653

such that, for any θ1, θ2,⋯, θL ∈ {0,1}, we have654

φ(bin0.θ1θ2⋯θL, `) =
`

∑
j=1

θj, for ` = 1,2,⋯, L.655

Proof. Given θ1, θ2,⋯, θL ∈ {0,1}, define656

ξj ∶= bin0.θjθj+1⋯θL, for j = 1,2,⋯, L657

and658

T (x) ∶= {1, x ≥ 0,

0, x < 0.
659
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Then we have660

θj = T (ξj − 1/2), for j = 1,2,⋯, L,661

and662

ξj+1 = 2ξj − θj, for j = 1,2,⋯, L − 1.663

We would like to point out that, by above two iteration equations, we can iteratively get664

ξ1, θ1, ξ2, θ2,⋯, ξL, θL when ξ1 is given. Based on this iteration idea, the rest proof can be665

divided into three steps.666

Step 1∶ Simplify the iteration equations.667

Note that T (x) = σ(x/δ+1)−σ(x/δ) for any x ∉ (−δ,0). By setting δ = 1/2−∑L
j=2 2−j =668

2−L, we have ξj − 1/2 ∉ (−δ,0) for all j, implying669

θj = T (ξj − 1/2) = σ((ξj − 1/2)/δ + 1) − σ((ξj − 1/2)/δ)
= σ(L(ξj) + 1) − σ(L(ξj)),

(3.11)670

for j = 1,2,⋯, L, where L is the linear map given by L(x) = (x − 1/2)/δ. It follows that,671

for j = 1,2,⋯, L − 1,672

ξj+1 = 2ξj − θj = 2ξj − σ(L(ξj) + 1) + σ(L(ξj)). (3.12)673

Step 2∶ Design a ReLU FNN to output ∑`
j=1 θj.674

It is easy to design a ReLU FNN to output θ1, θ2,⋯, θL by Equation (3.11) and675

(3.12) when using ξ1 = bin0.θ1θ2⋯θL as the input. However, it is highly non-trivial to676

construct a ReLU FNN to output ∑`
j=1 θj with another input `, since many operations677

like multiplication and comparison are not allowed in designing ReLU FNNs.678

Now let us establish a formula to represent ∑`
j=1 θj in a form of a ReLU FNN as679

follows:680

The fact that x1x2 = σ(x1 + x2 − 1) for any x1, x2 ∈ {0,1} implies681

`

∑
j=1

θj =
L

∑
j=1

θjT (` − j) =
L

∑
j=1

σ(θj + T (` − j) − 1)

=
L

∑
j=1

σ(θj + σ(` − j + 1) − σ(` − j) − 1),
682

for ` = 1,2,⋯, L, where the last equality comes from the fact T (n) = σ(n + 1) − σ(n) for683

any integer n.684

To simplify the notations, we define685

z`,j ∶= σ(θj + σ(` − j + 1) − σ(` − j) − 1), (3.13)686

for ` = 1,2,⋯, L and j = 1,2,⋯, L. Then,687

`

∑
j=1

θj =
L

∑
j=1

z`,j, for ` = 1,2,⋯, L. (3.14)688

24



ξ1

`

ξ1

σ
(
L(ξ1) + 1

)

σ
(
L(ξ1)

)

σ(`− 1)

σ(1− `)

ξ2

θ1

σ(`− 1 + 1)

σ(`− 1)

σ(1− `)

ξ2

σ
(
L(ξ2) + 1

)

σ
(
L(ξ2)

)

z`,1

σ(`− 2)

σ(2− `)

ξ3

θ2

∑1
j=1 z`,j

σ(`− 2 + 1)

σ(`− 2)

σ(2− `)

ξ3

σ
(
L(ξ3) + 1

)

σ
(
L(ξ3)

)

∑1
j=1 z`,j

z`,2

σ(`− 3)

σ(3− `)

· · ·

Input 1 2 3 4 5

ξL

θL−1

∑L−2
j=1 z`,j

σ(`− (L− 1) + 1)

σ(`− (L− 1))

σ((L− 1)− `)

ξL

σ
(
L(ξL) + 1

)

σ
(
L(ξL)

)

∑L−2
j=1 z`,j

z`,L−1

σ(`− L)

σ(L− `)

θL

∑L−1
j=1 z`,j

σ(`− L+ 1)

σ(`− L)

∑L−1
j=1 z`,j

z`,L

∑L
j=1 z`,j =

∑`
j=1 θj =: φ(ξ1, `)· · ·

2L− 2 2L− 1 2L 2L + 1 Output

Figure 11: A illustration of the target ReLU FNN implementing φ to output ∑L
j=1 zj,` =

∑`
j=1 θj = φ(ξ1, `) given the input (ξ1, `) = (bin0.θ1θ2⋯θL, `) for ` ∈ {1,2,⋯, L} and

θ1, θ2,⋯, θL ∈ {0,1}. The construction is mainly based on Equation (3.11), (3.12), (3.13),

and (3.14). The numbers above the architecture indicate the order of hidden layers. It

builds a whole iteration step for every two layers. We output both σ(` − j) and σ(j − `)
in the hidden layers for j = 1,2,⋯, L because of the fact x = σ(x) − σ(−x) for any x ∈ R.

We omit the activation function (σ) if the input of a neuron is non-negative. Note that

all parameters of this network are essentially determined by Equation (3.11) and (3.12),

which are valid no matter what θ1, θ2,⋯, θL ∈ {0,1} are. Thus, the desired function φ

implemented by this network is independent of θ1, θ2,⋯, θL ∈ {0,1}.
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With Equation (3.11), (3.12), (3.13), and (3.14) in hand, it is easy to construct a689

function φ implemented by a ReLU FNN with the desired width and depth outputting690

∑`
j=1 θj = ∑L

j=1 z`,j given the input (ξ1, `) = (bin0.θ1θ2⋯θL, `) for ` ∈ {1,2,⋯, L} and691

θ1, θ2,⋯, θL ∈ {0,1}. The details of construction are shown in Figure 11. Clearly, the692

network in Figure 11 is with width 7 and depth 2L + 1, which implies693

φ ∈ NN (#input = 2; width ≤ 7; depth ≤ 2L + 1; #output = 1).694

So we finish the proof.695

Next, we introduce Lemma 3.6 as an advanced version of Lemma 3.5.696

Lemma 3.6. For any N,L ∈ N+, any θm,` ∈ {0,1} for m = 0,1,⋯,M−1 and ` = 0,1,⋯, L−697

1, where M = N2L, there exists a function φ implemented by a ReLU FNN with width698

4N + 3 and depth 3L + 3 such that699

φ(m,`) =
`

∑
j=0

θm,j, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.700

Proof. Define701

ym ∶= bin0.θm,0θm,1⋯θm,L−1, for m = 0,1,⋯,M − 1.702

Consider the sample set {(m,ym) ∶m = 0,1,⋯,M}, whose cardinality is M+1 = N((NL−703

1) + 1) + 1. By Lemma 3.3 (set N1 = N and N2 = NL − 1 therein), there exists704

φ1 ∈ NN (#input = 1; widthvec = [2N,2(NL − 1) + 1])
= NN (#input = 1; widthvec = [2N,2NL − 1])705

such that706

φ1(m) = ym, for m = 0,1,⋯,M − 1.707

By Lemma 3.5, there exists708

φ2 ∈ NN (#input = 2; width ≤ 7; depth ≤ 2L + 1)709

such that, for any ξ1, ξ2,⋯, ξL ∈ {0,1}, we have710

φ2(bin0.ξ1ξ2⋯ξL, `) =
`

∑
j=1

ξj, for ` = 1,2,⋯, L.711

It follows that, for any ξ0, ξ1,⋯, ξL−1 ∈ {0,1}, we have712

φ2(bin0.ξ0ξ1⋯ξL−1, ` + 1) =
`

∑
j=0

ξj, for ` = 0,1,⋯, L − 1.713

Thus, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1, we have714

φ2(φ1(m), ` + 1) = φ2(ym, ` + 1) = φ2(0.θm,0θm,1⋯θm,L−1, ` + 1) =
`

∑
j=0

θm,j.715

Hence, the desired function function φ can be implemented by the network shown716

in Figure 12. By Lemma 3.4, φ1 ∈ NN (widthvec = [2N,2NL − 1]) ⊆ NN (width ≤ 4N +717

2; depth ≤ L+1), implying the network in Figure 12 is with width max{(4N +2)+1,7} =718

4N + 3 and depth (2L + 1) + 1 + (L + 1) = 3L + 3. So we finish the proof.719
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m

`

φ1(m)

`+ 1

φ2
(
φ1(m), `+ 1

)
=
∑`

j=0 θm,j =: φ(m, `)

φ1
φ2

Figure 12: A illustration of the network implementing the desired function φ. “φ1” and

“φ2” near “Ð→” represent the respective ReLU FNN implementing itself. We omit the

activation function ReLU if the input of a neuron is non-negative.

Next, we apply Lemma 3.6 to prove Lemma 3.7 below, which is a key intermediate720

conclusion to prove Proposition 3.2.721

Lemma 3.7. For any ε > 0, L,N ∈ N+, denote M = N2L and assume {ym,` ≥ 0 ∶ m =722

0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1} is a sample set with723

∣ym,` − ym,`−1∣ ≤ ε, for m = 0,1,⋯,M − 1 and ` = 1,2,⋯, L − 1.724

Then there exists φ ∈ NN (#input = 2; width ≤ 12N + 8; depth ≤ 3L + 6) such that725

(i) ∣φ(m,`) − ym,`∣ ≤ ε, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1;726

(ii) 0 ≤ φ(x1, x2) ≤ max{ym,` ∶m = 0,1,⋯,M−1 and ` = 0,1,⋯, L−1}, for any x1, x2 ∈ R.727

Proof. Define728

am,` ∶= ⌊ym,`/ε⌋, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.729

We will construct a function implemented by a ReLU FNN to map the index (m,`) to730

am,`ε for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.731

Define bm,0 ∶= 0 and bm,` ∶= am,` − am,`−1 for m = 0,1,⋯,M − 1 and ` = 1,⋯, L − 1.732

Since ∣ym,` − ym,`−1∣ ≤ ε for all m and `, we have bm,` ∈ {−1,0,1}. Hence, there exist cm,`733

and dm,` ∈ {0,1} such that bm,` = cm,` − dm,`, which implies734

am,` = am,0 +
`

∑
j=1

(am,j − am,j−1) = am,0 +
`

∑
j=1

bm,j = am,0 +
`

∑
j=0

bm,j

= am,0 +
`

∑
j=0

cm,j −
`

∑
j=0

dm,j.

735

for m = 0,1,⋯,M − 1 and ` = 1,⋯, L − 1.736

For the sample set {(m,am,0) ∶m = 0,1,⋯,M − 1} ∪ {(M,0)}, whose size is M + 1 =737

N ⋅ ((NL− 1)+ 1)+ 1, by Lemma 3.3 (set N1 = N and N2 = NL− 1 therein), there exists738

ψ1 ∈ NN (widthvec = [2N,2(NL − 1) + 1]) = NN (widthvec = [2N,2NL − 1]) such that739

ψ1(m) = am,0, for m = 0,1,⋯,M − 1.740

By Lemma 3.6, there exist ψ2, ψ3 ∈ NN (width ≤ 4N + 3; depth ≤ 3L + 3) such that741

ψ2(m,`) =
`

∑
j=0

cm,j and ψ3(m,`) =
`

∑
j=0

dm,j,742
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for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1. Hence, it holds that743

am,` = am,0 +
`

∑
j=0

cm,j −
`

∑
j=0

dm,j = ψ1(m) + ψ2(m,`) − ψ3(m,`), (3.15)744

for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.745

Define746

ymax ∶= max{ym,` ∶m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1}.747

Then the desired function can be implemented by two sub-networks shown in Figure 13.748

m

`

ψ1(m)

ψ2(m, `)

ψ3(m, `)

εam,` =: φ1(m, `)

ψ1

ψ2

ψ3

(a) φ1

x σ(x)

σ
(
σ(x) + ymax

)

σ
(
− σ(x)− ymax

)

σ
(
σ(x)− ymax

)

σ
(
− σ(x) + ymax

)

min
{
σ(x), ymax

}
=: φ2(x)

(b) φ2

Figure 13: Illustrations of two sub-networks implementing the desired function

φ = φ2 ○ φ1 based Equation (3.15) and the fact min{x1, x2} = x1+x2−∣x1−x2∣
2 =

σ(x1+x2)−σ(−x1−x2)−σ(x1−x2)−σ(−x1+x2)
2 . ymax is given by max{ym,` ∶m = 0,1,⋯,M − 1 and ` =

0,1,⋯, L − 1}. “ψ1”,“ψ2”, and “ψ3” near “Ð→” represent the respective ReLU FNN

implementing itself. We omit the activation function ReLU if the input of a neuron is

non-negative.

By Lemma 3.4, ψ1 ∈ NN (#input = 1; widthvec = [2N,2NL − 1]) ⊆ NN (#input =749

1; width ≤ 4N +2; depth ≤ L+1). Note that ψ2, ψ3 ∈ NN (width ≤ 4N +3; depth ≤ 3L+3).750

Thus, φ1 ∈ NN (width ≤ (4N + 2) + 2(4N + 3) = 12N + 8; depth ≤ (3L + 3) + 1 = 3L + 4)751

as shown in Figure 13. And it is clear that φ2 ∈ NN (width ≤ 4; depth ≤ 2), implying752

φ = φ2 ○ φ1 ∈ NN (width ≤ 12N + 8; depth ≤ (3L + 4) + 2 = 3L + 6).753

Clearly, 0 ≤ φ(x1, x2) ≤ ymax for any x1, x2 ∈ R, since φ(x1, x2) = φ2 ○ φ1(x1, x2) =754

max{σ(φ1(x1, x2)), ymax}.755

Note that 0 ≤ εam,` = ε⌊ym,`/ε⌋ ≤ ymax. Then we have φ(m,`) = φ2 ○ φ1(m,`) =756

φ2(εam,`) = max{σ(εam,`), ymax} = εam,`. Therefore,757

∣φ(m,`) − ym,`∣ = ∣am,`ε − ym,`∣ = ∣⌊ym,`/ε⌋ε − ym,`∣ ≤ ε,758

for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1. Hence, we finish the proof.759

Finally, we apply Lemma 3.7 to prove Proposition 3.2.760

Proof of Proposition 3.2. Let M = N2L, then we may assume J =ML since we can set761

yJ−1 = yJ = yJ+1 = ⋯ = yML−1 if J <ML.762

For the sample set763

{(mL,m) ∶m = 0,1,⋯,M} ∪ {(mL +L − 1,m) ∶m = 0,1,⋯,M − 1},764
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whose size is 2M + 1 = N ⋅ ((2NL − 1) + 1) + 1, by Lemma 3.3 (set N1 = N and N2 =765

NL − 1 therein), there exist φ1 ∈ NN (#input = 1; widthvec = [2N,2(2NL − 1) + 1]) =766

NN (#input = 1; widthvec = [2N,4NL − 1]) such that767

• φ1(ML) =M and φ1(mL) = φ1(mL +L − 1) =m for m = 0,1,⋯,M − 1;768

• φ1 is linear on each interval [mL,mL +L − 1] for m = 0,1,⋯,M − 1.769

It follows that770

φ1(j) =m, and j −Lφ1(j) = `, where j =mL + `, (3.16)771

for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.772

Note that any number j in {0,1, . . . , J − 1} can be uniquely indexed as j = mL + `773

for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L− 1. So we can denote yj = ymL+` as ym,`. Then by774

Lemma 3.7, there exists φ2 ∈ NN (width ≤ 12N + 8; depth ≤ 3L + 6) such that775

∣φ2(m,`) − ym,`∣ ≤ ε, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1, (3.17)776

and777

0 ≤ φ2(x1, x2) ≤ ymax, for any x1, x2 ∈ R, (3.18)778

where ymax ∶= max{ym,` ∶ m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1} = max{yj ∶ j =779

0,1,⋯,ML − 1}.780

j

φ1(j)

j

φ1(j)

j − Lφ1(j)

φ(j) := φ2
(
φ1(j), j − Lφ1(j)

)
= φ2(m, `) = φ(j) ≈ ym,` = yj

φ1
φ2

Figure 14: A illustration of the ReLU FNN implementing the desired function φ based

Equation (3.16). The index j ∈ {0,1,⋯,ML − 1} is unique represented by j =mL + ` for

m = 0,1,⋯,M −1 and ` = 0,1,⋯, L−1. “φ1” and “φ2” near “Ð→” represent the respective

ReLU FNN implementing itself. We omit the activation function ReLU if the input of a

neuron is non-negative.

Note that φ1 ∈ NN (#input = 1; widthvec = [2N,4NL − 1]) ⊆ NN (#input =781

1; width ≤ 8N + 2; depth ≤ L + 1) by Lemma 3.4 and φ2 ∈ NN (width ≤ 12N + 8; depth ≤782

3L+ 6). So φ ∈ NN (width ≤ 12N + 8; depth ≤ (L+ 1)+ 2+ (3L+ 6) = 4L+ 9) as shown in783

Figure 14.784

Equation (3.18) implies785

0 ≤ φ(x) ≤ ymax, for any x ∈ R,786

since φ is given by φ(x) = φ2(φ1(x), x −Lφ1(x)).787

Represent j ∈ {0,1,⋯,ML−1} via j =mL+` form = 0,1,⋯,M−1 and ` = 0,1,⋯, L−1,788

then we have, by Equation (3.17),789

∣φ(j) − yj ∣ = ∣φ2(φ1(j), j −Lφ1(j)) − yj ∣ = ∣φ2(m,`) − ym,`∣ ≤ ε.790

So we finish the proof.791
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We would like to remark that the key idea in the proof of Proposition 3.2 is the bit792

extraction technique in Lemma 3.5, which allows us to store L bits in a binary number793

bin0.θ1θ2⋯θL and extract each bit θi. The extraction operator can be efficiently carried794

out via a deep ReLU neural network demonstrating the power of depth.795

4 Neural networks approximation and evaluation in796

practice797

This section is concerned with neural networks approximation and evaluation in798

practice, e.g., approximating functions defined on irregular domains or domains with a799

low-dimensional structure, and neural network computation in parallel computing. In800

the practical training of FNNs, the approximation rate in this paper can only be observed801

if the global minimizers of neural network optimization can be identified. Since there is802

no existing optimization algorithm guaranteeing a global minimizer, it is challenging to803

observe the proved approximation rate currently. Developing optimization algorithms804

for global minimizers is another interesting research topic as a future work.805

4.1 Approximation on irregular domain806

In this section, we consider approximating continuous functions defined on irregular807

domains by deep ReLU FNNs. The construction is through extending the target function808

to a cubic domain, applying Theorem 1.1, and finally restricting the constructed FNN809

back to the irregular domain.810

Given any uniformly continuous and real-valued function f defined on a metric space811

S with a metric dS(⋅, ⋅), we define the (optimal) modulus of continuity of f on a subset812

E ⊆ S as813

ωEf (r) ∶= sup{∣f(x1) − f(x2)∣ ∶, dS(x1,x2) ≤ r, x1,x2 ∈ E}, for any r ≥ 0.814

For the purpose of consistency and simplicity, ωf(⋅) is short of ω
[0,1]d

f (⋅).815

First, let us present two lemmas for (approximately) extending (almost) continuous816

functions on E to (almost) continuous functions on S. These lemmas are similar to817

the well-known results for extending Lipschitz or differentiable functions in [46,63]. We818

generalize these results to a broader class of functions required in the proof of Theorem819

4.3.820

Lemma 4.1 (Approximate Extension of Almost-Continuous Functions). Assume S is a821

metric space with a metric dS(⋅, ⋅) and ω ∶ [0,∞)→ [0,∞) is an increasing function with822

ω(r1 + r2) ≤ ω(r1) + ω(r2), for any r1, r2 ∈ [0,∞). (4.1)823

Let f be a real-valued function defined on a subset E ⊆ S and satisfy824

∣f(x1) − f(x2)∣ ≤ ω(dS(x1,x2) +∆), for any x1,x2 ∈ E, (4.2)825
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where ∆ is a positive constant independent of f . Then there exists a function g defined826

on S such that827

0 ≤ f(x) − g(x) ≤ ω(∆), for any x ∈ E828

and829

∣g(x1) − g(x2)∣ ≤ ω(dS(x1,x2)), for any x1,x2 ∈ S.830

In Lemma 4.1, g is an approximate extension of f defined on E to a new domain S831

with an approximation error ω(∆). In a special case when ∆ = 0 and ω(0) = 0, g is an832

exact extension of f .833

Proof of Lemma 4.1. Define834

g(x) ∶= sup
z∈E

(f(z) − ω(dS(z,x) +∆)).835

By Equation (4.2), we have f(x1) − ω(dS(x1,x2) + ∆) ≤ f(x2) for any x1,x2 ∈ E. It836

holds that g(x) ≤ f(x) for any x ∈ E. Together with837

g(x) = sup
z∈E

(f(z) − ω(dS(z,x) +∆)) ≥ f(x) − ω(dS(x,x) +∆) = f(x) − ω(∆),838

for any x ∈ E, it follows that 0 ≤ f(x) − g(x) ≤ ω(∆) for any x ∈ E. By Equation (4.1)839

and the fact840

sup
z∈E

f1(z) − sup
z∈E

f2(z) ≤ sup
z∈E

(f1(z) − f2(z)), for any functions f1, f2,841

we have842

g(x1) − g(x2) = sup
z∈E

(f(z) − ω(dS(z,x1))) − sup
z∈E

(f(z) − ω(dS(z,x2)))

≤ sup
z∈E

(ω(dS(z,x1)) − ω(dS(z,x2)))

≤ sup
z∈E

ω(dS(z,x1) − dS(z,x2))

≤ sup
z∈E

ω(dS(x1,x2)) = ω(dS(x1,x2)),

843

for any x1,x2 ∈ S. Similarly, we have g(x2) − g(x1) ≤ ω(dS(x1,x2)), which implies844

∣g(x1) − g(x2)∣ ≤ ω(dS(x1,x2)).845

So we finish the proof.846

Next, we introduce a lemma below for extending continuous functions defined on847

E ⊆ S to continuous functions defined on S preserving the modulus of continuity.848

Lemma 4.2 (Extension of Continuous Functions). Suppose f is a uniformly continuous849

function defined on a subset E ⊆ S, where S is a metric space with a metric dS(⋅, ⋅), then850

there exists a uniformly continuous function g on S such that f(x) = g(x) for x ∈ E and851

ωEf (r) = ωSg (r) for any r ≥ 0.852
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Proof. By the application of Lemma 4.1 with ω(r) = ωEf (r) for r ≥ 0 and ∆ = 0, we know853

that there exists g ∶ S → R such that854

0 ≤ f(x) − g(x) ≤ ωEf (∆) = 0, for any x ∈ E,855

and856

∣g(x1) − g(x2)∣ ≤ ωEf (dS(x1,x2)), for any x1,x2 ∈ S.857

The equation above and the uniform continuity of f imply that g is uniformly continuous.858

It also follows that859

f(x) = g(x), for any x ∈ E, and ωSg (r) ≤ ωEf (r), for any r ≥ 0,860

since ωSg (⋅) is the optimal modulus of continuity of g. Note that ωEf (⋅) is the optimal861

moduls of continuity of f and862

∣f(x1) − f(x2)∣ = ∣g(x1) − g(x2)∣ ≤ ωSg (dS(x1,x2)), for any x1,x2 ∈ E.863

Hence, ωEf (r) ≤ ωSg (r) for all r ≥ 0, which implies ωEf (r) = ωSg (r) since we have proved864

that ωSg (r) ≤ ωEf (r) for all r ≥ 0. So we finish the proof.865

Now we are ready to introduce and prove the main theorem of this section, which866

extends Theorem 1.1 to an irregular domain as follows.867

Theorem 4.3. Let f be a uniformly continuous function defined on E ⊆ [−R,R]d. For868

arbitrary L ∈ N+ and N ∈ N+, there exists a function φ implemented by a ReLU FNN869

with width 3d+3 max{d⌊N1/d⌋, N + 1} and depth 12L + 14 + 2d such that870

∥f − φ∥L∞(E) ≤ 19
√
dωEf (2RN−2/dL−2/d).871

Proof. By Lemma 4.2, f can be extended to Rd such that872

ωRd
f (r) = ωEf (r), for any r ≥ 0.873

Define874

f̃(x) ∶= f(2Rx −R), for any x ∈ Rd.875

It follows that876

ωRd
f̃

(r) = ωRd
f (2Rr) = ωEf (2Rr), for any r ≥ 0. (4.3)877

By Theorem 1.1, there exists a function φ̃ implemented by a ReLU FNN with width878

3d+3 max{d⌊N1/d⌋, N + 1} and depth 12L + 14 + 2d such that879

∥f̃ − φ̃∥L∞([0,1]d) ≤ 19
√
dω

[0,1]d

f̃
(N−2/dL−2/d) ≤ 19

√
dωRd

f̃
(N−2/dL−2/d).880

Define881

φ(x) ∶= φ̃( 1
2Rx + 1

2), for any x ∈ Rd.882

Then, by Equation (4.3), for any x ∈ E ⊆ [−R,R]d, we have883

∣f(x) − φ(x)∣ = ∣f̃( 1
2Rx + 1

2) − φ̃( 1
2Rx + 1

2)∣ ≤ ∥f̃ − φ̃∥L∞([0,1]d)

≤ 19
√
dωRd

f̃
(N−2/dL−2/d) = 19

√
dωEf (2RN−2/dL−2/d),884

which implies885

∥f − φ∥L∞(E) ≤ 19
√
dωEf (2RN−2/dL−2/d).886

So we finish the proof.887
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4.2 Approximation in a neighborhood of a low-dimensional man-888

ifold889

In this section, we study neural network approximation of functions defined in a890

neighborhood of a low-dimensional manifold and prove Theorem 1.2 in this setting. Let891

us first introduce Theorem 4.4 which is required to prove Theorem 1.2.892

Theorem 4.4 (Theorem 3.1 of [3]). Let M be a compact dM-dimensional Riemannian893

submanifold of Rd having condition number 1/τ , volume V , and geodesic covering reg-894

ularity R. Fix δ ∈ (0,1) and γ ∈ (0,1). Let A =
√

d
dδ

Φ, where Φ ∈ Rdδ×d is a random895

orthoprojector with896

dδ = O (dM ln(dVRτ−1δ−1) ln(1/γ)
δ2 ) .897

If dδ ≤ d, then with probability at least 1 − γ, the following statement holds: For every898

x1,x2 ∈M,899

(1 − δ)∣x1 −x2∣ ≤ ∣Ax1 −Ax2∣ ≤ (1 + δ)∣x1 −x2∣.900

Theorem 4.4 shows the existence of a linear projector A ∈ Rdδ×d that maps a low-901

dimensional manifold in a high-dimensional space to a low-dimensional space nearly902

preserving distance. With this projection A available, we can prove Theorem 1.2 via903

constructing a ReLU FNN defined in the low-dimensional space using Theorem 4.3 and904

hence the curse of dimensionality is lessened. The ideas of the proof are summarized in905

the following Table 1.906

In Table 1 and the detailed proof later, we introduce a new notation SL(E) for any907

compact set E ⊆ Rd as the “smallest” element of E. Specifically, SL(E) is defined as the908

unique point in ∩dk=1Ek, where909

Ek ∶= {x ∈ Ek−1 ∶ xk = sk}, sk ∶= inf {xk ∶ [x1, x2,⋯, xd]T ∈ Ek−1}, for k = 1,2,⋯, d,910

and E0 = E. The compactness of E ensures that ∩dk=1Ek is in fact one point belong-911

ing to E. The introduction of SL(⋅) uniquely formulates a low-dimensional function f̃912

representing a high-dimensional function f defined on Mε by913

f̃(y) ∶= f(xy), where xy = SL({x ∈Mε ∶Ax = y}), for any y ∈A(Mε) ⊆ Rdδ .914

As we shall see later, such a definition of f̃ is reasonable because {x ∈Mε ∶ Ax = y}915

is contained in a small ball of radius O(ε) for any y ∈ A(Mε). There are many other916

alternative ways to define SL(⋅) as long as the definition ensures that SL(E) contains917

only one element. For example, SL(E) can be defined as any arbitrary point in E. For918

another example, y ∈A(M) cannot guarantee xy = SL({x ∈Mε ∶Ax = y}) ∈M in the919

current definition, but in practice we can choose SL({x ∈M ∶Ax = y}) as xy to ensure920

that xy ∈M, which might be beneficial for potential applications.921

Now we are ready to prove Theorem 1.2.922

Proof of Theorem 1.2. By Theorem 4.4, there exists a matrix A ∈ Rdδ×d such that923

AAT = d
dδ
Idδ , (4.4)924
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Table 1: Main steps of the proof of Theorem 1.2. Step 1: dimension reduction via the

nearly isometric projection operator A provided by Theorem 4.4 to obtain an “equiva-

lent” function f̃ of f in a low-dimensional domain using xy = SL ({x ∈Mε ∶Ax = y}).
Step 2: construct a ReLU FNN to implement φ̃ ≈ f̃ by Theorem 4.3. Step 3: define a

ReLU FNN to implement φ in the original high-dimensional domain via the projection

A. Step 4: verify that the approximation error of φ ≈ f satisfies our requirement.

f(x) for x ∈Mε ⊆ [0,1]d
Step 4≈ φ(x) ∶= φ̃(Ax) for x ∈Mε ⊆ [0,1]d

Step 1
ØÚÚÙ
xy = SL({x ∈Mε ∶Ax = y}) Step 3

ØÚÚÙ
y =Ax

f̃(y) ∶= f(xy) for y ∈A(Mε) ⊆ Rdδ
Step 2≈ φ̃(y) for y ∈A(Mε) ⊆ Rdδ

where Idδ is an identity matrix of size dδ × dδ, and925

(1 − δ)∣x1 −x2∣ ≤ ∣Ax1 −Ax2∣ ≤ (1 + δ)∣x1 −x2∣, for any x1,x2 ∈M. (4.5)926

Given any y ∈ A(Mε), then {x ∈ Mε ∶ Ax = y} is a nonzero compact set. Let927

xy = SL({x ∈Mε ∶Ax = y}), then we define f̃ on A(Mε) as f̃(y) = f(xy).928

For any y1,y2 ∈A(Mε), let xi = SL({x ∈Mε ∶Ax = yi}), then xi ∈Mε for i = 1,2.929

By the definition of Mε, there exist x̃1, x̃2 ∈M such that ∣x̃i − xi∣ ≤ ε for i = 1,2. It930

follows that931

∣f̃(y1)−f̃(y2)∣ = ∣f(x1)−f(x2)∣ ≤ ωf(∣x1−x2∣) ≤ ωf(∣x̃1−x̃2∣+2ε) ≤ ωf( 1
1−δ ∣Ax̃1−Ax̃2∣+2ε),932

where the last inequality comes from Equation (4.5). By the triangular inequality, we933

have934

∣f̃(y1) − f̃(y2)∣ ≤ ωf( 1
1−δ ∣Ax1 −Ax2∣ + 1

1−δ ∣Ax1 −Ax̃1∣ + 1
1−δ ∣Ax2 −Ax̃2∣ + 2ε)

≤ ωf( 1
1−δ ∣Ax1 −Ax2∣ + 2ε

1−δ

√
d
dδ
+ 2ε)

≤ ωf( 1
1−δ ∣y1 − y2∣ + 2ε

1−δ

√
d
dδ
+ 2ε).

935

Set ω(r) = ωf( 1
1−δr) for any r ≥ 0 and ∆ = 2ε

√
d
dδ
+ 2ε(1 − δ), then936

∣f̃(y1) − f̃(y2)∣ ≤ ω(∣y1 − y2∣ +∆), for any y1,y2 ∈A(Mε) ⊆ Rdδ .937

By Lemma 4.1, there exists g̃ defined on Rdδ such that938

∣g̃(y) − f̃(y)∣ ≤ ω(∆) = ωf( 2ε
1−δ

√
d
dδ
+ 2ε), for any y ∈A(Mε), (4.6)939

and940

∣g̃(y1) − g̃(y2)∣ ≤ ω(∣y1 − y2∣) = ωf( 1
1−δ ∣y1 − y2∣), for any y1,y2 ∈ Rdδ .941

It follows that942

ωRdδ
g̃ (r) ≤ ωf( r

1−δ), for any r ≥ 0. (4.7)943
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By Equation (4.4) and the definition of Mε in Equation (1.2), it is easy to check944

that945

A(Mε) ⊆A([0,1]d) ⊆ [−
√

d
dδ
,
√

d
dδ
]dδ .946

By the application of Theorem 4.3 with E = [−
√

d
dδ
,
√

d
dδ
]dδ , there exists a function947

φ̃ implemented by a ReLU FNN with width 3dδ+3 max{dδ⌊N1/dδ⌋, N + 1} and depth948

12L + 14 + 2dδ such that949

∥g̃ − φ̃∥L∞(E) ≤ 19
√
dωEg̃ (2

√
d
dδ
N−2/dδL−2/dδ). (4.8)950

Define φ ∶= φ̃ ○A, i.e., φ(x) ∶= φ̃(Ax) for any x ∈ Rd. Then φ is also a ReLU FNN951

with width 3dδ+3 max{dδ⌊N1/dδ⌋, N + 1} and depth 12L + 14 + 2dδ.952

For any x ∈Mε, set y =Ax and xy = SL({z ∈ Rd ∶Az = y}), there exist x̃, x̃y ∈M953

such that ∣x̃ −x∣ ≤ ε and ∣x̃y −xy ∣ ≤ ε. It follows from Equation (4.5) that954

∣x −xy ∣ ≤ ∣x̃ − x̃y ∣ + 2ε ≤ 1
1−δ ∣Ax̃ −Ax̃y ∣ + 2ε

≤ 1
1−δ

(∣Ax̃ −Ax∣ + ∣Ax −Axy ∣ + ∣Axy −Ax̃y ∣) + 2ε

= 1
1−δ

(∣Ax̃ −Ax∣ + ∣Axy −Ax̃y ∣) + 2ε ≤ 2ε
1−δ

√
d
dδ
+ 2ε.

(4.9)955

In fact, the above equation implies that {x ∈Mε ∶ Ax = y} is contained in a small ball956

of radius O(ε) for y ∈A(Mε) as we mentioned previously.957

Together with Equation (4.6), (4.7), (4.8), and (4.9), we have, for any x ∈Mε,958

∣f(x) − φ(x)∣ ≤ ∣f(x) − f(xy)∣ + ∣f(xy) − φ(x)∣

≤ ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + ∣f̃(y) − φ̃(y)∣

≤ ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + ∣f̃(y) − g̃(y)∣ + ∣g̃(y) − φ̃(y)∣

≤ ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + ωf( 2ε

1−δ

√
d
dδ
+ 2ε) + 19

√
dωEg̃ (2

√
d
dδ
N−2/dδL−2/dδ)

≤ 2ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + 19

√
dωf( 2

√

d
(1−δ)

√

dδ
N−2/dδL−2/dδ).

959

Hence, we have finished the proof of this theorem.960

It is worth emphasizing that the approximation error961

O(ωf(O(ε)) + ωf(O(N−2/dδL−2/dδ)))962

in Theorem 1.2 is equal to O(ωf(O(N−2/dδL−2/dδ))) when ε = O(N−2/dδL−2/dδ).963

The application of Theorem 4.4 and the proof of Theorem 1.2 in fact inspire an964

efficient two-step algorithm for high-dimensional learning problems: in the first step,965

high-dimensional data are projected to a low-dimensional space via a random projection;966

in the second step, a deep learning algorithm is applied to learn from the low-dimensional967

data. By Theorem 4.4 and 1.2, the deep learning algorithm in the low-dimensional space968

can still provide good results with a high probability.969
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4.3 Optimal ReLU FNN structure in parallel computing970

In this section, we show how to select the best ReLU FNN to approximate functions971

in Bλ(Cα([0,1]d)) on a d-dimensional cube, if the approximation error ε and the number972

of parallel computing cores (processors) p are given. We choose the best ReLU FNN by973

minimizing the time complexity in each training iteration. The analysis in this section974

is valid up to a constant prefactor.975

Assume φθ ∈ NN (#input = d; widthvec = [N]L; #output = 1), N,L ∈ N+, where θ is976

the vector including all parameters of φθ. By the basic knowledge of parallel computing977

(see [36] for more details), we have the following Table 2.978

Table 2: Time complexity of one training iteration for an FNN of width N and depth L.

Number of cores p
Time Complexity

Evaluating φθ(x) Evaluating ∂φθ(x)
∂θ

p ∈ [1,N] O(N2L/p) O(N2L/p)
p ∈ (N,N2] O(L(N2/p + ln p

N )) O(L(N2/p + ln p
N ))

p ∈ (N2,∞) O(L lnN) O(L lnN)

For the sake of simplicity, we assume that the training batch size is O(1). Denote979

the time complexity of each training iteration as T (n,L), then980

T (N,L) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

O(N2L/p), p ∈ [1,N],
O(L(N2/p + ln p

N )), p ∈ (N,N2],
O(L lnN), p ∈ (N2,∞).

981

Theorem 1.1 and 2.3 imply that the approximation error ε is essentiallyO((NL)−2α/d).982

Hence, we can get the optimal size of ReLU FNNs via the optimization problem below:983

(Nopt, Lopt) = arg min
N, L

T (N,L)

subject to

⎧⎪⎪⎨⎪⎪⎩

ε = O((NL)−2α/d),

N,L, p ∈ N+.

(4.10)984

To simplify the discussion, we have the following assumptions:985

• Dropping the notation O(⋅) sometimes while assuming asymptotic analysis with986

the abuse of notations.987

• N , L, and p are allowed to be real numbers.988

• We denote ε = (NL)−2α/d since the approximation rate O((NL)−2α/d) is both at-989

tainable and nearly optimal.990
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With ε = (NL)−2α/d, we have991

T (N,L) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N2L/p p ∈ [1,N],
L(N2/p + ln p

N ), p ∈ (N,N2],
L(1 + lnN), p ∈ [N2,∞),

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nε−d/(2α)/p, N ∈ [p,∞),
Nε−d/(2α)/p + 1

N ε
−d/(2α) ln p

N , N ∈ [√p, p),
1+lnN
N ε−d/(2α), N ∈ [1,√p).

(4.11)992

Then we get T (N,L) = O(T (N,L)). Therefore, the optimization problem in Equation993

(4.10) can be simplified to994

(Nopt, Lopt) = arg min
N, L

T (N,L)

subject to

⎧⎪⎪⎨⎪⎪⎩

ε = (NL)−2α/d,

N,L, p ∈ [1,∞).

(4.12)995

By Equation (4.11), T (N,L) is independent of L on the condition that ε = (NL)−2α/d.996

Therefore, we may denote T (N,L) by T (N). Now we consider two cases: the case997

p = O(1) and the case p≫ O(1).998

Case 1∶ The case p = O(1).999

It is clear that T (N) is increasing in N when N ∈ [p,∞) by Equation (4.11).1000

Together with p = O(1), then O(√p) = O(p) = O(1). Therefore, Nopt = O(1) and1001

Lopt = O(ε−d/(2α)). Note that we regard d as a constant (O(1)) in above analysis, Nopt1002

should be O(d) in fact.1003

Case 2∶ The case p≫ O(1).1004

Since ε = (NL)−2α/d, we have N ≤ ε−d/(2α). We only need to consider the monotonic-1005

ity of T (N) on [1, ε−d/(2α)]. Together with Equation (4.11), this case can be divided into1006

two sub-cases: the sub-case
√
p ≤ ε−d/(2α) and the sub-case

√
p > ε−d/(2α).1007

Case 2.1∶ The sub-case
√
p > ε−d/(2α).1008

√
p > ε−d/(2α) implies [1, ε−d/(2α)] ⊆ [1,√p]. Hence, T (N) is decreasing in N on1009

[1, ε−d/(2α)]. It follows that Nopt = O(ε−d/(2α)) and that Lopt = O(1).1010

Case 2.2∶ The sub-case
√
p ≤ ε−d/(2α).1011

For this sub-case, Nopt and Nopt are hard to estimate. However, we can give a1012

rough range of Nopt. Since T (N) is decreasing in N on [1,√p] and increasing in N on1013

[p,∞), the minimum of T (N) is achieved on [√p, p]. Hence, Nopt ∈ [O(√p),O(p)] ∩1014

[O(√p),O(ε−d/(2α))] and Lopt = O(ε−d/(2α)/Nopt).1015

5 Conclusion and future work1016

This paper aims at a quantitative and optimal approximation rate of ReLU FNNs1017

in terms of both width and depth simultaneously to approximate continuous functions.1018
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It was shown that ReLU FNNs with width O(N) and depth O(L) can approximate1019

an arbitrary continuous function on a d-dimensional cube with an approximation rate1020

19
√
dωf(N−2/dL−2/d). In particular, when f is a Hölder continuous function of order α1021

with a Hölder constant λ, the approximation rate is 19
√
dλN−2α/dL−2α/d and it is nearly1022

asymptotically tight. We also extended our analysis to the case when the domain of1023

f is irregular and showed the same approximation rate. In practical applications, it is1024

usually believed that real data are sampled from an ε-neighborhood of a dM-dimensional1025

smooth manifoldM ⊆ [0,1]d with dM ≪ d. In the case of an essentially low-dimensional1026

domain, we show an approximation rate1027

2ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + 19

√
dωf( 2

√

d
(1−δ)

√

dδ
N−2/dδL−2/dδ)1028

for ReLU FNNs to approximate f in the ε-neighborhood, dδ = O(dM ln(d/δ)
δ2

) for any given1029

δ ∈ (0,1).1030

Besides, we studied how to select the best ReLU FNN to approximate continuous1031

function in parallel computing. In particular, ReLU FNNs with depth O(1) are the best1032

choices if the number of parallel computing cores p is sufficiently large. ReLU FNNs1033

with width O(d) are best choices if p = O(1). The width of best ReLU FNNs is between1034

O(√p) and O(p) if p is moderate.1035

We would like to remark that our analysis was based on the fully connected feed-1036

forward neural networks and the ReLU activation function. It would be very interesting1037

to generalize our conclusions to neural networks with other types of architectures (e.g.,1038

convolutional neural networks) and activation functions (e.g., tanh and sigmoid func-1039

tions). Besides, if identity maps are allowed in the construction of neural networks as in1040

the residual networks [28], the size of FNNs in our construction can be further optimized.1041

Finally, the proposed analysis could be generalized to other function spaces with explicit1042

formulas to characterize the approximation error. These will be left as future work.1043
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[12] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-1073

huber, Flexible, high performance convolutional neural networks for image clas-1074

sification, in Proceedings of the Twenty-Second International Joint Conference on1075

Artificial Intelligence - Volume Volume Two, IJCAI’11, AAAI Press, 2011, pp. 1237–1076

1242.1077

[13] D. Costarelli and A. R. Sambucini, Saturation classes for max-product neu-1078

ral network operators activated by sigmoidal functions, Results in Mathematics, 721079

(2017), pp. 1555 – 1569.1080

[14] D. Costarelli and G. Vinti, Convergence for a family of neural network oper-1081

ators in orlicz spaces, Mathematische Nachrichten, 290 (2017), pp. 226–235.1082

[15] , Approximation results in orlicz spaces for sequences of kantorovich max-1083

product neural network operators, Results in Mathematics, 73 (2018), pp. 1 – 15.1084

[16] G. Cybenko, Approximation by superpositions of a sigmoidal function, MCSS, 21085

(1989), pp. 303–314.1086

[17] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova, Non-1087

linear approximation and (deep) ReLU networks, vol. abs/1905.02199, 2019.1088

39



[18] R. DEVORE and A. RON, Approximation using scattered shifts of a multivariate1089

function, Transactions of the American Mathematical Society, 362 (2010), pp. 6205–1090

6229.1091

[19] R. A. DeVore, Nonlinear approximation, Acta Numerica, 7 (1998), p. 51–150.1092

[20] W. E, J. Han, and A. Jentzen, Deep learning-based numerical methods for high-1093

dimensional parabolic partial differential equations and backward stochastic differ-1094

ential equations, Communications in Mathematics and Statistics, 5 (2017), pp. 349–1095

380.1096

[21] W. E, C. Ma, and Q. Wang, A priori estimates of the population risk for residual1097

networks, ArXiv, abs/1903.02154 (2019).1098

[22] W. E, C. Ma, and L. Wu, A priori estimates of the population risk for two-layer1099

neural networks, Communications in Mathematical Sciences, 17 (2019), pp. 1407 –1100

1425.1101

[23] W. E and Q. Wang, Exponential convergence of the deep neural network approx-1102

imation for analytic functions, CoRR, abs/1807.00297 (2018).1103

[24] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential1104

equations using deep learning, Proceedings of the National Academy of Sciences,1105

115 (2018), pp. 8505–8510.1106

[25] T. Hangelbroek and A. Ron, Nonlinear approximation using gaussian kernels,1107

Journal of Functional Analysis, 259 (2010), pp. 203 – 219.1108

[26] B. Hanin and M. Sellke, Approximating continuous functions by ReLU nets of1109

minimal width, (2017).1110

[27] N. Harvey, C. Liaw, and A. Mehrabian, Nearly-tight VC-dimension bounds1111

for piecewise linear neural networks, in Proceedings of the 2017 Conference on Learn-1112

ing Theory, S. Kale and O. Shamir, eds., vol. 65 of Proceedings of Machine Learning1113

Research, Amsterdam, Netherlands, 07–10 Jul 2017, PMLR, pp. 1064–1068.1114

[28] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recog-1115

nition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition1116

(CVPR), June 2016, pp. 770–778.1117

[29] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural1118

Networks, 4 (1991), pp. 251 – 257.1119

[30] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks1120

are universal approximators, Neural Networks, 2 (1989), pp. 359 – 366.1121

40



[31] M. Hutzenthaler, A. Jentzen, T. Kruse, and T. A. Nguyen, A proof that1122

rectified deep neural networks overcome the curse of dimensionality in the numerical1123

approximation of semilinear heat equations, SN Partial Differential Equations and1124

Applications, (2020).1125

[32] K. Kawaguchi, Deep learning without poor local minima, in Advances in Neu-1126

ral Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg,1127

I. Guyon, and R. Garnett, eds., Curran Associates, Inc., 2016, pp. 586–594.1128

[33] K. Kawaguchi and Y. Bengio, Depth with nonlinearity creates no bad local1129

minima in resnets, (2018).1130

[34] M. J. Kearns and R. E. Schapire, Efficient distribution-free learning of prob-1131

abilistic concepts, J. Comput. Syst. Sci., 48 (1994), pp. 464–497.1132

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with1133

deep convolutional neural networks, in Advances in Neural Information Processing1134

Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.,1135

Curran Associates, Inc., 2012, pp. 1097–1105.1136

[36] V. Kumar, Introduction to Parallel Computing, Addison-Wesley Longman Pub-1137

lishing Co., Inc., Boston, MA, USA, 2nd ed., 2002.1138
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