
11

2

3

Deep Network with Approximation Error Being4

Reciprocal of Width to Power of Square Root of5

Depth6

7

Zuowei Shen8

matzuows@nus.edu.sg9

Department of Mathematics, National University of Singapore10

11

Haizhao Yang12

haizhao@purdue.edu13

Department of Mathematics, Purdue University14

15

Shijun Zhang16

zhangshijun@u.nus.edu17

Department of Mathematics, National University of Singapore18

19

Keywords: Exponential Convergence, Curse of Dimensionality, Deep Neural Net-20

work, Floor and ReLU Activation Functions, Continuous Function.21

22

23

Abstract24

A new network with super approximation power is introduced. This network is built25

with Floor (⌊x⌋) or ReLU (max{0, x}) activation function in each neuron and hence26

we call such networks Floor-ReLU networks. For any hyper-parameters N ∈ N+ and27

L ∈ N+, it is shown that Floor-ReLU networks with width max{d, 5N + 13} and depth28

64dL + 3 can uniformly approximate a Hölder function f on [0,1]d with an approxi-29

mation error 3λdα/2N−α
√
L, where α ∈ (0,1] and λ are the Hölder order and constant,30

respectively. More generally for an arbitrary continuous function f on [0,1]d with a31

modulus of continuity ωf(⋅), the constructive approximation rate is ωf(
√
dN−

√
L) +32

2ωf(
√
d)N−

√
L. As a consequence, this new class of networks overcomes the curse of33

dimensionality in approximation power when the variation of ωf(r) as r → 0 is mod-34

erate (e.g., ωf(r) ≲ rα for Hölder continuous functions), since the major term to be35

considered in our approximation rate is essentially
√
d times a function of N and L36

independent of d within the modulus of continuity.37

1 Introduction38

Recently, there has been a large number of successful real-world applications of deep39

neural networks in many fields of computer science and engineering, especially for40

large-scale and high-dimensional learning problems. Understanding the approximation41

capacity of deep neural networks has become a fundamental research direction for re-42

vealing the advantages of deep learning compared to traditional methods. This paper43

introduces new theories and network architectures achieving root exponential conver-44

gence and avoiding the curse of dimensionality simultaneously for (Hölder) continuous45

functions with an explicit error bound in deep network approximation, which might46

be two foundational laws supporting the application of deep network approximation in47

large-scale and high-dimensional problems. The approximation results here are quan-48

titative and apply to networks with essentially arbitrary width and depth. These results49

suggest considering Floor-ReLU networks as a possible alternative to ReLU networks50

in deep learning.51

Deep ReLU networks with width O(N) and depth O(L) can achieve the approxi-52

mation rateO(N−L) for polynomials on [0,1]d (Lu et al., 2020) but it is not true for gen-53

eral functions, e.g., the (nearly) optimal approximation rates of deep ReLU networks for54

a Lipschitz continuous function and a Cs function f on [0,1]d are O(
√
dN−2/dL−2/d)55

and O(∥f∥CsN−2s/dL−2s/d) (Shen et al., 2019b; Lu et al., 2020), respectively. The56

limitation of ReLU networks motivates us to explore other types of network architec-57

tures to answer our curiosity on deep networks: Do deep neural networks with arbi-58

trary width O(N) and arbitrary depth O(L) admit an exponential approximation rate59

O(ωf(N−Lη)) for some constant η > 0 for a generic continuous function f on [0,1]d60

with a modulus of continuity ωf(⋅)?61

To answer this question, we introduce the Floor-ReLU network, which is a fully62

connected neural network (FNN) built with either Floor (⌊x⌋) or ReLU (max{0, x})63

activation function1 in each neuron. Mathematically, if we let N0 = d, NL+1 = 1,64

and N` be the number of neurons in `-th hidden layer of a Floor-ReLU network for65

` = 1,2,⋯, L, then the architecture of this network with input x and output φ(x) can be66

1Our results can be easily generalized to Ceiling-ReLU networks, namely, feed-forward neural net-
works with either Ceiling (⌈x⌉) or ReLU (max{0, x}) activation function in each neuron.

2

described as67

x = h̃0
W0,b0Ð→h1

σ or ⌊⋅⌋Ð→ h̃1 ⋯ WL−1,bL−1Ð→hL
σ or ⌊⋅⌋Ð→ h̃L

WL,bLÐ→hL+1 = φ(x),68

whereW` ∈ RN`+1×N` , b` ∈ RN`+1 , h`+1 ∶=W` ⋅h̃`+b` for ` = 0,1,⋯, L, and h̃`,n is equal69

to σ(h`,n) or ⌊h`,n⌋ for ` = 1,2,⋯, L and n = 1,2,⋯,N`, where h` = (h`,1,⋯,h`,N`)70

and h̃` = (h̃`,1,⋯, h̃`,N`) for ` = 1,2,⋯, L. See Figure 1 for an example.71

(x1, x2)

x1

x2

h1

h1,1

h1,2

h1,3

h1,4

h̃1

h̃1,1

h̃1,2

h̃1,3

h̃1,4

h2

h2,1

h2,2

h2,3

h2,4

h2,5

h̃2

h̃2,1

h̃2,2

h̃2,3

h̃2,4

h̃2,5

φ(x1, x2)

φ(x1, x2)

W0, b0 W1, b1 W2, b2σ or b·c σ or b·c

b·c

σ

σ

σ

b·c

b·c

σ

σ

σ

Figure 1: An example of a Floor-ReLU network with width 5 and depth 2.

In Theorem 1.1 below, we show by construction that Floor-ReLU networks with72

width max{d, 5N + 13} and depth 64dL + 3 can uniformly approximate a continu-73

ous function f on [0,1]d with a root exponential approximation rate2 ωf(
√
dN−

√
L) +74

2ωf(
√
d)N−

√
L, where ωf(⋅) is the modulus of continuity defined as75

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ ∥x − y∥2 ≤ r, x,y ∈ [0,1]d}, for any r ≥ 0,76

where ∥x∥2 =
√
x2

1 + x2
2 +⋯ + x2

d for any x = (x1, x2,⋯, xd) ∈ Rd.77

Theorem 1.1. Given any N,L ∈ N+ and an arbitrary continuous function f on [0,1]d,78

there exists a function φ implemented by a Floor-ReLU network with width max{d, 5N+79

13} and depth 64dL + 3 such that80

∣φ(x) − f(x)∣ ≤ ωf(
√
dN−

√
L) + 2ωf(

√
d)N−

√
L, for any x ∈ [0,1]d.81

With Theorem 1.1, we have an immediate corollary.82

Corollary 1.2. Given an arbitrary continuous function f on [0,1]d, there exists a func-83

tion φ implemented by a Floor-ReLU network with width N̄ and depth L̄ such that84

∣φ(x) − f(x)∣ ≤ ωf(
√
d ⌊ N̄−13

5
⌋−

√
⌊ L̄−3

64d
⌋) + 2ωf(

√
d)⌊ N̄−13

5
⌋−

√
⌊ L̄−3

64d
⌋
,85

for any x ∈ [0,1]d and N̄ , L̄ ∈ N+ with N̄ ≥ max{d,18} and L̄ ≥ 64d + 3.86

2All the exponential convergence in this paper is root exponential convergence. Nevertheless, after
the introduction, for the convenience of presentation, we will omit the prefix “root”, as in the literature.

3

In Theorem 1.1, the rate in ωf(
√
dN−

√
L) implicitly depends on N and L through87

the modulus of continuity of f , while the rate in 2ωf(
√
d)N−

√
L is explicit in N and L.88

Simplifying the implicit approximation rate to make it explicitly depending on N and89

L is challenging in general. However, if f is a Hölder continuous function on [0,1]d of90

order α ∈ (0,1] with a constant λ, i.e., f(x) satisfying91

∣f(x) − f(y)∣ ≤ λ∥x − y∥α2 , for any x,y ∈ [0,1]d, (1)92

then ωf(r) ≤ λrα for any r ≥ 0. Therefore, in the case of Hölder continuous functions,93

the approximation rate is simplified to 3λdα/2N−α
√
L as shown in the following corol-94

lary. In the special case of Lipschitz continuous functions with a Lipschitz constant λ,95

the approximation rate is simplified to 3λ
√
dN−

√
L.96

Corollary 1.3. Given any N,L ∈ N+ and a Hölder continuous function f on [0,1]d97

of order α with a constant λ, there exists a function φ implemented by a Floor-ReLU98

network with width max{d, 5N + 13} and depth 64dL + 3 such that99

∣φ(x) − f(x)∣ ≤ 3λdα/2N−α
√
L, for any x ∈ [0,1]d.100

First, Theorem 1.1 and Corollary 1.3 show that the approximation capacity of deep101

networks for continuous functions can be nearly exponentially improved by increasing102

the network depth, and the approximation error can be explicitly characterized in terms103

of the width O(N) and depth O(L). Second, this new class of networks overcomes the104

curse of dimensionality in the approximation power when the modulus of continuity is105

moderate, since the approximation order is essentially ωf(
√
dN−

√
L). Finally, apply-106

ing piecewise constant and integer-valued functions as activation functions and integer107

numbers as parameters has been explored in the study of quantized neural networks108

(Hubara et al., 2017; Yin et al., 2019; Bengio et al., 2013) with efficient training algo-109

rithms for low computational complexity (Wang et al., 2018). The floor function (⌊x⌋) is110

a piecewise constant function and can be easily implemented numerically at very little111

cost. Hence, the evaluation of the proposed network could be efficiently implemented112

in practical computation. Though there might not be an existing optimization algorithm113

to identify an approximant with the approximation rate in this paper, Theorem 1.1 can114

provide an expected accuracy before a learning task and how much the current opti-115

mization algorithms could be improved. Designing an efficient optimization algorithm116

for Floor-ReLU networks will be left as future work with several possible directions117

discussed later.118

We would like to remark that an increased smoothness or regularity of the target119

function could improve our approximation rate but at the cost of a large prefactor. For120

example, to attain better approximation rates for functions in Cs([0,1]d), it is common121

4

to use Taylor expansions and derivatives, which are tools that suffer from the curse122

of dimensionality and will result in a large prefactor like O((s + 1)d) that is subject123

to the curse of dimensionality. Furthermore, the prospective approximation rate using124

smoothness is not attractive. For example, the prospective approximation rate would125

be O(N−s
√
L), if we use Floor-ReLU networks with width O(N) and depth O(L) to126

approximate functions in Cs([0,1]d). However, such a rate O(N−s
√
L) = O(N−

√
s2L)127

can be attained by using Floor-ReLU networks with width O(N) and depth O(s2L) to128

approximate Lipschitz continuous functions. Hence, increasing the network depth can129

result in the same approximation rate for Lipschitz continuous functions as the rate of130

smooth functions.131

The rest of this paper is organized as follows. In Section 2, we discuss the applica-132

tion scope of our theory and compare related works in the literature. In Section 3, we133

prove Theorem 1.1 based on Proposition 3.2. Next, this basic proposition is proved in134

Section 4. Finally, we conclude this paper in Section 5.135

2 Discussion136

In this section, we will discuss the application scope of our theory in machine learning137

and its comparison related to existing works.138

2.1 Application scope of our theory in machine learning139

In supervised learning, an unknown target function f(x) defined on a domain Ω is140

learned through its finitely many samples {(xi, f(xi))}ni=1. If deep networks are ap-141

plied in supervised learning, the following optimization problem is solved to identify a142

deep network φ(x;θS), with θS as the set of parameters, to infer f(x) for unseen data143

samples x:144

θS = arg min
θ

RS(θ) ∶= arg min
θ

1

n
∑

{xi}ni=1

`(φ(xi;θ), f(xi)) (2)145

with a loss function typically taken as `(y, y′) = 1
2 ∣y−y′∣2. The inference error is usually146

measured by RD(θS), where147

RD(θ) ∶= Ex∼U(Ω) [`(φ(x;θ), f(x))] ,148

where the expectation is taken with an unknown data distribution U(Ω) over Ω.149

Note that the best deep network to infer f(x) is φ(x;θD) with θD given by150

θD = arg min
θ

RD(θ).151

5

The best possible inference error is RD(θD). In real applications, U(Ω) is unknown152

and only finitely many samples from this distribution are available. Hence, the empiri-153

cal loss RS(θ) is minimized hoping to obtain φ(x;θS), instead of minimizing the pop-154

ulation loss RD(θ) to obtain φ(x;θD). In practice, a numerical optimization method to155

solve (2) may result in a numerical solution (denoted as θN) that may not be a global156

minimizer θS . Therefore, the actually learned neural network to infer f(x) is φ(x;θN)157

and the corresponding inference error is measured by RD(θN).158

By the discussion just above, it is crucial to quantify RD(θN) to see how good the159

learned neural network φ(x;θN) is, since RD(θN) is the expected inference error over160

all possible data samples. Note that161

RD(θN) = [RD(θN) −RS(θN)] + [RS(θN) −RS(θS)] + [RS(θS) −RS(θD)]162

+ [RS(θD) −RD(θD)] +RD(θD)163

≤ RD(θD) + [RS(θN) −RS(θS)]
+ [RD(θN) −RS(θN)] + [RS(θD) −RD(θD)],

(3)164

165

where the inequality comes from the fact that [RS(θS) − RS(θD)] ≤ 0 since θS is a166

global minimizer of RS(θ). The constructive approximation established in this paper167

and in the literature provides an upper bound of RD(θD) in terms of the network size,168

e.g., in terms of the network width and depth, or in terms of the number of param-169

eters. The second term of (3) is bounded by the optimization error of the numerical170

algorithm applied to solve the empirical loss minimization problem in (2). If the nu-171

merical algorithm is able to find a global minimizer, the second term is equal to zero.172

The theoretical guarantee of the convergence of an optimization algorithm to a global173

minimizer θS and the characterization of the convergence belong to the optimization174

analysis of neural networks. The third and fourth term of (3) are usually bounded in175

terms of the sample size n and a certain norm of θN and θD (e.g., `1, `2, or the path176

norm), respectively. The study of the bounds for the third and fourth terms is referred177

to as the generalization error analysis of neural networks.178

The approximation theory, the optimization theory, and the generalization theory179

form the three main theoretical aspects of deep learning with different emphases and180

challenges, which have motivated many separate research directions recently. Theorem181

1.1 and Corollary 1.3 provide an upper bound of RD(θD). This bound only depends on182

the given budget of neurons and layers of Floor-ReLU networks and on the modulus of183

continuity of the target function f . Hence, this bound is independent of the empirical184

loss minimization in (2) and the optimization algorithm used to compute the numerical185

solution of (2). In other words, Theorem 1.1 and Corollary 1.3 quantify the approxima-186

tion power of Floor-ReLU networks with a given size. Designing efficient optimization187

algorithms and analyzing the generalization bounds for Floor-ReLU networks are two188

6

other separate future directions. Although optimization algorithms and generalization189

analysis are not our focus in this paper, in the next two paragraphs, we discuss several190

possible research topics in these directions for our Floor-ReLU networks.191

In this work, we have not analyzed the feasibility of optimization algorithms for the192

Floor-ReLU network. Typically, stochastic gradient descent (SGD) is applied to solve193

a network optimization problem. However, the Floor-ReLU network has piecewise194

constant activation functions making standard SGD infeasible. There are two possible195

directions to solve the optimization problem for Floor-ReLU networks: 1) gradient-free196

optimization methods, e.g., Nelder-Mead method (Nelder and Mead, 1965), genetic al-197

gorithm (Holland, 1992), simulated annealing (Kirkpatrick et al., 1983), particle swarm198

optimization (Kennedy and Eberhart, 1995), and consensus-based optimization (Pinnau199

et al., 2017; Carrillo et al., 2019); 2) applying optimization algorithms for quantized200

networks that also have piecewise constant activation functions (Lin et al., 2019; Boo201

et al., 2020; Bengio et al., 2013; Wang et al., 2018; Hubara et al., 2017; Yin et al., 2019).202

It would be interesting future work to explore efficient learning algorithms based on the203

Floor-ReLU network.204

Generalization analysis of Floor-ReLU networks is also an interesting future di-205

rection. Previous works have shown the generalization power of ReLU networks for206

regression problems (Jacot et al., 2018; Cao and Gu, 2019; Chen et al., 2019b; E et al.,207

2019; E and Wojtowytsch, 2020) and for solving partial differential equations (Berner208

et al., 2018; Luo and Yang, 2020). Regularization strategies for ReLU networks to guar-209

antee good generalization capacity of deep learning have been proposed in (E et al.,210

2019; E and Wojtowytsch, 2020). It is important to investigate the generalization ca-211

pacity of our Floor-ReLU networks. Especially, it is of great interest to see whether212

problem-dependent regularization strategies exist to make the generalization error of213

our Floor-ReLU networks free of the curse of dimensionality.214

2.2 Approximation rates in O(N) and O(L) versus O(W)215

Characterizing deep network approximation in terms of the width O(N)3 and depth216

O(L) simultaneously is fundamental and indispensable in realistic applications, while217

quantifying the deep network approximation based on the number of nonzero param-218

eters W is probably only of interest in theory as far as we know. Theorem 1.1 can219

provide practical guidance for choosing network sizes in realistic applications while220

theories in terms of W cannot tell how large a network should be to guarantee a target221

accuracy. The width and depth are the two most direct and amenable hyper-parameters222

in choosing a specific network for a learning task, while the number of nonzero parame-223

3For simplicity, we omit O(⋅) in the following discussion.

7

ters W is hardly controlled efficiently. Theories in terms of W essentially have a single224

variable to control the network size in three types of structures: 1) fixing the width N225

and varying the depth L; 2) fixing the depth L and changing the width N ; 3) both the226

width and depth are controlled by the same parameter like the target accuracy ε in a227

specific way (e.g., N is a polynomial of 1
εd

and L is a polynomial of log(1
ε)). Con-228

sidering the non-uniqueness of structures for realizing the same W , it is impractical to229

develop approximation rates in terms ofW covering all these structures. If one network230

structure has been chosen in a certain application, there might not be a known theory231

in terms of W to quantify the performance of this structure. Finally, in terms of full er-232

ror analysis of deep learning including approximation theory, optimization theory, and233

generalization theory as illustrated in (3), the approximation error characterization in234

terms of width and depth is more useful than that in terms of the number of parameters,235

because almost all existing optimization and generalization analysis are based on depth236

and width instead of the number of parameters (Jacot et al., 2018; Cao and Gu, 2019;237

Chen et al., 2019b; Arora et al., 2019; Allen-Zhu et al., 2019; E et al., 2019; E and238

Wojtowytsch, 2020; Ji and Telgarsky, 2020), to the best of our knowledge. Approxi-239

mation results in terms of width and depth are more consistent with optimization and240

generalization analysis tools to obtain a full error analysis in (3).241

Most existing approximation theories for deep neural networks so far focus on the242

approximation rate in the number of parameters W (Cybenko, 1989; Hornik et al.,243

1989; Barron, 1993; Liang and Srikant, 2016; Yarotsky, 2017; Poggio et al., 2017; E244

and Wang, 2018; Petersen and Voigtlaender, 2018; Chui et al., 2018; Yarotsky, 2018;245

Nakada and Imaizumi, 2019; Gribonval et al., 2019; Gühring et al., 2019; Chen et al.,246

2019a; Li et al., 2019; Suzuki, 2019; Bao et al., 2019; Opschoor et al., 2019; Yarot-247

sky and Zhevnerchuk, 2019; Bölcskei et al., 2019; Montanelli and Du, 2019; Chen and248

Wu, 2019; Zhou, 2020; Montanelli and Yang, 2020; Montanelli et al., 2020). From the249

point of view of theoretical difficulty, controlling two variables N and L in our theory250

is more challenging than controlling one variable W in the literature. In terms of math-251

ematical logic, the characterization of deep network approximation in terms of N and252

L can provide an approximation rate in terms of W , while we are not aware of how to253

derive approximation rates in terms of arbitrary N and L given approximation rates in254

terms of W , since existing results in terms of W are valid for specific network sizes255

with width and depth as functions in W without the degree of freedom to take arbitrary256

values. As we have discussed in the last paragraph, existing theories essentially have a257

single variable to control the network size in three types of structures. Let us use the258

first type of structures, which includes the best-known result for a nearly optimal ap-259

proximation rate, O(ωf(W −2/d)), for continuous functions in terms of W using ReLU260

networks (Yarotsky, 2018) and the best-known result, O(exp(−cα,d
√
W)), for Hölder261

8

continuous functions of order α using Sine-ReLU networks (Yarotsky and Zhevner-262

chuk, 2019), as an example to show how Theorem 1.1 in terms of N and L can be263

applied to show a better result in terms of W . One can apply Theorem 1.1 in a similar264

way to obtain other corollaries with other types of structures in terms of W . The main265

idea is to specify the value of N and L in Theorem 1.1 to show the desired corollary.266

For example, if we let the width parameter N = 2 and the depth parameter L = W in267

Theorem 1.1, then the width is max{d,23}, the depth is 64dW + 3, and the total num-268

ber of parameters is bounded by O (max{d2,232}(64dW + 3)) = O(W). Therefore,269

we can prove Corollary 2.1 below for the approximation capacity of our Floor-ReLU270

networks in terms of the total number of parameters as follows.271

Corollary 2.1. Given any W ∈ N+ and a continuous function f on [0,1]d, there exists272

a function φ implemented by a Floor-ReLU network with O(W) nonzero parameters, a273

width max{d, 23} and depth 64dW + 3, such that274

∣φ(x) − f(x)∣ ≤ ωf(
√
d2−

√
W) + 2ωf(

√
d)2−

√
W , for any x ∈ [0,1]d.275

Corollary 2.1 achieves root exponential convergence without the curse of dimen-276

sionality in terms of the number of parameters W with the help of the Floor-ReLU277

networks. When only ReLU networks are used, the result in (Yarotsky, 2018) suffers278

from the curse and does not have any kind of exponential convergence. The result in279

(Yarotsky and Zhevnerchuk, 2019) with Sine-ReLU networks has root exponential con-280

vergence but has not excluded the possibility of the curse of dimensionality as we shall281

discuss later. Furthermore, Corollary 2.1 works for generic continuous functions while282

(Yarotsky and Zhevnerchuk, 2019) only applies to Hölder continuous functions.283

2.3 Further interpretation of our theory284

In the interpretation of our theory, there are two more aspects that are important to285

discuss. The first one is whether it is possible to extend our theory to functions on286

a more general domain, e.g, [−M,M]d for some M > 1, because M > 1 may cause287

an implicit curse of dimensionality in some existing theory as we shall point out later.288

The second one is how bad the modulus of continuity would be since it is related to a289

high-dimensional function f that may lead to an implicit curse of dimensionality in our290

approximation rate.291

First, Theorem 1.1 can be easily generalized to C([−M,M]d) for any M > 0.292

Let L be a linear map given by L(x) = 2M(x − 1/2). By Theorem 1.1, for any293

f ∈ C([−M,M]d), there exists φ implemented by a Floor-ReLU network with width294

max{d, 5N + 13} and depth 64dL + 3 such that295

∣φ(x) − f ○L(x)∣ ≤ ωf○L(
√
dN−

√
L) + 2ωf○L(

√
d)N−

√
L, for any x ∈ [0,1]d.296

9

It follows from y = L(x) ∈ [−M,M]d and ωf○L(r) = ω[−M,M]d
f (2Mr) for any r ≥ 0297

that,4 for any y ∈ [−M,M]d,298

∣φ(y+M2M) − f(y)∣ ≤ ω[−M,M]d
f (2M

√
dN−

√
L) + 2ω[−M,M]d

f (2M
√
d)N−

√
L. (4)299

Hence, the size of the function domain [−M,M]d only has a mild influence on the300

approximation rate of our Floor-ReLU networks. Floor-ReLU networks can still avoid301

the curse of dimensionality and achieve root exponential convergence for continuous302

functions on [−M,M]d when M > 1. For example, in the case of Hölder continuous303

functions of order α with a constant λ on [−M,M]d, our approximation rate becomes304

3λ(2M
√
dN−

√
L)α.305

Second, most interesting continuous functions in practice have a good modulus of306

continuity such that there is no implicit curse of dimensionality hiding in ωf(⋅). For307

example, we have discussed the case of Hölder continuous functions previously. We308

would like to remark that the class of Hölder continuous functions implicitly depends309

on d through its definition in (1), but this dependence is moderate since the `2- norm310

in (1) is the square root of a sum with d terms. Let us now discuss several cases of311

ωf(⋅) when we cannot achieve exponential convergence or cannot avoid the curse of312

dimensionality. The first example is ωf(r) = 1
ln(1/r) for all small r > 0, which leads to313

an approximation rate314

3(
√
L lnN − 1

2 lnd)−1, for large N,L ∈ N+.315

Apparently, the above approximation rate still avoids the curse of dimensionality but316

there is no exponential convergence, which has been canceled out by “ln” in ωf(⋅). The317

second example is ωf(r) = 1

ln1/d(1/r)
for all small r > 0, which leads to an approximation318

rate319

3(
√
L lnN − 1

2 lnd)−1/d, for large N,L ∈ N+.320

The power 1
d further weakens the approximation rate and hence the curse of dimension-321

ality occurs. The last example we would like to discuss is ωf(r) = rα/d for all small322

r > 0, which results in the approximation rate323

3d
α
2dN−αd

√
L, for large N,L ∈ N+,324

which achieves the exponential convergence and avoids the curse of dimensionality325

when we use very deep networks with a fixed width. But if we fix the depth, there is no326

exponential convergence and the curse occurs. Though we have provided several exam-327

ples of immoderate ωf(⋅), to the best of our knowledge, we are not aware of practically328

useful continuous functions with ωf(⋅) that is immoderate.329

4For an arbitrary setE ⊆ Rd, ωE
f (r) is defined via ωE

f (r) ∶= sup{∣f(x)−f(y)∣ ∶ ∥x−y∥2 ≤ r, x,y ∈

E}, for any r ≥ 0. As defined earlier, ωf(r) is short of ω[0,1]
d

f (r).

10

2.4 Discussion on the literature330

The neural networks constructed here achieve exponential convergence without the331

curse of dimensionality simultaneously for a function class as general as (Hölder) con-332

tinuous functions, while–to the best of our knowledge–most existing theories only apply333

to functions with an intrinsic low complexity. For example, the exponential convergence334

was studied for polynomials (Yarotsky, 2017; Montanelli et al., 2020; Lu et al., 2020),335

smooth functions (Montanelli et al., 2020; Liang and Srikant, 2016), analytic functions336

(E and Wang, 2018), and functions admitting a holomorphic extension to a Bernstein337

polyellipse (Opschoor et al., 2019). For another example, no curse of dimensionality338

occurs, or the curse is lessened for Barron spaces (Barron, 1993; E et al., 2019; E and339

Wojtowytsch, 2020), Korobov spaces (Montanelli and Du, 2019), band-limited func-340

tions (Chen and Wu, 2019; Montanelli et al., 2020), compositional functions (Poggio341

et al., 2017), and smooth functions (Yarotsky and Zhevnerchuk, 2019; Lu et al., 2020;342

Montanelli and Yang, 2020; Yang and Wang, 2020).343

Our theory admits a neat and explicit approximation error bound. For example, our344

approximation rate in the case of Hölder continuous functions of order αwith a constant345

λ is 3λdα/2N−α
√
L, while the prefactor of most existing theories is unknown or grows346

exponentially in d. Our proof fully explores the advantage of the compositional struc-347

ture and the nonlinearity of deep networks, while many existing theories were built on348

traditional approximation tools (e.g., polynomial approximation, multiresolution anal-349

ysis, and Monte Carlo sampling), making it challenging for existing theories to obtain350

a neat and explicit error bound with an exponential convergence and without the curse351

of dimensionality.352

Let us review existing works in more detail below.353

Curse of dimensionality. The curse of dimensionality is the phenomenon that ap-354

proximating a d-dimensional function using a certain parametrization method with a355

fixed target accuracy generally requires a large number of parameters that is exponen-356

tial in d and this expense quickly becomes unaffordable when d is large. For example,357

traditional finite element methods with W parameters can achieve an approximation358

accuracy O(W −1/d) with an explicit indicator of the curse 1
d in the power of W . If an359

approximation rate has a constant independent ofW and exponential in d, the curse still360

occurs implicitly through this prefactor by definition. If the approximation rate has a361

prefactor Cf depending on f , then the prefactor Cf still depends on d implicitly via f362

and the curse implicitly occurs if Cf exponentially grows when d increases. Designing363

a parametrization method that can overcome the curse of dimensionality is an important364

research topic in approximation theory.365

In (Barron, 1993) and its variants or generalization (E et al., 2019; E and Woj-366

towytsch, 2020; Chen and Wu, 2019; Montanelli et al., 2020), d-dimensional functions367

11

defined on a domain Ω ⊆ Rd admitting an integral representation with an integrand as a368

ridge function on Ω̃ ⊆ Rd with a variable coefficent were considered, e.g.,369

f(x) = ∫
Ω̃
a(w)K(w ⋅x)dν(w), (5)370

where ν(w) is a Lebesgue measure inw. f(x) can be reformulated into the expectation371

of a high-dimensional random function when w is treated as a random variable. Then372

f(x) can be approximated by the average of W samples of the integrand in the same373

spirit of the law of large numbers with an approximation error essentially bounded374

by Cf
√
µ(Ω)√
W

measured in L2(Ω, µ) (Equation (6) of (Barron, 1993)), where O(W) is375

the total number of parameters in the network, Cf is a d-dimensional integral with an376

integrand related to f , and µ(Ω) is the Lebesgue measure of Ω. As pointed out in377

(Barron, 1993) right after Equation (6), if Ω is not a unit domain in Rd, µ(Ω) would378

be exponential in d; at the beginning of Page 932 of (Barron, 1993), it was remarked379

that Cf can often be exponentially large in d and standard smoothness properties of f380

alone are not enough to remove the exponential dependence of Cf on d, though there is381

a large number of examples for which Cf is only moderately large. Therefore, the curse382

of dimensionality occurs unless Cf and µ(Ω) are not exponential in d. It was observed383

that if the error is measured in the sense of mean squared error in machine learning,384

which is the square of the L2(Ω, µ) error averaged over µ(Ω) resulting in
C2
f

W , then the385

mean squared error has no curse of dimensionality as long as Cf is not exponential in d386

(Barron, 1993; E et al., 2019; E and Wojtowytsch, 2020).387

In (Montanelli and Du, 2019), d-dimensional functions in the Korobov space are388

approximated by the linear combination of basis functions of a sparse grid, each of389

which is approximated by a ReLU network. Though the curse of dimensionality has390

been lessened, target functions have to be sufficiently smooth and the approximation391

error still contains a factor that is exponential in d, i.e., the curse still occurs. Other392

works in (Yarotsky, 2017; Yarotsky and Zhevnerchuk, 2019; Lu et al., 2020; Yang and393

Wang, 2020) study the advantage of smoothness in the network approximation. Polyno-394

mials are applied to approximate smooth functions and ReLU networks are constructed395

to approximate polynomials. The application of smoothness can lessen the curse of di-396

mensionality in the approximation rates in terms of network sizes but also results in a397

prefactor that is exponentially large in the dimension, which means that the curse still398

occurs implicitly.399

The Kolmogorov-Arnold superposition theorem (KST) (Kolmogorov, 1956; Arnold,400

1957; Kolmogorov, 1957) has also inspired a research direction of network approxima-401

tion (Kůrková, 1992; Maiorov and Pinkus, 1999; Igelnik and Parikh, 2003; Montanelli402

and Yang, 2020) for continuous functions. (Kůrková, 1992) provided a quantitative ap-403

proximation rate of networks with two hidden layers, but the number of neurons scales404

12

exponentially in the dimension and the curse occurs. (Maiorov and Pinkus, 1999) re-405

laxes the exact representation in KST to an approximation in a form of two-hidden-406

layer neural networks with a maximum width 6d + 3 and a single activation function.407

This powerful activation function is very complex as described by its authors and its408

numerical evaluation was not available until a more concrete algorithm was recently409

proposed in (Guliyev and Ismailov, 2018). Note that there is no available numerical410

algorithm in (Maiorov and Pinkus, 1999; Guliyev and Ismailov, 2018) to compute the411

whole networks proposed therein. The difficulty is due to the fact that the construction412

of these networks relies on the outer univariate continuous function of the KST. Though413

the existence of these outer functions can be shown by construction via a complicated414

iterative procedure in (Braun and Griebel, 2009), there is no existing numerical algo-415

rithm to evaluate them for a given target function yet, even though computation with416

an arbitrary precision is assumed to be available. Therefore, the networks considered417

in (Maiorov and Pinkus, 1999; Guliyev and Ismailov, 2018) are similar to the original418

representation in KST in the sense that their existence is proved without an explicit way419

or numerical algorithm to construct them. (Igelnik and Parikh, 2003) and (Montanelli420

and Yang, 2020) apply cubic-splines and piecewise linear functions to approximate the421

inner and outer functions of KST, resulting in cubic-spline and ReLU networks to ap-422

proximate continuous functions on [0,1]d. Due to the pathological outer functions of423

KST, the approximation bounds still suffer from the curse of dimensionality unless tar-424

get functions are restricted to a small class of functions with simple outer functions in425

the KST.426

Recently in (Yarotsky and Zhevnerchuk, 2019), Sine-ReLU networks have been427

applied to approximate Hölder continuous functions of order α on [0,1]d with an ap-428

proximation accuracy ε = exp(−cα,dW 1/2), where W is the number of parameters in the429

network and cα,d is a positive constant depending on α and d only. Whether or not cα,d430

exponentially depends on d determines whether or not the curse of dimensionality ex-431

ists for the Sine-ReLU networks, which is not answered in (Yarotsky and Zhevnerchuk,432

2019) and is still an open question.433

Finally, we would like to discuss the curse of dimensionality in terms of the con-434

tinuity of the weight selection as a map Σ ∶ C([0,1]d) → RW . For a fixed network435

architecture with a fixed number of parameters W , let g ∶ RW → C([0,1]d) be the map436

of realizing a DNN from a given set of parameters in RW to a function in C([0,1]d).437

Suppose that there is a continuous map Σ from the unit ball of Sobolev space with438

smoothness s, denoted as Fs,d, to RW such that ∥f − g(Σ(f))∥L∞ ≤ ε for all f ∈ Fs,d.439

Then W ≥ cε−d/s with some constant c depending only on s. This conclusion is given440

in Theorem 3 of (Yarotsky, 2017), which is a corollary of Theorem 4.2 of (Devore,441

1989) in a more general form. Intuitively, this conclusion means that any constructive442

13

approximation of ReLU FNNs to approximate C([0,1]d) cannot enjoy a continuous443

weight selection property if the approximation rate is better than cε−d/s, i.e., the curse444

of dimensionality must occur for constructive approximation for ReLU FNNs with a445

continuous weight selection. Theorem 4.2 of (Devore, 1989) can also lead to a new446

corollary with a weight selection map Σ ∶ Ks,d → RW (e.g., the constructive approxi-447

mation of Floor-ReLU networks) and g ∶ RW → L∞([0,1]d) (e.g., the realization map448

of Floor-ReLU networks), where Ks,d is the unit ball of Cs([0,1]d) with the Sobolev449

norm W s,∞([0,1]d). Then this new corollary implies that the constructive approxima-450

tion in this paper cannot enjoy continuous weight selection. However, Theorem 4.2451

of (Devore, 1989) is essentially a min-max criterion to evaluate weight selection maps452

maintaining continuity: the approximation error obtained by minimizing over all con-453

tinuous selection Σ and network realization g and maximizing over all target functions454

is bounded below by O(W −s/d). In the worst scenario, a continuous weight selec-455

tion cannot enjoy an approximation rate beating the curse of dimensionality. However,456

Theorem 4.2 of (Devore, 1989) has not excluded the possibility that most continuous457

functions of interest in practice may still enjoy a continuous weight selection without458

the curse of dimensionality.459

Exponential convergence. Exponential convergence is referred to as the situation460

that the approximation error exponentially decays to zero when the number of param-461

eters increases. Designing approximation tools with an exponential convergence is an-462

other important topic in approximation theory. In the literature of deep network approx-463

imation, when the number of network parameters W is a polynomial of O(log(1
ε)), the464

terminology “exponential convergence” was also used (E and Wang, 2018; Yarotsky and465

Zhevnerchuk, 2019; Opschoor et al., 2019). The exponential convergence in this paper466

is root-exponential as in (Yarotsky and Zhevnerchuk, 2019), i.e., W = O(log2(1
ε)). The467

exponential convergence in other works is worse than root-exponential.468

In most cases, the approximation power to achieve exponential approximation rates469

in existing works comes from traditional tools for approximating a small class of func-470

tions instead of taking advantage of the network structure itself. In (E and Wang, 2018;471

Opschoor et al., 2019), highly smooth functions are first approximated by the linear472

combination of special polynomials with high degrees (e.g., Chebyshev polynomials,473

Legendre polynomials) with an exponential approximation rate, i.e., to achieve an ε-474

accuracy, a linear combination of only O(p(log(1
ε))) polynomials is required, where p475

is a polynomial with a degree that may depend on the dimension d. Then each poly-476

nomial is approximated by a ReLU network with O(log(1
ε)) parameters. Finally, all477

ReLU networks are assembled to form a large network approximating the target func-478

tion with an exponential approximation rate. As far as we know, the only existing work479

that achieves exponential convergence without taking advantage of special polynomials480

14

and smoothness is the Sine-ReLU network in (Yarotsky and Zhevnerchuk, 2019), which481

has been mentioned in the paragraph just above. We would like to emphasize that the482

result in our paper applies for generic continuous functions including, but not limited483

to, the Hölder continuous functions considered in (Yarotsky and Zhevnerchuk, 2019).484

3 Approximation of continuous functions485

In this section, we first introduce basic notations in this paper in Section 3.1. Then we486

prove Theorem 1.1 based on Proposition 3.2, which will be proved in Section 4.487

3.1 Notations488

The main notations of this paper are listed as follows.489

• Vectors and matrices are denoted in a bold font. Standard vectorization is adopted490

in the matrix and vector computation. For example, adding a scalar and a vector491

means adding the scalar to each entry of the vector.492

• Let N+ denote the set containing all positive integers, i.e., N+ = {1,2,3,⋯}.493

• Let σ ∶ R → R denote the rectified linear unit (ReLU), i.e. σ(x) = max{0, x}.494

With a slight abuse of notation, we define σ ∶ Rd → Rd as σ(x) =
⎡⎢⎢⎢⎢⎢⎢⎣

max{0, x1}
⋮

max{0, xd}

⎤⎥⎥⎥⎥⎥⎥⎦
495

for any x = (x1,⋯, xd) ∈ Rd.496

• The floor function (Floor) is defined as ⌊x⌋ ∶= max{n ∶ n ≤ x, n ∈ Z} for any497

x ∈ R.498

• For θ ∈ [0,1), suppose its binary representation is θ = ∑∞
`=1 θ`2

−` with θ` ∈ {0,1},499

we introduce a special notation bin0.θ1θ2⋯θL to denote the L-term binary repre-500

sentation of θ, i.e., bin0.θ1θ2⋯θL ∶=∑L
`=1 θ`2

−`.501

• The expression “a network with width N and depth L” means502

– The maximum width of this network for all hidden layers is no more than503

N .504

– The number of hidden layers of this network is no more than L.505

15

3.2 Proof of Theorem 1.1506

Theorem 1.1 is an immediate consequence of Theorem 3.1 below.507

Theorem 3.1. Given any N,L ∈ N+ and an arbitrary continuous function f on [0,1]d,508

there exists a function φ implemented by a Floor-ReLU network with width max{d, 2N2+509

5N} and depth 7dL2 + 3 such that510

∣φ(x) − f(x)∣ ≤ ωf(
√
dN−L) + 2ωf(

√
d)2−NL, for any x ∈ [0,1]d.511

This theorem will be proved later in this section. Now let us prove Theorem 1.1512

based on Theorem 3.1.513

Proof of Theorem 1.1. Given any N,L ∈ N+, there exist Ñ , L̃ ∈ N+ with Ñ ≥ 2 and514

L̃ ≥ 3 such that515

(Ñ − 1)2 ≤ N < Ñ2 and (L̃ − 1)2 ≤ 4L < L̃2.516

By Theorem 3.1, there exists a function φ implemented by a Floor-ReLU network with517

width max{d, 2Ñ2 + 5Ñ} and depth 7dL̃2 + 3 such that518

∣φ(x) − f(x)∣ ≤ ωf(
√
d Ñ−L̃) + 2ωf(

√
d)2−ÑL̃, for any x ∈ [0,1]d.519

Note that520

2−ÑL̃ ≤ Ñ−L̃ = (Ñ2)−
1
2

√
L̃2 ≤ N−1

2

√
4L ≤ N−

√
L.521

Then we have522

∣φ(x) − f(x)∣ ≤ ωf(
√
dN−

√
L) + 2ωf(

√
d)N−

√
L, for any x ∈ [0,1]d.523

For Ñ , L̃ ∈ N+ with Ñ ≥ 2 and L̃ ≥ 3, we have524

2Ñ2 + 5Ñ ≤ 5(Ñ − 1)2 + 13 ≤ 5N + 13 and 7L̃2 ≤ 16(L̃ − 1)2 ≤ 64L.525

Therefore, φ can be computed by a Floor-ReLU network with width max{d, 2Ñ2 +526

5Ñ} ≤ max{d, 5N + 13} and depth 7dL̃2 + 3 ≤ 64dL + 3, as desired. So we finish the527

proof.528

To prove Theorem 3.1, we first present the proof sketch. Put briefly, we construct529

piecewise constant functions implemented by Floor-ReLU networks to approximate530

continuous functions. There are four key steps in our construction.531

1. Normalize f as f̃ satisfying f̃(x) ∈ [0,1] for any x ∈ [0,1]d, divide [0,1]d into a532

set of non-overlapping cubes {Qβ}β∈{0,1,⋯,K−1}d , and denote xβ as the vertex of533

Qβ with minimum ∥ ⋅∥1 norm, where K is an integer determined later. See Figure534

2 for the illustrations of Qβ and xβ.535

16

2. Construct a Floor-ReLU sub-network to implement a vector-valued function Φ1 ∶536

Rd → Rd projecting the whole cube Qβ to the index β for each β ∈ {0,1,⋯,K −537

1}d, i.e., Φ1(x) = β for all x ∈ Qβ.538

3. Construct a Floor-ReLU sub-network to implement a function φ2 ∶ Rd → R map-539

ping β ∈ {0,1,⋯,K − 1}d approximately to f̃(xβ) for each β, i.e., φ2(β) ≈540

f̃(xβ). Then φ2 ○ Φ1(x) = φ2(β) ≈ f̃(xβ) for any x ∈ Qβ and each β ∈541

{0,1,⋯,K−1}d, implying φ̃ ∶= φ2○Φ1 approximates f̃ within an errorO(ωf(1/K))542

on [0,1]d.543

4. Re-scale and shift φ̃ to obtain the desired function φ approximating f well and544

determine the final Floor-ReLU network to implement φ.545

It is not difficult to construct Floor-ReLU networks with the desired width and depth546

to implement Φ1. The most technical part is the construction of a Floor-ReLU network547

with the desired width and depth computing φ2, which needs the following proposition548

based on the “bit extraction” technique introduced in (Bartlett et al., 1998; Harvey et al.,549

2017).550

Proposition 3.2. Given any N,L ∈ N+ and arbitrary θm ∈ {0,1} for m = 1,2,⋯,NL,551

there exists a function φ computed by a Floor-ReLU network with width 2N + 2 and552

depth 7L − 2 such that553

φ(m) = θm, for m = 1,2,⋯,NL.554

The proof of this proposition is presented in Section 4. By this proposition and555

the definition of VC-dimension (e.g., see (Harvey et al., 2017)), it is easy to prove556

that the VC-dimension of Floor-ReLU networks with a constant width and depth O(L)557

has a lower bound 2L. Such a lower bound is much larger than O(L2), which is a558

VC-dimension upper bound of ReLU networks with the same width and depth due to559

Theorem 8 of (Harvey et al., 2017). This means Floor-ReLU networks are much more560

powerful than ReLU networks from the perspective of VC-dimension.561

Based on the proof sketch stated just above, we are ready to give the detailed562

proof of Theorem 3.1 following similar ideas as in our previous work (Shen et al.,563

2019a; Shen et al., 2019b; Lu et al., 2020). The main idea of our proof is to re-564

duce high-dimensional approximation to one-dimensional approximation via a projec-565

tion. The idea of projection was probably first used in well-established theories, e.g.,566

KST (Kolmogorov superposition theorem) mentioned in Section 2, where the approxi-567

mant to high-dimensional functions is constructed by: first, projecting high-dimensional568

data points to one-dimensional data points; second, construct one-dimensional approx-569

imants. There has been extensive research based on this idea, e.g., references related570

17

to KST summarized in Section 2, our previous works (Shen et al., 2019a; Shen et al.,571

2019b; Lu et al., 2020), and (Yarotsky and Zhevnerchuk, 2019). The key to a suc-572

cessful approximant is to construct one-dimensional approximants to deal with a large573

number of one-dimensional data points; in fact, the number of points is exponential in574

the dimension d.575

Proof of Theorem 3.1. The proof consists of four steps.576

Step 1∶ Set up.577

Assume f is not a constant function since it is a trivial case. Then ωf(r) > 0 for any578

r > 0. Clearly, ∣f(x) − f(0)∣ ≤ ωf(
√
d) for any x ∈ [0,1]d. Define579

f̃ ∶= (f − f(0) + ωf(
√
d))/(2ωf(

√
d)). (6)580

It follows that f̃(x) ∈ [0,1] for any x ∈ [0,1]d.581

Set K = NL, EK−1 = [K−1
K ,1], and Ek = [kK , k+1

K) for k = 0,1,⋯,K − 2. Define582

xβ ∶= β/K and583

Qβ ∶= {x = (x1, x2,⋯, xd) ∈ Rd ∶ xj ∈ Eβj for j = 1,2,⋯, d},584

for any β = (β1, β2⋯, βd) ∈ {0,1,⋯,K − 1}d. See Figure 2 for the examples of Qβ and585

xβ for β ∈ {0,1,⋯,K − 1}d with K = 4 and d = 1,2.586

(a) (b)

Figure 2: Illustrations of Qβ and xβ for β ∈ {0,1,⋯,K − 1}d. (a) K = 4, d = 1. (b)
K = 4, d = 2.

Step 2∶ Construct Φ1 mapping x ∈ Qβ to β.587

Define a step function φ1 as588

φ1(x) ∶= ⌊ − σ(−Kx +K − 1) +K − 1⌋, for any x ∈ R.5589

See Figure 3 for an example of φ1 when K = 4. It follows from the definition of φ1 that590

φ1(x) = k, if x ∈ Ek, for k = 0,1,⋯,K − 1.591

18

Figure 3: An illustration of φ1 on [0,1] for the case K = 4.

Define592

Φ1(x) ∶= (φ1(x1), φ1(x2),⋯, φ1(xd)), for any x = (x1, x2,⋯, xd) ∈ Rd.593

Clearly, we have, for x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d,594

Φ1(x) = (φ1(x1), φ1(x2),⋯, φ1(xd)) = (β1, β2,⋯, βd) = β.595

Step 3∶ Construct φ2 mapping β ∈ {0,1,⋯,K − 1}d approximately to f̃(xβ).596

Using the idea of K-ary representation, we define a linear function ψ1 via597

ψ1(x) ∶= 1 +
d

∑
j=1

xjK
j−1, for any x = (x1, x2,⋯, xd) ∈ Rd.598

Then ψ1 is a bijection from {0,1,⋯,K − 1}d to {1,2,⋯,Kd}.599

Given any i ∈ {1,2,⋯,Kd}, there exists a unique β ∈ {0,1,⋯,K − 1}d such that600

i = ψ1(β). Then define601

ξi ∶= f̃(xβ) ∈ [0,1], for i = ψ1(β) and β ∈ {0,1,⋯,K − 1}d,602

where f̃ is the normalization of f defined in Equation (6). It follows that there exists603

ξi,j ∈ {0,1} for j = 1,2,⋯,NL such that604

∣ξi − bin0.ξi,1ξi,2⋯, ξi,NL∣ ≤ 2−NL, for i = 1,2,⋯,Kd.605

ByKd = (NL)d = NdL and Proposition 3.2, there exists a functionψ2,j implemented606

by a Floor-ReLU network with width 2N+2 and depth 7dL−2, for each j = 1,2,⋯,NL,607

such that608

ψ2,j(i) = ξi,j, for i = 1,2,⋯,Kd.609

Define610

ψ2 ∶=
NL

∑
j=1

2−jψ2,j and φ2 ∶= ψ2 ○ ψ1.611

5If we just define φ1(x) = ⌊Kx⌋, then φ1(1) =K ≠K − 1 even though 1 ∈ EK−1.

19

Then, for i = ψ1(β) and β ∈ {0,1,⋯,K − 1}d, we have612

∣f̃(xβ) − φ2(β)∣ = ∣f̃(xβ) − ψ2(ψ1(β))∣ = ∣ξi − ψ2(i)∣ = ∣ξi −
NL

∑
j=1

2−jψ2,j(i)∣

= ∣ξi − bin0.ξi,1ξi,2⋯ξi,NL∣ ≤ 2−NL.

(7)613

Step 4∶ Determine the final network to implement the desired function φ.614

Define φ̃ ∶= φ2 ○Φ1, i.e., for any x = (x1, x2,⋯, xd) ∈ Rd,615

φ̃(x) = φ2 ○Φ1(x) = φ2(φ1(x1), φ1(x2),⋯, φ1(xd)).616

Note that ∣x − xβ∣ ≤
√
d
K for any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d. Then we have,617

for any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d,618

∣f̃(x) − φ̃(x)∣ ≤ ∣f̃(x) − f̃(xβ)∣ + ∣f̃(xβ) − φ̃(x)∣
≤ ωf̃(

√
d
K) + ∣f̃(xβ) − φ2(Φ1(x))∣

≤ ωf̃(
√
d
K) + ∣f̃(xβ) − φ2(β)∣ ≤ ωf̃(

√
d
K) + 2−NL,

619

where the last inequality comes from Equation (7).620

Note thatx ∈ Qβ andβ ∈ {0,1,⋯,K−1}d are arbitrary. Since [0,1]d = ⋃β∈{0,1,⋯,K−1}dQβ,621

we have622

∣f̃(x) − φ̃(x)∣ ≤ ωf̃(
√
d
K) + 2−NL, for any x ∈ [0,1]d.623

Define624

φ ∶= 2ωf(
√
d)φ̃ + f(0) − ωf(

√
d).625

By K = NL and ωf(r) = 2ωf(
√
d) ⋅ ωf̃(r) for any r ≥ 0, we have, for any x ∈ [0,1]d,626

∣f(x) − φ(x)∣ = 2ωf(
√
d)∣f̃(x) − φ̃(x)∣ ≤ 2ωf(

√
d)(ωf̃(

√
d
K) + 2−NL)

≤ ωf(
√
d
K) + 2ωf(

√
d)2−NL

≤ ωf(
√
dN−L) + 2ωf(

√
d)2−NL.

627

It remains to determine the width and depth of the Floor-ReLU network implement-628

ing φ. Clearly, φ2 can be implemented by the architecture in Figure 4.629

As we can see from Figure 4, φ2 can be implemented by a Floor-ReLU network with630

widthN(2N +2+3) = 2N2+5N and depth L(7dL−2+1)+2 = L(7dL−1)+2. With the631

network architecture implementing φ2 in hand, φ̃ can be implemented by the network632

architecture shown in Figure 5. Note that φ is defined via re-scaling and shifting φ̃. As633

shown in Figure 5, φ and φ̃ can be implemented by a Floor-ReLU network with width634

max{d, 2N2+5N} and depth 1+1+L(7dL−1)+2 ≤ 7dL2+3. So we finish the proof.635

636

20

β1

β1

βd

ψ1 ψ1(β) = i

i

ψ2,1(i)

ψ2,1

i

ψ2,2(i)

1∑
j=1

2−jψ2,j(i)

ψ2,2

i

ψ2,3(i)

2∑
j=1

2−jψ2,j(i)

ψ2,3

i

ψ2,L(i)

L−1∑
j=1

2−jψ2,j(i)

· · · L∑
j=1

2−jψ2,j(i)

i

ψ2,(N−1)L+1(i)

ψ2,(N−1)L+1
i

ψ2,(N−1)L+2(i)

(N−1)L+1∑
j=(N−1)L+1

2−jψ2,j(i)

ψ2,(N−1)L+2

i

ψ2,(N−1)L+3(i)

(N−1)L+2∑
j=(N−1)L+1

2−jψ2,j(i)

ψ2,(N−1)L+3

i

ψ2,NL(i)

(N−1)L+L−1∑
j=(N−1)L+1

2−jψ2,j(i)

...

· · · NL∑
j=(N−1)L+1

2−jψ2,j(i)

NL∑
j=1

2−jψ2,j(i) = ψ2(i) = ψ2 ◦ ψ1(β) = φ2(β)

Figure 4: An illustration of the desired network architecture implementing φ2 = ψ2 ○ψ1

for any input β ∈ {0,1,⋯,K − 1}d, where i = ψ1(β).

x1

x2

xd

σ(−Kx1 +K − 1)

σ(−Kx2 +K − 1)

σ(−Kxd +K − 1)

b−σ(−Kx1 +K − 1) +K − 1c = φ1(x1)

b−σ(−Kx2 +K − 1) +K − 1c = φ1(x2)

b−σ(−Kxd +K − 1) +K − 1c = φ1(xd)

φ2 ◦Φ1(x) = φ̃(x)
...

...
...

φ2

Figure 5: An illustration of the network architecture implementing φ̃ = φ2 ○Φ1.

4 Proof of Proposition 3.2637

The proof of Proposition 3.2 mainly relies on the “bit extraction” technique. As we shall638

see later, our key idea is to apply the Floor activation function to make “bit extraction”639

more powerful to reduce network sizes. In particular, Floor-ReLU networks can extract640

much more bits than ReLU networks with the same network size.641

Let us first establish a basic lemma to extract 1/N of the total bits of a binary642

number; the result is again stored in a binary number.643

Lemma 4.1. Given any J,N ∈ N+, there exists a function φ ∶ R2 → R that can be644

implemented by a Floor-ReLU network with width 2N and depth 4 such that, for any645

θj ∈ {0,1}, j = 1,⋯,NJ , we have646

φ(bin0.θ1⋯θNJ , n) = bin0.θ(n−1)J+1⋯θnJ , for n = 1,2,⋯,N.647

Proof. Given any θj ∈ {0,1} for j = 1,⋯,NJ , denote648

s = bin0.θ1⋯θNJ and sn = bin0.θ(n−1)J+1⋯θnJ , for n = 1,2,⋯,N .649

Then our goal is to construct a function φ ∶ R2 → R computed by a Floor-ReLU650

network with the desired width and depth that satisfies651

φ(s, n) = sn, for n = 1,2,⋯,N .652

Based on the properties of the binary representation, it is easy to check that653

sn = ⌊2nJs⌋/2J − ⌊2(n−1)Js⌋, for n = 1,2,⋯,N. (8)654

21

Even with the above formulas to generate s1, s2,⋯, sN , it is still technical to construct655

a network outputting sn for a given index n ∈ {1,2,⋯,N}.656

Set δ = 2−J and define g (see Figure 6) as657

g(x) ∶= σ(σ(x) − σ(x+δ−1
δ)), where σ(x) = max{0, x}.658

Figure 6: An illustration of g(x) = σ(σ(x)−σ(x+δ−1
δ)), where σ(x) = max{0, x} is the

ReLU activation function.

Since sn ∈ [0,1 − δ] for n = 1,2,⋯,N , we have659

sn =
N

∑
k=1

g(sk + k − n), for n = 1,2,⋯,N . (9)660

Input 1 2 3 4 Output

s

n

b2Jsc

b22Jsc

b23Jsc

...

b2(N−1)Jsc

b2NJsc

n

s1

s2

s3

...
sN

n

σ(s1 + 1− n)

σ(s1+1−n+δ−1
δ

)

σ(s2 + 2− n)

σ(s2+2−n+δ−1
δ

)

...

σ(sN +N − n)

σ(sN+N−n+δ−1
δ

)

g(s1 + 1− n)

g(s2 + 2− n)

...

g(sN +N − n)

sn =: φ(s, n)

Figure 7: An illustration of the desired network architecture implementing φ based on
Equation (8) and (9). We omit some ReLU (σ) activation functions when inputs are
obviously non-negative. All parameters in this network are essentially determined by
Equation (8) and (9), which are valid no matter what θ1,⋯, θNJ ∈ {0,1} are. Thus, the
desired function φ implemented by this network is independent of θ1,⋯, θNJ ∈ {0,1}.

As shown in Figure 7, the desired function φ can be computed by a Floor-ReLU661

network with width 2N and depth 4. Moreover, it holds that662

φ(s, n) = sn, for n = 1,2,⋯,N .663

So we finish the proof.664

22

The next lemma constructs a Floor-ReLU network that can extract any bit from a665

binary representation according to a specific index.666

Lemma 4.2. Given any N,L ∈ N+, there exists a function φ ∶ R2 → R implemented by a667

Floor-ReLU network with width 2N +2 and depth 7L−3 such that, for any θm ∈ {0,1},668

m = 1,2,⋯,NL, we have669

φ(bin0.θ1θ2⋯θNL , m) = θm, for m = 1,2,⋯,NL.670

Proof. The proof is based on repeated applications of Lemma 4.1. Specifically, we671

inductively construct a sequence of functions φ1, φ2,⋯, φL implemented by Floor-ReLU672

networks to satisfy the following two conditions for each ` ∈ {1,2,⋯, L}.673

(i) φ` ∶ R2 → R can be implemented by a Floor-ReLU network with width 2N + 2674

and depth 7` − 3.675

(ii) For any θm ∈ {0,1}, m = 1,2,⋯,N `, we have676

φ`(bin0.θ1θ2⋯θN` , m) = bin0.θm, for m = 1,2,⋯,N `.677

Firstly, consider the case ` = 1. By Lemma 4.1 (set J = 1 therein), there exists a678

function φ1 implemented by a Floor-ReLU network with width 2N ≤ 2N + 2 and depth679

4 = 7 − 3 such that, for any θm ∈ {0,1}, m = 1,2,⋯,N , we have680

φ1(bin0.θ1θ2⋯θN , m) = bin0.θm, for m = 1,2,⋯,N .681

It follows that Condition (i) and (ii) hold for ` = 1.682

Next, assume Condition (i) and (ii) hold for ` = k. We would like to construct φk+1683

to make Condition (i) and (ii) true for ` = k + 1. By Lemma 4.1 (set J = Nk therein),684

there exists a function ψ implemented by a Floor-ReLU network with width 2N and685

depth 4 such that, for any θm ∈ {0,1}, m = 1,2,⋯,Nk+1, we have686

ψ(bin0.θ1⋯θNk+1 , n) = bin0.θ(n−1)Nk+1⋯θ(n−1)Nk+Nk , for n = 1,2,⋯,N . (10)687

By the hypothesis of induction, we have688

• φk ∶ R2 → R can be implemented by a Floor-ReLU network with width 2N + 2689

and depth 7k − 3.690

• For any θj ∈ {0,1}, j = 1,2,⋯,Nk, we have691

φk(bin0.θ1θ2⋯θNk , j) = bin0.θj, for j = 1,2,⋯,Nk. (11)692

23

bin0.θ1 · · · θNk+1

m

bin0.θ1 · · · θNk+1

b(m− 1)/Nkc

m

bin0.θ1 · · · θNk+1

n

m

bin0.θ(n−1)Nk+1 · · · θ(n−1)Nk+Nk

j = m− (n− 1)Nk

bin0.θ(n−1)Nk+j = bin0.θm =: φk+1(binθ1 · · · θNk+1 , m)φk
ψ

Figure 8: An illustration of the desired network architecture implementing φk+1 based
on (10), (11), and (12). We omit ReLU (σ) for neurons with non-negative inputs.

Given any m ∈ {1,2,⋯,Nk+1}, there exist n ∈ {1,2,⋯,N} and j ∈ {1,2,⋯,Nk}693

such that m = (n − 1)Nk + j, and such n, j can be obtained by694

n = ⌊(m − 1)/Nk⌋ + 1 and j =m − (n − 1)Nk. (12)695

Then the desired architecture of the Floor-ReLU network implementing φk+1 is shown696

in Figure 8.697

Note that ψ can be computed by a Floor-ReLU network of width 2N and depth 4.698

By Figure 8, we have699

• φk+1 ∶ R2 → R can be implemented by a Floor-ReLU network with width 2N + 2700

and depth 2 + 4 + 1 + (7k − 3) = 7(k + 1) − 3, which implies Condition (i) for701

` = k + 1.702

• For any θm ∈ {0,1}, m = 1,2,⋯,Nk+1, we have703

φk+1(bin0.θ1θ2⋯θNk+1 , m) = bin0.θm, for m = 1,2,⋯,Nk+1.704

That is, Condition (ii) holds for ` = k + 1.705

So we finish the process of induction.706

By the principle of induction, there exists a function φL ∶ R2 → R such that707

• φL can be implemented by a Floor-ReLU network with width 2N + 2 and depth708

7L − 3.709

• For any θm ∈ {0,1}, m = 1,2,⋯,NL, we have710

φL(bin0.θ1θ2⋯θNL , m) = bin0.θm, for m = 1,2,⋯,NL.711

Finally, define φ ∶= 2φL. Then φ can also be implemented by a Floor-ReLU network712

with width 2N + 2 and depth 7L − 3. Moreover, for any θm ∈ {0,1}, m = 1,2,⋯,NL,713

we have714

φ(bin0.θ1θ2⋯θNL , m) = 2 ⋅ φL(bin0.θ1θ2⋯θNL , m) = 2 ⋅ bin0.θm = θm,715

for m = 1,2,⋯,NL. So we finish the proof.716

24

With Lemma 4.2 in hand, we are ready to prove Proposition 3.2.717

Proof of Proposition 3.2. By Lemma 4.2, there exists a function φ̃ ∶ R2 → R computed718

by a Floor-ReLU network with a fixed architecture with width 2N + 2 and depth 7L− 3719

such that, for any zm ∈ {0,1}, m = 1,2,⋯,NL, we have720

φ̃(bin0.z1z2⋯zNL , m) = zm, for m = 1,2,⋯,NL.721

Based on θm ∈ {0,1} for m = 1,2,⋯,NL given in Proposition 3.2, we define the final722

function φ as723

φ(x) ∶= φ̃(σ(x ⋅ 0 + bin0.θ1θ2⋯θNL), σ(x)), where σ(x) = max{0, x}.724

Clearly, φ can be implemented by a Floor-ReLU network with width 2N + 2 and depth725

(7L − 3) + 1 = 7L − 2. Moreover, we have, for any m ∈ {1,2,⋯,NL},726

φ(m) ∶= φ̃(σ(m ⋅ 0 + bin0.θ1θ2⋯θNL), σ(m)) = φ̃(bin0.θ1θ2⋯θNL ,m) = θm.727

So we finish the proof.728

We finally point out that only the properties of Floor on [0,∞) are used in our proof.729

Thus, the Floor can be replaced by the truncation function that can be easily computed730

by truncating the decimal part.731

5 Conclusion732

This paper has introduced a theoretical framework to show that deep network approxi-733

mation can achieve root exponential convergence and avoid the curse of dimensionality734

for approximating functions as general as (Hölder) continuous functions. Given a Lip-735

schitz continuous function f on [0,1]d, it was shown by construction that Floor-ReLU736

networks with width max{d, 5N + 13} and depth 64dL + 3 can achieve a uniform ap-737

proximation error bounded by 3λ
√
dN−

√
L, where λ is the Lipschitz constant of f .738

More generally for an arbitrary continuous function f on [0,1]d with a modulus of con-739

tinuity ωf(⋅), the approximation error is bounded by ωf(
√
dN−

√
L) + 2ωf(

√
d)N−

√
L.740

The results in this paper provide a theoretical lower bound of the power of deep network741

approximation. Whether or not this bound is achievable in actual computation relies on742

advanced algorithm design as a separate line of research.743

Acknowledgments. Z. Shen is supported by Tan Chin Tuan Centennial Professor-744

ship. H. Yang was partially supported by the US National Science Foundation under745

award DMS-1945029.746

25

References747

Allen-Zhu, Z., Li, Y., and Liang, Y. (2019). Learning and generalization in overparam-748

eterized neural networks, going beyond two layers. ArXiv, abs/1811.04918.749

Arnold, V. I. (1957). On functions of three variables. Dokl. Akad. Nauk SSSR, pages750

679–681.751

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. (2019). Fine-grained analysis of752

optimization and generalization for overparameterized two-layer neural networks. In753

ICML.754

Bao, C., Li, Q., Shen, Z., Tai, C., Wu, L., and Xiang, X. (2019). Approximation analysis755

of convolutional neural networks. Semantic Scholar e-Preprint, page Corpus ID:756

204762668.757

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal758

function. IEEE Transactions on Information Theory, 39(3):930–945.759

Bartlett, P., Maiorov, V., and Meir, R. (1998). Almost linear VC-dimension bounds for760

piecewise polynomial networks. Neural Computation, 10:217–3.761

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating gradi-762

ents through stochastic neurons for conditional computation. arXiv e-prints, page763

arXiv:1308.3432.764

Berner, J., Grohs, P., and Jentzen, A. (2018). Analysis of the generalization error: Em-765

pirical risk minimization over deep artificial neural networks overcomes the curse of766

dimensionality in the numerical approximation of Black-Scholes partial differential767

equations. CoRR, abs/1809.03062.768

Bölcskei, H., Grohs, P., Kutyniok, G., and Petersen, P. (2019). Optimal approximation769

with sparsely connected deep neural networks. SIAM Journal on Mathematics of770

Data Science, 1(1):8–45.771

Boo, Y., Shin, S., and Sung, W. (2020). Quantized neural networks: Characterization772

and holistic optimization. ArXiv, abs/2006.00530.773

Braun, J. and Griebel, M. (2009). On a constructive proof of kolmogorov’s superposi-774

tion theorem. Constructive Approximation, 30:653–675.775

Cao, Y. and Gu, Q. (2019). Generalization bounds of stochastic gradient descent for776

wide and deep neural networks. CoRR, abs/1905.13210.777

26

Carrillo, J. A. T., Jin, S., Li, L., and Zhu, Y. (2019). A consensus-based global optimiza-778

tion method for high dimensional machine learning problems. arXiv:1909.09249.779

Chen, L. and Wu, C. (2019). A note on the expressive power of deep rectified linear780

unit networks in high-dimensional spaces. Mathematical Methods in the Applied781

Sciences, 42(9):3400–3404.782

Chen, M., Jiang, H., Liao, W., and Zhao, T. (2019a). Efficient approximation of783

deep ReLU networks for functions on low dimensional manifolds. In Wallach, H.,784

Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors,785

Advances in Neural Information Processing Systems 32, pages 8174–8184. Curran786

Associates, Inc.787

Chen, Z., Cao, Y., Zou, D., and Gu, Q. (2019b). How much over-parameterization is788

sufficient to learn deep ReLU networks? CoRR, arXiv:1911.12360.789

Chui, C. K., Lin, S.-B., and Zhou, D.-X. (2018). Construction of neural networks790

for realization of localized deep learning. Frontiers in Applied Mathematics and791

Statistics, 4:14.792

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. MCSS,793

2:303–314.794

Devore, R. A. (1989). Optimal nonlinear approximation. Manuskripta Math, pages795

469–478.796

E, W., Ma, C., and Wu, L. (2019). A priori estimates of the population risk for two-layer797

neural networks. Communications in Mathematical Sciences, 17(5):1407 – 1425.798

E, W. and Wang, Q. (2018). Exponential convergence of the deep neural network ap-799

proximation for analytic functions. CoRR, abs/1807.00297.800

E, W. and Wojtowytsch, S. (2020). Representation formulas and pointwise properties801

for barron functions.802

Gribonval, R., Kutyniok, G., Nielsen, M., and Voigtlaender, F. (2019). Approximation803

spaces of deep neural networks. arXiv e-prints, page arXiv:1905.01208.804

Gühring, I., Kutyniok, G., and Petersen, P. (2019). Error bounds for approxi-805

mations with deep ReLU neural networks in W s,p norms. arXiv e-prints, page806

arXiv:1902.07896.807

Guliyev, N. J. and Ismailov, V. E. (2018). Approximation capability of two hidden layer808

feedforward neural networks with fixed weights. Neurocomputing, 316:262 – 269.809

27

Harvey, N., Liaw, C., and Mehrabian, A. (2017). Nearly-tight VC-dimension bounds810

for piecewise linear neural networks. In Kale, S. and Shamir, O., editors, Proceedings811

of the 2017 Conference on Learning Theory, volume 65 of Proceedings of Machine812

Learning Research, pages 1064–1068, Amsterdam, Netherlands. PMLR.813

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1):66–73.814

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks815

are universal approximators. Neural Networks, 2(5):359 – 366.816

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2017). Quan-817

tized neural networks: Training neural networks with low precision weights and ac-818

tivations. J. Mach. Learn. Res., 18(1):6869–6898.819

Igelnik, B. and Parikh, N. (2003). Kolmogorov’s spline network. IEEE Transactions820

on Neural Networks, 14(4):725–733.821

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Convergence and822

generalization in neural networks. CoRR, abs/1806.07572.823

Ji, Z. and Telgarsky, M. (2020). Polylogarithmic width suffices for gradient de-824

scent to achieve arbitrarily small test error with shallow ReLU networks. ArXiv,825

abs/1909.12292.826

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of827

ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–828

1948 vol.4.829

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated830

annealing. Science, 220(4598):671–680.831

Kolmogorov, A. N. (1956). On the representation of continuous functions of several832

variables by superposition of continuous functions of a smaller number of variables.833

Dokl. Akad. Nauk SSSR, pages 179–182.834

Kolmogorov, A. N. (1957). On the representation of continuous functions of several835

variables by superposition of continuous functions of one variable and addition. Dokl.836

Akad. Nauk SSSR, pages 953–956.837

Kůrková, V. (1992). Kolmogorov’s theorem and multilayer neural networks. Neural838

Networks, 5(3):501 – 506.839

Li, Q., Lin, T., and Shen, Z. (2019). Deep learning via dynamical systems: An approx-840

imation perspective. arXiv e-prints, page arXiv:1912.10382.841

28

Liang, S. and Srikant, R. (2016). Why deep neural networks? CoRR, abs/1610.04161.842

Lin, Y., Lei, M., and Niu, L. (2019). Optimization strategies in quantized neural net-843

works: A review. In 2019 International Conference on Data Mining Workshops844

(ICDMW), pages 385–390.845

Lu, J., Shen, Z., Yang, H., and Zhang, S. (2020). Deep network approximation for846

smooth functions. arXiv e-prints, page arXiv:2001.03040.847

Luo, T. and Yang, H. (2020). Two-layer neural networks for partial differential equa-848

tions: Optimization and generalization theory. ArXiv, abs/2006.15733.849

Maiorov, V. and Pinkus, A. (1999). Lower bounds for approximation by MLP neural850

networks. Neurocomputing, 25(1):81 – 91.851

Montanelli, H. and Du, Q. (2019). New error bounds for deep ReLU networks using852

sparse grids. SIAM Journal on Mathematics of Data Science, 1(1):78–92.853

Montanelli, H. and Yang, H. (2020). Error bounds for deep ReLU networks using the854

Kolmogorov-Arnold superposition theorem. Neural Networks, 129:1 – 6.855

Montanelli, H., Yang, H., and Du, Q. (2020). Deep ReLU networks overcome the curse856

of dimensionality for bandlimited functions. Journal of Computational Mathematics.857

Nakada, R. and Imaizumi, M. (2019). Adaptive approximation and estimation of deep858

neural network with intrinsic dimensionality. arXiv:1907.02177.859

Nelder, J. and Mead, R. (1965). A simplex method for function minimization. Comput.860

J., 7:308–313.861

Opschoor, J. A. A., Schwab, C., and Zech, J. (2019). Exponential ReLU DNN expres-862

sion of holomorphic maps in high dimension. Technical Report 2019-35, Seminar863

for Applied Mathematics, ETH Zürich, Switzerland.864

Petersen, P. and Voigtlaender, F. (2018). Optimal approximation of piecewise smooth865

functions using deep ReLU neural networks. Neural Networks, 108:296 – 330.866

Pinnau, R., Totzeck, C., Tse, O., and Martin, S. (2017). A consensus-based model for867

global optimization and its mean-field limit. Mathematical Models and Methods in868

Applied Sciences, 27(01):183–204.869

Poggio, T., Mhaskar, H. N., Rosasco, L., Miranda, B., and Liao, Q. (2017). Why and870

when can deep—but not shallow—networks avoid the curse of dimensionality: A871

review. International Journal of Automation and Computing, 14:503–519.872

29

Shen, Z., Yang, H., and Zhang, S. (2019a). Nonlinear approximation via compositions.873

Neural Networks, 119:74 – 84.874

Shen, Z., Yang, H., and Zhang, S. (2019b). Deep network approximation characterized875

by number of neurons. arXiv e-prints, page arXiv:1906.05497.876

Suzuki, T. (2019). Adaptivity of deep ReLU network for learning in Besov and mixed877

smooth Besov spaces: optimal rate and curse of dimensionality. In International878

Conference on Learning Representations.879

Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y., and Cheng, J. (2018). Two-step quan-880

tization for low-bit neural networks. In 2018 IEEE/CVF Conference on Computer881

Vision and Pattern Recognition, pages 4376–4384.882

Yang, Y. and Wang, Y. (2020). Approximation in shift-invariant spaces with deep ReLU883

neural networks. arXiv e-prints, page arXiv:2005.11949.884

Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks. Neu-885

ral Networks, 94:103 – 114.886

Yarotsky, D. (2018). Optimal approximation of continuous functions by very deep887

ReLU networks. In Bubeck, S., Perchet, V., and Rigollet, P., editors, Proceedings888

of the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine889

Learning Research, pages 639–649. PMLR.890

Yarotsky, D. and Zhevnerchuk, A. (2019). The phase diagram of approximation rates891

for deep neural networks. arXiv e-prints, page arXiv:1906.09477.892

Yin, P., Lyu, J., Zhang, S., Osher, S., Qi, Y., and Xin, J. (2019). Understand-893

ing straight-through estimator in training activation quantized neural nets. ArXiv,894

abs/1903.05662.895

Zhou, D.-X. (2020). Universality of deep convolutional neural networks. Applied and896

Computational Harmonic Analysis, 48(2):787 – 794.897

30

	Introduction
	Discussion
	Application scope of our theory in machine learning
	Approximation rates in O(N) and O(L) versus O(W)
	Further interpretation of our theory
	Discussion on the literature

	Approximation of continuous functions
	Notations
	Proof of Theorem 1.1

	Proof of Proposition 3.2
	Conclusion

