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Abstract. Given a function dictionary D and an approximation budget N ∈ N+, nonlinear approximation seeks the linear3
combination of the best N terms {Tn}1≤n≤N ⊆ D to approximate a given function f with the minimum approximation error4

εL,f ∶= min
{gn}⊆R,{Tn}⊆D

∥f(x) −
N

∑
n=1

gnTn(x)∥.5

Motivated by recent success of deep learning, we propose dictionaries with functions in a form of compositions, i.e.,6

T (x) = T (L) ○ T (L−1) ○ ⋯ ○ T (1)(x)7

for all T ∈ D, and implement T using ReLU feed-forward neural networks (FNNs) with L hidden layers. We further quantify the8
improvement of the best N -term approximation rate in terms of N when L is increased from 1 to 2 or 3 to show the power of9
compositions. In the case when L > 3, our analysis shows that increasing L cannot improve the approximation rate in terms of10
N .11

In particular, for any function f on [0,1], regardless of its smoothness and even the continuity, if f can be approximated12
using a dictionary when L = 1 with the best N -term approximation rate εL,f = O(N−η), we show that dictionaries with L = 213
can improve the best N -term approximation rate to εL,f = O(N−2η). We also show that for Hölder continuous functions of order14

α on [0,1]d, the application of a dictionary with L = 3 in nonlinear approximation can achieve an essentially tight best N -term15
approximation rate εL,f = O(N−2α/d). Finally, we show that dictionaries consisting of wide FNNs with a few hidden layers are16
more attractive in terms of computational efficiency than dictionaries with narrow and very deep FNNs for approximating Hölder17
continuous functions if the number of computer cores is larger than N in parallel computing.18

Key words. Deep Neural Networks, ReLU Activation Function, Nonlinear Approximation, Function Composition, Hölder19
Continuity, Parallel Computing.20

1. Introduction. For non-smooth and high-dimensional function approximation, a favorable technique21

popularized in recent decades is the nonlinear approximation (DeVore, 1998) that does not limit the approx-22

imants to come from linear spaces, obtaining sparser representation, cheaper computation, and more robust23

estimation, and therein emerged the bloom of many breakthroughs in applied mathematics and computer24

science (e.g., wavelet analysis (Daubechies, 1992), dictionary learning (Tariyal, Majumdar, Singh, & Vatsa,25

2016), data compression and denoising (Jiang, 1996; Joutsensalo, 1994), adaptive pursuit (Davis, 1994; Ohls-26

son, Yang, Dong, & Sastry, 2013), compressed sensing (Donoho, 2006; Candes & Wakin, 2008)).27

Typically, nonlinear approximation is a two-stage algorithm that designs a good redundant nonlinear28

dictionary, D, in its first stage, and identifies the optimal approximant as a linear combination of N elements29

of D in the second stage:30

f(x) ≈ g ○ T (x) ∶=
N

∑
n=1

gnTn(x), (1.1)31

where f(x) is the target function in a Hilbert space H associated with a norm denoted as ∥ ⋅∥∗, {Tn} ⊆ D ⊆H,32

T is a nonlinear map from Rd to RN with the n-th coordinate being Tn, and g is a linear map from RN to R33

with the n-th coordinate being gn ∈ R. The nonlinear approximation seeks g and T such that34

{{Tn},{gn}} = arg min
{gn}⊆R,{Tn}⊆D

∥f(x) −
N

∑
n=1

gnTn(x)∥∗, (1.2)35

which is also called the best N -term approximation. One remarkable approach of nonlinear approximation is36

based on one-hidden-layer neural networks that give simple and elegant bases of the form T (x) = σ(Wx+ b),37
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where Wx + b is a linear transform in x with the transformation matrix W (named as the weight matrix)38

and a shifting vector b (called bias), and σ is a nonlinear function (called the activation function). The39

approximation40

f(x) ≈
N

∑
n=1

gnTn(x) =
N

∑
n=1

gnσ(Wnx + bn)41

includes wavelets pursuits (Mallat & Zhang, 1993; Chen & Donoho, 1994), adaptive splines (DeVore, 1998;42

Petrushev, 2003), radial basis functions (DEVORE & RON, 2010; Hangelbroek & Ron, 2010; Xie & Cao,43

2013), sigmoidal neural networks (Llanas & Sainz, 2006; Lewicki & Marino, 2004; Costarelli & Vinti, 2017;44

Costarelli & Sambucini, 2017; Costarelli & Vinti, 2018; Cybenko, 1989; Hornik, Stinchcombe, & White, 1989;45

Barron, 1993), etc. For functions in Besov spaces with smoothness s, (DEVORE & RON, 2010; Hangelbroek46

& Ron, 2010) constructed an O(N−s/d) 1○ approximation that is almost optimal (Lin, Liu, Rong, & Xu, 2014)47

and the smoothness cannot be reduced generally (Hangelbroek & Ron, 2010). For Hölder continuous functions48

of order 1 on [0,1]d, (Xie & Cao, 2013) essentially constructed an O(N− 1
2d ) approximation, which is far from49

the lower bound O(N−2/d) as we shall prove in this paper. Achieving the optimal approximation rate of50

general continuous functions in constructive approximation, especially in high dimensional spaces, remains an51

unsolved challenging problem.52

1.1. Problem Statement. ReLU FNNs have been proved to be a powerful tool in many fields from53

various points of view (Montufar, Pascanu, Cho, & Bengio, 2014; Bianchini & Scarselli, 2014; Bartlett, Maiorov,54

& Meir, 1998; Sakurai, 1999; Harvey, Liaw, & Mehrabian, 2017; Kearns & Schapire, 1994; Anthony & Bartlett,55

2009; Petersen & Voigtlaender, 2018), which motivates us to tackle the open problem above via function56

compositions in the nonlinear approximation using deep ReLU FNNs, i.e.,57

f(x) ≈ g ○ T (L)
○ T (L−1)

○ ⋯ ○ T (1)
(x), (1.3)58

where T (i)(x) = σ (Wix + bi) with Wi ∈ RNi×Ni−1 , bi ∈ RNi for i = 1, . . . , L, σ is the ReLU activation function,59

and f is a Hölder continuous function. For the convenience of analysis, we consider Ni = N for i = 1, . . . , L.60

Let DL be the dictionary consisting of ReLU FNNs g ○T (L) ○T (L−1) ○⋯○T (1)(x) with width N and depth L.61

To identify the optimal FNN to approximate f(x), it is sufficient to solve the following optimization problem62

φ∗ = arg min
φ∈DL

∥f − φ∥∗. (1.4)63

64

The fundamental limit of nonlinear approximation via the proposed dictionary is essentially determined65

by the approximation power of function compositions in (1.3), which gives a performance guarantee of the66

minimizer in (1.4). Since function compositions are implemented via ReLU FNNs, the remaining problem is to67

quantify the approximation capacity of deep ReLU FNNs, especially their ability to improve the best N -term68

approximation rate in N for any fixed L defined as69

εL,f(N) = min
φ∈DL

∥f − φ∥∗. (1.5)70

71

Function compositions can significantly enrich the dictionary of nonlinear approximation and this idea was72

not considered in the literature previously due to the expensive computation of function compositions in solving73

the minimization problem in (1.4). Fortunately, recent development of efficient algorithms for optimization74

with compositions (e.g., backpropagation techniques (Werbos, 1975; Fukushima, 1980; Rumelhart, McClelland,75

Group, & University of California, 1986) and parallel computing techniques (Scherer, Müller, & Behnke,76

2010; Cireşan, Meier, Masci, Gambardella, & Schmidhuber, 2011)) makes it possible to explore the proposed77

dictionary in this paper. Furthermore, with advanced optimization algorithms (Duchi, Hazan, & Singer,78

2011; Johnson & Zhang, 2013; Kingma & Ba, 2014), good local minima of (1.4) can be identified efficiently79

(Kawaguchi, 2016; Nguyen & Hein, 2017; Kawaguchi & Bengio, 2019).80

1○In this paper, we use the big O(⋅) notation when we only care about the scaling in terms of the variables inside (⋅) and the
prefactor outside (⋅) is independent of these variables.
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1.2. Related work and contribution. The main goal in the remaining article is to quantify the best81

N -term approximation rate εL,f(N) defined in (1.5) for ReLU FNNs in the dictionary DL with a fixed depth82

L when f is a Hölder continuous function. This topic is related to several existing approximation theories in83

the literature, but none of these existing works can be applied to answer the problem addressed in this paper.84

First of all, this paper identifies explicit formulas for the best N -term approximation rate85

εL,f(N) ≤

⎧⎪⎪
⎨
⎪⎪⎩

2νN−2α, when L ≥ 2 and d = 1,

2(2
√
d)ανN−2α/d, when L ≥ 3 and d > 1,

(1.6)86

for any N ∈ N+ and a Hölder continuous function f of order α with a constant ν, while existing theories87

(Lu, Pu, Wang, Hu, & Wang, 2017; Montanelli, Yang, & Du, 2019; Yarotsky, 2017; Liang & Srikant, 2016;88

Montanelli & Du, 2019; Suzuki, 2019; Petersen & Voigtlaender, 2018; Yarotsky, 2018; E & Wang, 2018) can89

only provide implicit formulas in the sense that the approximation error contains an unknown prefactor and90

work only for sufficiently large N or L larger than some unknown numbers. For example, the approximation91

rate in (Yarotsky, 2018) via a narrow and deep ReLU FNN is c(d)L−2α/d with c(d) unknown and for L larger92

than a sufficiently large unknown number L; the approximation rate in (Yarotsky, 2018) via a wide and shallow93

(c1(d)-layer) ReLU FNN is c2(d)N
−α/d with c1(d) and c2(d) unknown and for N larger than a sufficiently large94

unknown number N . For another example, given an approximation error ε, (Petersen & Voigtlaender, 2018)95

proved the existence of a ReLU FNN with a constant but still unknown number of layers approximating a Cβ96

function within the target error. Similarly, given the ε error, (Montanelli & Du, 2019; Montanelli et al., 2019;97

E & Wang, 2018) estimate the scaling of the network size in ε and the scaling contains unknown prefactors.98

Given an arbitrary L and N , no existing work can provide an explicit formula for the approximation error to99

guide practical network design, e.g., to guarantee whether the network is large enough to meet the accuracy100

requirement. This paper provides such formulas for the first time and in fact the bound in these formulas is101

asymptotically tight as we shall prove later.102

Second, our target functions are Hölder continuous, while most of existing works aim for a smaller function103

space with certain smoothness, e.g. functions in Cα([0,1]d) with α ≥ 1 (Lu et al., 2017; Liang & Srikant,104

2016; Yarotsky, 2017; E & Wang, 2018), band-limited functions (Montanelli et al., 2019), Korobov spaces105

(Montanelli & Du, 2019), or Besev spaces (Suzuki, 2019). To the best of our knowledge, there is only one106

existing article (Yarotsky, 2018) concerning the approximation power of deep ReLU FNNs for C([0,1]d).107

However, the conclusion of (Yarotsky, 2018) only works for ReLU FNNs with a fixed width 2d + 10 and a108

sufficiently large L, instead of a fixed L and an arbitrary N as required in the nonlinear approximation (see109

Figure 1 for the comparison of the conclusion of (Yarotsky, 2018) and this paper).110

As we can see in Figure 1, the improvement of the best N -term approximation rate in terms of N when111

L is increased from 1 to 2 or 3 is significant, which shows the power of depth in ReLU FNNs. However, in the112

case when L > 3, our analysis shows that increasing L cannot improve the approximation rate in terms of N .113

As an interesting corollary of our analysis, for any function f on [0,1], regardless of its smoothness and even114

the continuity, if f can be approximated using using functions in D1 with the best N -term approximation115

rate εL,f = O(N−η), we show that functions in D2 can improve the best N -term approximation rate to116

εL,f = O(N−2η). Extending this conclusion for a general d dimensional function is challenging and we leave it117

as future work.118

From the point of view of analysis techniques, this paper introduce new analysis methods merely based119

on the structure of FNNs, while existing works (Lu et al., 2017; Montanelli et al., 2019; Yarotsky, 2017; Liang120

& Srikant, 2016; Montanelli & Du, 2019; Suzuki, 2019; Petersen & Voigtlaender, 2018; Yarotsky, 2018; E121

& Wang, 2018) rely on constructing FNNs to approximate traditional basis in approximation theory, e.g.,122

polynomials, splines, and sparse grids, which are used to approximate smooth functions.123

Finally, we analyze the approximation efficiency of neural networks in parallel computing, a very important124

point of view that was not paid attention to in the literature. In most applications, the efficiency of deep125

learning computation highly relies on parallel computation. We show that a narrow and very deep neural126

network is inefficient if its approximation rate is not exponentially better than wide and shallower networks.127
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Fig. 1. A comparison of existing works and our contribution on the approximation power of ReLU FNNs for Hölder
continuous functions of order α. Existing results in two cases: 1) O(N−α/d) approximation rate for ReLU FNNs with depth

L = 1 and width N ; 2) O(L−2α/d) approximation rate for ReLU FNNs with depth L larger than a sufficiently large unknown

number L2 and width 2d + 10. Our contribution: O(N−2α/d) approximation rate for ReLU FNNs width depth L ≥ 3 and width
N in the case of d > 1 (L ≥ 2 in the case of d = 1).

Hence, neural networks with O(1) layers are more attractive in modern computational platforms, considering128

the computational efficiency per training iteration in parallel computing platforms. Our conclusion does not129

conflict with the current state-of-the-art deep learning research since most of these successful deep neural130

networks have a depth that is asymptotically O(1) relative to the width.131

1.3. Organization. The rest of the paper is organized as follows. Section 2 summarizes the notations132

throughout this paper. Section 3 presents the main theorems while Section 4 shows numerical tests in parallel133

computing to support the claims in this paper. Finally, Section 5 concludes this paper with a short discussion.134

2. Preliminaries. For the purpose of convenience, we present notations and elementary lemmas used135

throughout this paper as follows.136

2.1. Notations.137

● Matrices are denoted by bold uppercase letters, e.g., A ∈ Rm×n is a real matrix of size m×n, and AT138

denotes the transpose of A. Correspondingly, A(i, j) is the (i, j)-th entry of A; A(∶, j) is the j-th139

column of A; A(i, ∶) is the i-th row of A.140

● Vectors are denoted as bold lowercase letters, e.g., v ∈ Rn is a column vector of size n and v(i) is the141

i-th element of v. v = [v1,⋯, vn]
T = [

v1
⋮
vn

] are vectors consisting of numbers {vi} with v(i) = vi.142

● The Lebesgue measure is denoted as µ(⋅).143

● The set difference of A and B is denoted by A/B. Ac denotes [0,1]d/A for any A ⊆ [0,1]d.144

● For a set of numbers A, and a number x, A − x ∶= {y − x ∶ y ∈ A}.145

● For any ξ ∈ R, let ⌊ξ⌋ ∶= max{i ∶ i ≤ ξ, i ∈ Z} and ⌈ξ⌉ ∶= min{i ∶ i ≥ ξ, i ∈ Z}.146

● Assume n ∈ Nn, then f(n) = O(g(n)) means that there exists positive C independent of n, f , and g147

such that f(n) ≤ Cg(n) when n(i) goes to +∞ for all i.148

● Define Lip(ν,α, d) as the class of functions defined on [0,1]d satisfying the uniformly Lipchitz property149

of order α with a Lipchitz constant ν > 0. That is, any f ∈ Lip(ν,α, d) satisfies150

∣f(x) − f(y)∣ ≤ ν∥x − y∥α2 , for any x,y ∈ [0,1]d.151

● Let CPL(N) be the set of continuous piecewise linear functions with N − 1 pieces mapping [0,1] to152

R. The endpoints of each linear piece are called “break points” in this paper.153

● Let σ ∶ R → R denote the rectified linear unit (ReLU), i.e. σ(x) = max{0, x}. With the abuse of154

notations, we define σ ∶ Rd → Rd as σ(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

max{0, x1}
⋮

max{0, xd}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for any x = [x1,⋯, xd]
T ∈ Rd.155
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● We will use NN as a ReLU neural network for short and use Python-type notations to specify a class156

of NN’s, e.g., NN(c1; c2; ⋯; cm) is a set of ReLU FNN’s satisfying m conditions given by {ci}1≤i≤m,157

each of which may specify the number of inputs (#input), the total number of nodes in all hidden158

layers (#node), the number of hidden layers (#layer), the total number of parameters (#parameter),159

and the width in each hidden layer (widthvec), the maximum width of all hidden layers (maxwidth)160

etc. For example, NN(#input = 2; widthvec = [100,100]) is a set of NN’s φ satisfying:161

– φ maps from R2 to R.162

– φ has two hidden layers and the number of nodes in each hidden layer is 100.163

● [n]L is short for [n,n,⋯, n] ∈ NL. For example,164

NN(#input = d; widthvec = [100,100,100]) = NN(#input = d; widthvec = [100]3).165

● For φ ∈ NN(#input = d; widthvec = [N1,N2,⋯,NL]), if we define N0 = d and NL+1 = 1, then the166

architecture of φ can be briefly described as follows:167

x = h̃0
W1, b1
Ð→h1

σ
Ð→ h̃1 ⋯

WL, bL
Ð→hL

σ
Ð→ h̃L

WL+1, bL+1
Ð→ φ(x) = hL+1,168

whereWi ∈ RNi×Ni−1 and bi ∈ RNi are the weight matrix and the bias vector in the i-th linear transform169

in φ, respectively, i.e., hi ∶=Wih̃i−1 + bi for i = 1,2,⋯, L + 1 and h̃i = σ(hi) for i = 1,2,⋯, L.170

2.2. Lemmas. Let us study the properties of ReLU FNNs with only one hidden layer to warm up in171

Lemma 2.1 below. It indicates that CPL(N + 1) = NN(#input = 1; widthvec = [N]) for any N ∈ N+.172

Lemma 2.1. Suppose φ ∈ NN(#input = 1; widthvec = [N]) with an architecture:173

x
W1, b1
Ð→h

σ
Ð→ h̃

W2, b2
Ð→φ(x).174

Then φ is a continuous piecewise linear function. Let W1 = [1,1,⋯,1]T ∈ RN×1, then we have:175

(1) Given a sequence of strictly increasing numbers x0, x1,⋯, xN , there exists b1 ∈ RN independent of W2176

and b2 such that the break points of φ are exactly x0, ⋯, xN on the interval [x0, xN ] 2○.177

(2) Suppose {xi}i∈{0,1,⋯,N} and b1 are given in (1). Given any sequence {yi}i∈{0,1,⋯,N}, there exist W2 and178

b2 such that φ(xi) = yi for i = 0,1,⋯,N and φ is linear on [xi, xi+1] for i = 0,1,⋯,N − 1.179

Part (1) in Lemma 2.1 follows by setting b1 = [−x0,−x1,⋯,−xN−1]
T . The existence in Part (2) is180

equivalent to the existence of a solution of linear equations, which is left for the reader. Next, we study the181

properties of ReLU FNNs with two hidden layers. In fact, we can show that the closure of NN(#input =182

1; widthvec = [2m,2n + 1]) contains CPL(mn + 1) for any m,n ∈ N+, where the closure is in the sense of183

Lp-norm for any p ∈ [1,∞). The proof of this property relies on the following lemma.184

Lemma 2.2. For any m,n ∈ N+, given any m(n+1)+1 samples (xi, yi) ∈ R2 with x0 < x1 < x2 < ⋯ < xm(n+1)185

and yi ≥ 0 for i = 0,1,⋯,m(n + 1), there exists φ ∈ NN(#input = 1; widthvec = [2m,2n + 1]) satisfying the186

following conditions:187

(1) φ(xi) = yi for i = 0,1,⋯,m(n + 1);188

(2) φ is linear on each interval [xi−1, xi] for i ∉ {(n + 1)j ∶ j = 1,2,⋯,m};189

(3) sup
x∈[x0, xm(n+1)]

∣φ(x)∣ ≤ 3 max
i∈{0,1,⋯,m(n+1)}

yi
n

∏
k=1

(1 +
max{xj(n+1)+n−xj(n+1)+k−1∶j=0,1,⋯,m−1}
min{xj(n+1)+k−xj(n+1)+k−1∶j=0,1,⋯,m−1} ).190

Proof. For simplicity of notation, we define I0(m,n) ∶= {0,1,⋯,m(n + 1)}, I1(m,n) ∶= {j(n + 1) ∶ j =191

1,2,⋯,m}, and I2(m,n) ∶= I0(m,n)/I1(m,n) for any m,n ∈ N+. Since φ ∈ NN(#input = 1; widthvec =192

[2m,2n + 1]), the architecture of φ is193

x
W1, b1
Ð→h

σ
Ð→ h̃

W2, b2
Ð→g

σ
Ð→ g̃

W3, b3
Ð→φ(x). (2.1)194

2○We only consider the interval [x0, xN ] and hence x0 and xN are treated as break points. φ(x) might not have a real break
point in a small open neighborhood of x0 or xN .
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Note that g maps x ∈ R to g(x) ∈ R2n+1 and hence each entry of g(x) itself is a sub-network with one hidden195

layer. Denote g = [g0, g
+
1 , g

−
1 ,⋯, g

+
n, g

−
n]
T , then {g0, g

+
1 , g

−
1 ,⋯, g

+
n, g

−
n} ⊆ NN(#input = 1; widthvec = [2m]). Our196

proof of Lemma 2.2 is mainly based on the repeated applications of Lemma 2.1 to determine parameters of197

φ(x) such that Conditions (1) to (3) hold.198

Step 1: Determine W1 and b1.199

By Lemma 2.1, ∃W1 = [1,1,⋯,1]T ∈ R2m×1 and b1 ∈ R2m×1 such that sub-networks in {g0, g
+
1 , g

−
1 ,⋯, g

+
n, g

−
n}200

have the same set of break points: {xi ∶ i ∈ I1(m,n) ∪ (I1(m,n) − 1) ∪ {0}}, no matter what W2 and b2 are.201

Step 2: Determine W2 and b2.202

This is the key step of the proof. Our ultimate goal is to set up g = [g0, g
+
1 , g

−
1 ,⋯, g

+
n, g

−
n]
T such that, after203

a nonlinear activation function, there exists a linear combination in the last step of our network (specified by204

W3 and b3 as shown in (2.1)) that can generate a desired φ(x) matching the sample points {(xi, yi)}0≤i≤m(n+1).205

In the previous step, we have determined the break points of {g0, g
+
1 , g

−
1 ,⋯, g

+
n, g

−
n} by setting up W1 and b1;206

in this step, we will identify W2 ∈ R(2n+1)×2m and b2 ∈ R2n+1 to fully determine {g0, g
+
1 , g

−
1 ,⋯, g

+
n, g

−
n}. This207

will be conducted in two sub-steps.208

Step 2.1: Set up.209

Suppose f0(x) is a continuous piecewise linear function defined on [0,1] fitting the given samples f0(xi) =210

yi for i ∈ I0(m,n), and f0 is linear between any two adjacent points of {xi ∶ i ∈ I0(m,n)}. We are able to211

choose W2(1, ∶) and b2(1) such that g0(xi) = f0(xi) for i ∈ I1(m,n)∪ (I1(m,n)− 1)∪ {0} by Lemma 2.1, since212

there are 2m+1 points in I1(m,n)∪(I1(m,n)−1)∪{0}. Define f1 ∶= f0− g̃0, where g̃0 = σ(g0) = g0 as shown in213

Equation (2.1), since g0 is positive by the construction of Lemma 2.1. Then we have f1(xi) = f0(xi)−g̃0(xi) = 0214

for i ∈ (I1(m,n) − n − 1) ∪ {m(n + 1)}. See Figure 2 (a) for an illustration of f0, f1, and g0.215

Step 2.2: Mathematical induction.216

For each k ∈ {1,2,⋯, n}, given fk, we determine W2(2k, ∶), b2(2k), W2(2k + 1, ∶), and b2(2k + 1), to217

completely specify g+k and g−k , which in turn can determine fk+1. Hence, it is only enough to show how to218

proceed with an arbitrary k, since the initialization of the induction, f1, has been constructed in Step 2.1. See219

Figure 2 (b)-(d) for the illustration of the first two induction steps. We recursively rely on the fact of fk that220

● fk(xi) = 0 for i ∈ ∪k−1`=0 (I1(m,n) − n − 1 + `) ∪ {m(n + 1)},221

● fk is linear on each interval [xi−1, xi] for i ∈ I2(m,n)/{0},222

to construct fk+1 satisfying similar conditions as follows:223

● fk+1(xi) = 0 for i ∈ ∪k`=0(I1(m,n) − n − 1 + `) ∪ {m(n + 1)},224

● fk+1 is linear on each interval [xi−1, xi] for i ∈ I2(m,n)/{0}.225

The induction process for W2(2k, ∶), b2(2k), W2(2k+1, ∶), b2(2k+1), and fk+1 can be divided into four parts.226

Step 2.2.1: Define index sets.227

Let Λ+
k = {j ∶ fk(xj(n+1)+k) ≥ 0, 0 ≤ j < m} and Λ−

k = {j ∶ fk(xj(n+1)+k) < 0, 0 ≤ j < m}. The cardinality228

of Λ+
k ∪ Λ−

k is m. We will use Λ+
k and Λ−

k to generate 2m + 1 samples to determine CPL functions g+k(x) and229

g−k(x) in the next step.230

Step 2.2.2: Determine W2(2k, ∶) and b2(2k).231

By Lemma 2.1, we can choose W2(2k, ∶) and b2(2k) to fully determine g+k(x) such that each g+k(xi)232

matches a specific value for i ∈ (I1(m,n) − n − 1) ∪ (I1(m,n) − 1) ∪ {m(n + 1)}. The values of {g+k(xi) ∶ i ∈233

(I1(m,n) − n − 1) ∪ (I1(m,n) − 1) ∪ {m(n + 1)}} are specified as:234

● If j ∈ Λ+
k , specify the values of g+k(xj(n+1)) and g+k(xj(n+1)+n) such that g+k(xj(n+1)+k−1) = 0 and235

g+k(xj(n+1)+k) = fk(xj(n+1)+k). The existence of these values fulfilling the requirements above comes236

from the fact that g+k(x) is linear on the interval [xj(n+1), xj(n+1)+n] and g+k(x) only depends on237

the values of g+k(xj(n+1)+k−1) and g+k(xj(n+1)+k) on [xj(n+1), xj(n+1)+n]. Now it is easy to verify that238
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(a) (b)

(c) (d)

Fig. 2. Illustrations of the proof of Lemma 2.2, especially Step 2 of the proof, when m = n = 4, with the “don’t-care” region
in red. (a) Given samples {(xi, yi) ∶ i = 0,1,⋯,m(n + 1)} marked with “star” signs, suppose f0(x) is a CPL function fitting
the samples, construct g0 such that f1 = f0 − σ(g0) is closer to 0 than f0 in the L∞ sense. (b) Construct g+1 and g−1 such that
f2 = f1 − σ(g+1 ) + σ(g−1 ) is closer to 0 than f1 in the L∞ sense in a subset of the “important” region. (c) Construct g+2 and g−2
such that f3 = f2 − σ(g+2 ) + σ(g−2 ) is closer to 0 than f2 in the L∞ sense in a larger subset of the “important” region. (d) The
visualization of f3, which is 0 in the “important” areas that have been processed and may remain large near the “don’t-care”
region. fk will decay quickly outside the “don’t-care” region as k increases.

g̃+k(x) ∶= σ(g
+
k(x)) satisfies g̃+k(xj(n+1)+k) = fk(xj(n+1)+k) ≥ 0 and g̃+k(xj(n+1)+`) = 0 for ` = 0,1,⋯, k − 1,239

and g̃+k is linear on each interval [xj(n+1)+`, xj(n+1)+`+1] for ` = 0,1,⋯, n − 1.240

● If j ∈ Λ−
k , let g+k(xj(n+1)) = g

+
k(xj(n+1)+n) = 0. Then g̃+k(x) = 0 on the interval [xj(n+1), xj(n+1)+n].241

● Finally, specify the value of g+k(x) at x = xm(n+1) as 0.242

Step 2.2.3: Determine W2(2k + 1, ∶) and b2(2k + 1).243

Similarly, we choose W2(2k + 1, ∶) and b2(2k + 1) such that g−k(x) matches specific values as follows:244

● If j ∈ Λ−
k , specify the values of g−k(xj(n+1)) and g−k(xj(n+1)+n) such that g−k(xj(n+1)+k−1) = 0 and245

g−k(xj(n+1)+k) = −fk(xj(n+1)+k). Then g̃−k(x) ∶= σ(g
−
k(x)) satisfies g̃−k(xj(n+1)+k) = −fk(xj(n+1)+k) > 0246

and g̃−k(xj(n+1)+`) = 0 for ` = 0,1,⋯, k − 1, and g̃−k(x) is linear on each interval [xj(n+1)+`, xj(n+1)+`+1]247

for ` = 0,1,⋯, n − 1.248

● If j ∈ Λ+
k , let g−k(xj(n+1)) = g

−
k(xj(n+)+n) = 0. Then g̃−k(x) = 0 on the interval [xj(n+1), xj(n+1)+n].249

● Finally, specify the value of g−k(x) at x = xm(n+1) as 0.250

Step 2.2.4: Construct fk+1 from g+k and g−k .251

For the sake of clarity, the properties of g+k and g−k constructed in Step 2.2.3 are summarized below:252

(1) fk(xi) = g̃
+
k(xi) = g̃

−
k(xi) = 0 for i ∈ ∪k−1`=0 (I1(m,n) − n − 1 + `) ∪ {m(n + 1)};253

(2) If j ∈ Λ+
k , g̃+k(xj(n+1)+k) = fk(xj(n+1)+k) ≥ 0 and g̃−k(xj(n+1)+k) = 0;254

(3) If j ∈ Λ−
k , g̃−k(xj(n+1)+k) = −fk(xj(n+1)+k) > 0 and g̃+k(xj(n+1)+k) = 0;255

(4) g̃+k and g̃−k are linear on each interval [xj(n+1)+`, xj(n+1)+`+1] for ` = 0,1,⋯, n−1, j ∈ Λ+
k∪Λ−

k = {0,1,⋯,m−1}.256

In other words, g̃+k and g̃−k are linear on each interval [xi−1, xi] for i ∈ I2(m,n)/{0}.257

See Figure 2 (a)-(c) for the illustration of g0, g+1 , g−1 , g+2 , and g−2 , and to verify their properties as listed above.258

Note that Λ+
k∪Λ−

k = {0,1,⋯,m−1}, so fk(xi)−g̃
+
k(xi)+g̃

−
k(xi) = 0 for i ∈ ∪k`=0(I1(m,n)−n−1+`)∪{m(n+1)}.259
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Now we define fk+1 ∶= fk − g̃
+
k + g̃

−
k , then260

● fk+1(xi) = 0 for i ∈ ∪k`=0(I1(m,n) − n − 1 + `) ∪ {m(n + 1)};261

● fk+1 is linear on each interval [xi−1, xi] for i ∈ I2(m,n)/{0}.262

See Figure 2 (b)-(d) for the illustration of f1, f2, and f3, and to verify their properties as listed just above.263

This finishes the mathematical induction process. As we can imagine based on Figure 2, when k increases,264

the support of fk shrinks to the “don’t-care” region.265

Step 3: Determine W3 and b3.266

With the special vector function g = [g0, g
+
1 , g

−
1 ,⋯, g

+
n, g

−
n]
T constructed in Step 2, we are able to specifyW3267

and b3 to generate a desired φ(x) with a well-controlled L∞-norm matching the samples {(xi, yi)}0≤i≤m(n+1).268

In fact, we can simply set W3 = [1,1,−1,1,−1,⋯,1,−1] ∈ R1×(2n+1) and b3 = 0, which finishes the con-269

struction of φ(x). The rest of the proof is to verify the properties of φ(x). Note that φ = g̃0+∑
n
`=1 g̃

+
` −∑

n
`=1 g̃

−
` .270

By the mathematical induction, we have:271

● fn+1 = f0 − g̃0 −∑
n
`=1 g̃

+
` +∑

n
`=1 g̃

−
` ;272

● fn+1(xi) = 0 for i ∈ ∪n`=0(I1(m,n) − n − 1 + `) ∪ {m(n + 1)} = I0(m,n);273

● fn+1 is linear on each interval [xi−1, xi] for i ∈ I2(m,n)/{0}.274

Hence, φ = g̃0+∑
n
`=1 g̃

+
` −∑

n
`=1 g̃

−
` = f0−fn+1. Then φ satisfies Conditions (1) and (2) of this lemma. It remains275

to check that φ satisfies Condition (3).276

By the definition of f1, we have277

sup
x∈[x0, xm(n+1)]

∣f1(x)∣ ≤ 2 max{yi ∶ i ∈ I0(m,n)}. (2.2)278

By the induction process in Step 2, for k ∈ {1,2,⋯, n}, it holds that279

sup
x∈[x0, xm(n+1)]

∣g̃+k(x)∣ ≤
max{xj(n+1)+n−xj(n+1)+k−1∶j=0,1,⋯,m−1}
min{xj(n+1)+k−xj(n+1)+k−1∶j=0,1,⋯,m−1} sup

x∈[x0, xm(n+1)]
∣fk(x)∣ (2.3)280

and281

sup
x∈[x0, xm(n+1)]

∣g̃−k(x)∣ ≤
max{xj(n+1)+n−xj(n+1)+k−1∶j=0,1,⋯,m−1}
min{xj(n+1)+k−xj(n+1)+k−1∶j=0,1,⋯,m−1} sup

x∈[x0, xm(n+1)]
∣fk(x)∣. (2.4)282

Since either g̃+k(x) or g̃−k(x) is equal to 0 on [0,1], we have283

sup
x∈[x0, xm(n+1)]

∣g̃+k(x) − g̃
−
k(x)∣ ≤

max{xj(n+1)+n−xj(n+1)+k−1∶j=0,1,⋯,m−1}
min{xj(n+1)+k−xj(n+1)+k−1∶j=0,1,⋯,m−1} sup

x∈[x0, xm(n+1)]
∣fk(x)∣. (2.5)284

Note that fk+1 = fk − g̃
+
k + g̃

−
k , which means285

sup
x∈[x0, xm(n+1)]

∣fk+1(x)∣ ≤ sup
x∈[x0, xm(n+1)]

∣g̃+k(x) − g̃
−
k(x)∣ + sup

x∈[x0, xm(n+1)]
∣fk(x)∣

≤ (
max{xj(n+1)+n−xj(n+1)+k−1∶j=0,1,⋯,m−1}
min{xj(n+1)+k−xj(n+1)+k−1∶j=0,1,⋯,m−1} + 1) sup

x∈[x0, xm(n+1)]
∣fk(x)∣

(2.6)286

for k ∈ {1,2,⋯, n}. Then we have287

sup
x∈[x0, xm(n+1)]

∣fn+1(x)∣ ≤ 2 max
i∈I0(m,n)

yi
n

∏
k=1

(
max{xj(n+1)+n−xj(n+1)+k−1∶j=0,1,⋯,m−1}
min{xj(n+1)+k−xj(n+1)+k−1∶j=0,1,⋯,m−1} + 1) .288

Hence289

sup
x∈[x0, xm(n+1)]

∣φ(x)∣ ≤ sup
x∈[x0, xm(n+1)]

∣f0(x)∣ + sup
x∈[x0, xm(n+1)]

∣fn+1(x)∣

≤ 3 max
i∈I0(m,n)

yi
n

∏
k=1

(
max{xj(n+1)+n−xj(n+1)+k−1∶j=0,1,⋯,m−1}
min{xj(n+1)+k−xj(n+1)+k−1∶j=0,1,⋯,m−1} + 1) .

290

So, we finish the proof.291
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3. Main Results. We present our main results in this section. First, we quantitatively prove an achiev-292

able approximation rate in the N -term nonlinear approximation by construction, i.e., the lower bound of293

the approximation rate. Second, we show a lower bound of the approximation rate asymptotically, i.e., no294

approximant exists asymptotically following the approximation rate. Finally, we discuss the efficiency of the295

nonlinear approximation considering the approximation rate and parallel computing in FNNs together.296

3.1. Quantitative Achievable Approximation Rate.297

Theorem 3.1. For any N ∈ N+ and f ∈ Lip(ν,α, d) with α ∈ (0,1], we have 3○:298

(1) If d = 1, ∃ φ ∈ NN(#input = 1; widthvec = [2N,2N + 1]) such that299

∥φ − f∥L1([0,1]) ≤ 2νN−2α, for any N ∈ N+;300

(2) If d > 1, ∃ φ ∈ NN(#input = d; widthvec = [2d⌊N2/d⌋,2N + 2,2N + 3]) such that301

∥φ − f∥L1([0,1]d) ≤ 2(2
√
d)ανN−2α/d, for any N ∈ N+.302

Proof. Without loss of generality, we assume f(0) = 0 and ν = 1.303

Step 1: The case d = 1.304

Given any f ∈ Lip(ν,α, d) and N ∈ N+, we know ∣f(x)∣ ≤ 1 for any x ∈ [0,1] since f(0) = 0 and ν = 1. Set305

f̄ = f + 1 ≥ 0, then 0 ≤ f̄(x) ≤ 2 for any x ∈ [0,1]. Let X = { i
N2 ∶ i = 0,1,⋯,N2} ∪ { i

N
− δ ∶ i = 1,2,⋯,N},306

where δ is a sufficiently small positive number depending on N , and satisfying (3.2). Let us order X as307

x0 < x1 < ⋯ < xN(N+1). By Lemma 2.2, given the set of samples {(xi, f̄(xi)) ∶ i ∈ {0,1,⋯,N(N + 1)}}, there308

exists φ ∈ NN(#input = 1; widthvec = [2N,2N + 1]) such that309

● φ(xi) = f̄(xi) for i = 0,1,⋯,N(N + 1);310

● φ is linear on each interval [xi−1, xi] for i ∉ {(N + 1)j ∶ j = 1,2,⋯,N};311

● φ has an upper bound estimation: sup{φ(x) ∶ x ∈ [0,1]} ≤ 6(N + 1)!.312

It follows that313

∣f̄(x) − φ(x)∣ ≤ (xi − xi−1)
α
≤ N−2α, if x ∈ [xi−1, xi], for i ∉ {(N + 1)j ∶ j = 1,2,⋯,N}.314

Define H0 = ∪i∈{(N+1)j∶j=1,2,⋯,N}[xi−1, xi], then315

∣f̄(x) − φ(x)∣ ≤ N−2α, for any x ∈ [0,1]/H0, (3.1)316

by the fact that f̄ ∈ Lip(1, α, d) and points in X are equispaced. By µ(H0) ≤ Nδ, it follows that317

∥f̄ − φ∥L1([0,1]) = ∫
H0

∣f̄(x) − φ(x)∣dx + ∫
[0,1]/H0

∣f̄(x) − φ(x)∣dx

≤ Nδ(2 + 6(N + 1)!) +N2
(N−2α

)N−2
≤ 2N−2α,

318

where the last inequality comes from the fact δ is small enough satisfying319

Nδ(2 + 6(N + 1)!) ≤ N−2α. (3.2)320

Note that f − (φ − 1) = f + 1 − φ = f̄ − φ. Hence, φ − 1 ∈ NN(#input = 1; widthvec = [2N,2N + 1]) and321

∥f − (φ − 1)∥ ≤ 2N−2α. So, we finish the proof for the case d = 1.322

Step 2: The case d > 1.323

The main idea is to project the d-dimensional problem into a one-dimensional one and use the results324

proved above. For any N ∈ N+, let n = ⌊N2/d⌋ and δ be a sufficiently small positive number depending on N325

3○It is easy to generalize the results in Theorem 3.1 and Corollary 3.2 from L1 to Lp-norm for p ∈ [1,∞) since µ([0,1]d) = 1.
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and d, and satisfying (3.8). We will divide the d-dimensional cube into nd small non-overlapping sub-cubes326

(see Figure 3 for an illustration when d = 3 and n = 3), each of which is associated with a representative327

point, e.g., a vertex of the sub-cube. Due to the continuity, the target function f can be represented by their328

values at the representative points. We project these representatives to one-dimensional samples via a ReLU329

FNN ψ and construct a ReLU FNN φ̄ to fit them. Finally, the ReLU FNN φ on the d-dimensional space330

approximating f can be constructed by φ = φ̄ ○ ψ. The precise construction can be found below.331

By Lemma 2.1, there exists ψ0 ∈ NN(#input = 1; widthvec = [2n]) such that332

● ψ0(1) = n − 1, and ψ0(
i
n
) = ψ0(

i+1
n
− δ) = i for i = 0,1,⋯, n − 1;333

● ψ0 is linear between any two adjacent points of { i
n
∶ i = 0,1,⋯, n} ∪ { i

n
− δ ∶ i = 1,2,⋯, n}.334

Define the projection map 4○ ψ by335

ψ(x) =
d

∑
i=1

1
niψ0(xi), for x = [x1, x2,⋯, xd]

T
∈ [0,1]d. (3.3)336

Note that ψ ∈ NN(#input = 1; widthvec = [2dn]). Given f ∈ Lip(ν,α, d), then ∣f(x)∣ ≤
√
d for x ∈ [0,1]d since337

f(0) = 0, ν = 1, and α ∈ (0,1]. Define f̄ = f +
√
d, then 0 ≤ f̄(x) ≤ 2

√
d for x ∈ [0,1]d. Hence, we have338

{(
d

∑
i=1

θi
ni , f̄(

θ
n
)) ∶ θ = [θ1, θ2,⋯, θd]

T
∈ {0,1,⋯, n − 1}d} ∪ {(1,0)}339

as a set of nd + 1 samples of a one-dimensional function. By Lemma 2.1, ∃ φ̄ ∈ NN(#input = 1; widthvec =340

[2⌈nd/2⌉,2⌈nd/2⌉ + 1]) such that341

φ̄(
d

∑
i=1

θi
ni ) = f̄ ( θ

n
) , for θ = [θ1, θ2,⋯, θd]

T
∈ {0,1,⋯, n − 1}d, (3.4)342

and343

sup
t∈[0,1]

∣φ̄(t)∣ ≤ 6
√
d (⌈nd/2⌉ + 1)!. (3.5)344

Since the range of ψ on [0,1]d is a subset of [0,1], ∃ φ ∈ NN (#input = d; widthvec = [2nd,2⌈nd/2⌉,2⌈nd/2⌉ + 1])345

defined via φ(x) = φ̄○ψ(x) for x ∈ [0,1]d such that346

sup
x∈[0,1]d

∣φ(x)∣ ≤ 6
√
d (⌈nd/2⌉ + 1)!. (3.6)347

Define H1 = ∪dj=1 {x = [x1, x2,⋯, xd]
T ∈ [0,1]d ∶ xj ∈ ∪

n
i=1[

i
n
− δ, i

n
]}, which separates the d-dimensional cube348

into nd important sub-cubes as illustrated in Figure 3. To index these d-dimensional smaller sub-cubes,349

define Qθ = {x = [x1, x2,⋯, xd]
T ∈ [0,1]d ∶ xi ∈ [ θi

n
, θi+1

n
− δ], i = 1,2,⋯, d} for each d-dimensional index350

θ = [θ1, θ2,⋯, θd]
T ∈ {0,1,⋯, n−1}d. By (3.3), (3.4), and the definition of ψ0, for any x = [x1, x2,⋯, xd]

T ∈ Qθ,351

we have φ(x) = φ̄(ψ(x)) = φ̄(∑
d
i=1

1
niψ0(xi)) = φ̄(∑

d
i=1

1
ni θi) = f̄ ( θ

n
). Then352

∣f̄(x) − φ(x)∣ = ∣f̄(x) − f̄ ( θ
n
) ∣ ≤ (

√
d/n)α, for any x ∈ Qθ. (3.7)353

4○The idea constructing such ψ comes from the binary representation.
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(a) (b)

Fig. 3. An illustration of H1 and nd small non-overlapping sub-cubes that H1 separates when n = 3. (a) When d = 2, H1

in blue separates [0,1]2 into nd = 9 sub-cubes. (b) When d = 3, H1 (no color) separates [0,1]3 into nd = 27 sub-cubes in red.

Because µ(H1) ≤ dnδ, [0,1]d = ∪θ∈{0,1,⋯,n−1}dQθ ∪H1, (3.6), and (3.7), we have354

∥f̄ − φ∥L1([0,1]d) = ∫
H1

∣f̄ − φ∣dx + ∫
[0,1]d/H1

∣f̄ − φ∣dx

≤ µ(H1)(2
√
d + 6

√
d(⌈nd/2⌉ + 1)!) + ∑

θ∈{0,1,⋯,n−1}d
∫
Qθ

∣f̄ − φ∣dx

≤ 2nδd
√
d(1 + 3(⌈nd/2⌉ + 1)!) + ∑

θ∈{0,1,⋯,n−1}d
(
√
d/n)αµ(Qθ)

≤ 2dα/2n−α,

355

where the last inequality comes from the fact that δ is small enough such that356

2nδd
√
d(1 + 3(⌈nd/2⌉ + 1)!) ≤ dα/2n−α. (3.8)357

Note that f − (φ −
√
d) = f̄ − φ. Hence, φ −

√
d ∈ NN(#input = d; widthvec = [2nd,2⌈nd/2⌉,2⌈nd/2⌉ + 1])358

and ∥f − (φ −
√
d)∥L1([0,1]d) ≤ 2dα/2n−α. Since n = ⌊N2/d⌋, we have ⌈nd/2⌉ ≤ N + 1. Therefore,359

φ −
√
d ∈ NN(#input = d; widthvec = [2d⌊N2/d

⌋,2N + 2,2N + 3])360

and361

∥f − (φ −
√
d)∥L1([0,1]d) ≤ 2dα/2n−α = 2dα/2⌊N2/d

⌋
−α

≤ 2dα/2(N2/d
/2)−α = 2(2

√
d)αN−2α/d,362

where the second inequality comes from the fact ⌊x⌋ ≥ x
2

for x ∈ [1,∞). So, we finish the proof when d > 1.363

Theorem 3.1 shows that for f ∈ Lip(ν,α, d) ReLU FNNs with two or three function compositions can364

achieve the approximation rate O(νN−2α/d). Following the same proof as in Theorem 3.1, we can show that:365

Corollary 3.2. ∀ m,n ∈ N+, the closure of NN(#input = 1; widthvec = [2m,2n+1]) contains CPL(mn+366

1) in the sense of L1-norm.367

An immediate implication of Corollary 3.2 is that, for any function f on [0,1], if f can be approximated368

via one-hidden-layer ReLU FNNs with an approximation rate O(N−η) for any η > 0, the rate can be improved369

to O(N−2η) via one more composition.370
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3.2. Asymptotic Unachievable Approximation Rate. In Section 3.1, we have analyzed the approx-371

imation capacity of ReLU FNNs in the nonlinear approximation for general continuous functions by construc-372

tion. In this section, we will show that the construction in Section 3.1 is essentially and asymptotically tight373

via showing the approximation lower bound in Theorem 3.3 below.374

Theorem 3.3. For any L ∈ N+, ρ > 0, and C > 0, ∃ f ∈ Lip(ν,α, d) with α ∈ (0,1], for all N0 > 0, there375

exists N ≥ N0 such that376

inf
φ∈NN(#input=d;maxwidth≤N ;#layer≤L)

∥φ − f∥L∞([0,1]d) ≥ CνN
−(2α/d+ρ).377

The proof of Theorem 3.3 relies on the nearly-tight VC-dimension bounds of ReLU FNNs given in (Harvey378

et al., 2017) and is similar to Theorem 4 of (Yarotsky, 2017). Hence, we only sketch out its proof and a complete379

proof can be found in (Zhang, n.d.).380

Proof. We will prove this theorem by contradiction. Assuming that Theorem 3.3 is not true, we can show381

the following claim, which will lead to a contradiction in the end.382

Claim 3.4. There exist L ∈ N+, ρ > 0, and C > 0, ∀ f ∈ Lip(ν,α, d) with α ∈ (0,1], then ∃ N0 > 0, for all383

N ≥ N0, there exists φ ∈ NN(#input = d; maxwidth ≤ N ; #layer ≤ L) such that384

∥f − φ∥L∞([0,1]d) ≤ CνN
−(2α/d+ρ).385

If this claim is true, then we have a better approximation rate. So we need to disproof this claim in order to386

prove Theorem 3.3.387

Without loss of generality, we assume ν = 1; in the case of ν ≠ 1, the proof is similar by rescaling388

f ∈ Lip(ν,α, d) and FNNs with ν. Let us denote the VC dimension of a function set F by VCDim(F). By389

(Harvey et al., 2017), there exists C1 > 0 such that390

VCDim(NN(#input = d; maxwidth ≤ N ; #layer ≤ L))

≤ C1((LN + d + 2)(N + 1))L ln ((LN + d + 2)(N + 1)) ∶= bu,
391

which comes from the fact the number of parameter of a ReLU FNN in NN(#input = d; maxwidth ≤392

N ; #layer ≤ L) is less than (LN + d + 2)(N + 1).393

One can estimate a lower bound of394

VCDim(NN(#input = d; maxwidth ≤ N ; #layer ≤ L))395

using Claim 3.4, and this lower bound can be b` ∶= ⌊N2/d+ρ/(2α)⌋d, which is asymptotically larger than396

bu ∶= C1((LN + d + 2)(N + 1))L ln ((LN + d + 2)(N + 1)) = O(N2 lnN),397

leading to a contradiction that disproves the assumption that “Theorem 3.3 is not true”.398

Theorem 3.1 shows that the N -term approximation rate via two or three-hidden-layer ReLU FNNs can399

achieve O(N−2α/d), while Theorem 3.3 shows that the rate cannot be improved to O(N−(2α/d+ρ)) for any400

ρ > 0. It was conjectured in the literature that function compositions can improve the approximation capacity401

exponentially. For general continuous functions, Theorem 3.3 shows that this conjecture is not true, i.e., if402

the depth of the composition is L = O(1), the approximation rate cannot be better than O(N−2α/d), not to403

mention O(N−Lα/d), which implies that adding one more layer cannot improve the approximation rate when404

N is large and L > 2.405

Following the same proof as in Theorem 3.3, we have the following corollary, which shows that the result406

in Corollary 3.2 cannot be improved.407

Corollary 3.5. ∀ ρ > 0, C > 0 and L ∈ N+, ∃ N0(ρ,C,L) such that for any integer N ≥ N0, CPL(CN2+ρ)408

is not contained in the closure of NN(#input = 1; maxwidth ≤ N ; #layer ≤ L) in the sense of L∞-norm.409
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3.3. Approximation and Computation Efficiency in Parallel Computing. In this section, we410

will discuss the efficiency of the N -term approximation via ReLU FNNs in parallel computing. This is of411

more practical interest than the optimal approximation rate purely based on the number of parameters of the412

nonlinear approximation since it is impractical to use FNNs without parallel computing in real applications.413

Without loss of generality, we assume ν = 1, N ≫ 1, and d≫ 1.414

Let us summarize standard statistics of the time and memory complexity in parallel computing (Kumar,415

2002) in one training iteration of ReLU FNNs with O(N) width and O(L) depth using m computing cores416

and O(1) training data samples per iteration. Let Ts(N,L,m) and Td(N,L,m) denote the time complexity417

in shared and distributed memory parallel computing, respectively. Similarly, Ms(N,L,m) and Md(N,L,m)418

are the memory complexity for shared and distributed memory, respectively. Ms(N,L,m) is the total memory419

requirement; while Md(N,L,m) is the memory requirement per computing core. Then420

Ts(N,L,m) = {
O(L(N2/m + ln m

N
)), m ∈ [1,N2],

O(L lnN), m ∈ (N2,∞);
(3.9)421

422

Td(N,L,m) = {
O(L(N2/m + ts lnm + twN√

m
lnm)), m ∈ [1,N2],

O(L lnN), m ∈ (N2,∞);
(3.10)423

424

Ms(N,L,m) = O(LN2
), for all m ∈ N+; (3.11)425

and426

Md(N,L,m) = O(LN2
/m + 1), for all m ∈ N+, (3.12)427

where ts and tw are the “start-up time” and “per-word transfer time” in the data communication between428

different computing cores, respectively (see (Kumar, 2002) for a detailed introduction).429

In real applications, a most frequently asked question would be: given a target function f ∈ Lip(ν,α, d), a430

target approximation accuracy ε, and a certain amount of computational resources, e.g., m computer proces-431

sors, assuming the computer memory is enough, what is a good choice of FNN architecture we should use to432

reduce the running time of our computers? Certainly, the answer depends on the number of processors m and433

ideally we hope to increase m by a factor of r to reduce the time (and memory in the distributed environment)434

complexity by the same factor r, which is the scalability of parallel computing.435

We answer the question raised just above using FNN architectures that almost have a uniform width436

since the optimal approximation theory of very deep FNNs (Yarotsky, 2018) and this manuscript both utilize437

a nearly uniform width. Combining the theory in (Yarotsky, 2018) and ours, we summarize several statistics of438

ReLU FNNs in parallel computing in Table 1 and 2 when FNNs nearly have the same approximation accuracy.439

For shared memory parallel computing, from Table 1 we see that: if computing resources are enough, shallower440

FNNs with O(1) hidden layers require less and even exponentially less running time than very deep FNNs;441

if computing resources are limited, shallower FNNs might not be applicable or are slower, and hence very442

deep FNNs are a good choice. For distributed memory parallel computing, the conclusion is almost the same443

by Table 2, except that the memory limit is not an issue for shallower FNNs if the number of processors is444

large enough. In sum, if the approximation rate of very deep FNNs is not exponentially better than shallower445

FNNs, very deep FNNs are less efficient than shallower FNNs theoretically if computing resources are enough.446

4. Numerical Experiments. In this section, we provide two sets of numerical experiments to compare447

different ReLU FNNs using shared memory GPU parallel computing. The numerical results for distributed448

memory parallel computing would be similar. All numerical tests were conducted using Tensorflow and an449

NVIDIA P6000 GPU with 3840 CUDA parallel processing cores.450

Since it is difficult to generate target functions f ∈ Lip(ν,α, d) with fixed ν and α, we cannot directly451

verify the nonlinear approximation rate, but we are able to observe numerical evidence close to our theoretical452

conclusions. Furthermore, we are able to verify the running time estimates in Section 3.3 and show that, to453

achieve the same theoretical approximation rate, shallow FNNs are more efficient than very deep FNNs.454
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Table 1
The comparison of approximation and computation efficiency of different ReLU FNNs in shared memory parallel computing

with m processors when FNNs nearly have the same approximation accuracy. The analysis is asymptotic in N and is optimal
up to a log factor (N ≫ d≫ 1); “running time” in this table is the time spent on each training step with O(1) training samples.

NN(widthvec = [2d⌊N2/d⌋,2N,2N]) NN(widthvec = [N]L) NN(widthvec = [2d + 10]N)

accuracy ε O(
√
dN−2α/d) O(C(d,L)N−2α/d) O(C(d)N−2α/d)

number of weights O(N2) O(LN2) O(d2N)

number of nodes O(N) O(LN) O(dN)

running time for m ∈ [1, (2d + 10)2] O(N2/m) O(LN2/m) O(N(d2/m + ln m
d
))

running time for m ∈ ((2d + 10)2,N2] O(N2/m + ln m
N
) O(L(N2/m + ln m

N
)) O(N lnd)

running time for m ∈ (N2,∞) O(lnN) O(L lnN) O(N lnd)
total memory O(N2) O(LN2) O(d2N)

Table 2
The comparison of approximation and computation efficiency of different ReLU FNNs in distributed memory parallel com-

puting with m processors when FNNs nearly have the same approximation accuracy. The analysis is asymptotic in N and is
optimal up to a log factor (N ≫ d≫ 1); “running time” in this table is the time spent on each training step with O(1) training
samples.

NN(widthvec = [2d⌊N2/d⌋,2N,2N]) NN(widthvec = [N]L) NN(widthvec = [2d + 10]N)

accuracy ε O(
√
dN−2α/d) O(C(d,L)N−2α/d) O(C(d)N−2α/d)

number of weights O(N2) O(LN2) O(d2N)

number of nodes O(N) O(LN) O(dN)

running time for m ∈ [1, (2d + 10)2] O(N2/m + ts lnm + twN√
m

lnm) O(L(N2/m + ts lnm + twN√
m

lnm)) O(N(d2/m + ts lnm + twd√
m

lnm))

running time for m ∈ ((2d + 10)2,N2] O(N2/m + ts lnm + twN√
m

lnm) O(L(N2/m + ts lnm + twN√
m

lnm)) O(N lnd)

running time for m ∈ (N2,∞) O(lnN) O(L lnN) O(N lnd)
memory per processor O(N2/m + 1) O(LN2/m + 1) O(d2N/m + 1)

In our numerical tests, we generate 50 random smooth functions as our target functions using the algorithm455

in (Filip, Javeed, & Trefethen, 2018) with a wavelength parameter λ = 0.1 and an amplitude parameter
√

(2/λ)456

therein. These target functions are uniformly sampled with 20000 ordered points {xi} in [0,1] to form a data457

set. The training data set consists of samples with odd indices i’s, while the test data set consists of samples458

with even indices i’s. The loss function is defined as the mean square error between the target function and459

the FNN approximant evaluated on training sample points. The ADAM algorithm (Kingma & Ba, 2014)460

with a decreasing learning rate from 0.005 to 0.0005, a batch size 10000, and a maximum number of epochs461

20000, is applied to minimize the mean square error. The minimization is randomly initialized by the “normal462

initialization method” 5○. The test error is defined as the mean square error evaluated on test sample points.463

The training and test data sets are essentially the same in our numerical test since we aim at studying the464

approximation power of FNNs instead of the generalization capacity of FNNs. Note that due to the high465

non-convexity of the optimization problem, there might be chances such that the minimizers we found are bad466

local minimizers. Hence, we compute the average test error of the best 40 tests among the total 50 tests of467

each architecture.468

To observe numerical phenomena in terms of N -term nonlinear approximation, in the first set of numerical469

experiments, we use two types of FNNs to obtain approximants: the first type has L = O(1) layers with different470

sizes of width N ; the second type has a fixed width N = 12 with different numbers of layers L. Numerical471

results are summarized in Table 3. To observe numerical phenomena in terms of the number of parameters472

in FNNs, in the second set of numerical experiments, we use FNNs with the same number of parameters but473

different sizes of width N and different numbers of layers L. Numerical results are summarized in Table 4.474

By the last columns of Table 3, we verified that as long as the number of computing cores m is larger475

than or equal to N2, the running time per iteration of FNNs with O(1) layers is O(lnN), while the running476

5○See https://medium.com/prateekvishnu/xavier-and-he-normal-he-et-al-initialization-8e3d7a087528.

https://medium.com/prateekvishnu/xavier-and-he-normal-he-et-al-initialization-8e3d7a087528
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Table 3
Comparison between NN(#input = 1; widthvec = [N]L) and NN(#input = 1; widthvec = [12]N ) for N = 32,64,128 and

L = 2,4,8. “Time” in this table is the total running time spent on 20000 training steps with training batch size 10000, and the
unit is second(s).

N depth width test error improvement ratio #parameter time

32 2 32 8.06 × 10−2 – 1153 3.09 × 101

32 4 32 3.98 × 10−4 – 3265 3.82 × 101

32 8 32 1.50 × 10−5 – 7489 5.60 × 101

32 32 12 1.29 × 10−3 – 4873 1.27 × 102

64 2 64 2.51 × 10−2 3.21 4353 3.45 × 101

64 4 64 4.27 × 10−5 9.32 12673 5.00 × 101

64 8 64 2.01 × 10−6 7.46 29313 7.91 × 101

64 64 12 1.16 × 10−1 0.01 9865 2.37 × 102

128 2 128 2.04 × 10−3 12.3 16897 5.03 × 101

128 4 128 1.05 × 10−5 4.07 49921 8.21 × 101

128 8 128 1.47 × 10−6 1.37 115969 1.41 × 102

128 128 12 3.17 × 10−1 0.37 19849 4.47 × 102

time per iteration of FNNs with O(N) layers and O(1) width is O(N). By the last columns of Table 4, we477

see that when the number of parameters is the same, very deep FNNs requires much more running time per478

iteration than shallower FNNs and the difference becomes more significant when the number of parameters479

increases. Hence, very deep FNNs are much less efficient than shallower FNNs in parallel computing.480

Besides, by Table 3 and 4, the test error of very deep FNNs cannot be improved if the depth is increased481

and the error even becomes larger when depth is larger. However, when the number of layers is fixed, increasing482

width can reduce the test error. More quantitatively, we define the improvement ratio of an FNN with width483

N and depth L in Table 3 as the ratio of the test error of an FNN in NN(#input = 1; widthvec = [N/2]L) (or484

NN(#input = 1; widthvec = [N]L/2)) over the test error of the current FNN in NN(#input = 1; widthvec =485

[N]L). Similarly, the improvement ratio of an FNN with a number of parameters W in Table 4 is defined as486

the ratio of the test error of an FNN with the same type of architecture and a number of parameters W /2 over487

the test error of the current FNN. According to the improvement ratio in Table 3 and 4, when L = O(1), the488

numerical approximation rate in terms of N is in a range between 2 to 4. Due to the high non-convexity of the489

deep learning optimization and the difficulty to generate target functions of the same class with a fixed order490

α and constant ν, we cannot accurately verify the approximation rate. But the statistics of the improvement491

ratio can roughly reflect the approximation rate and the numerical results stand in line with our theoretical492

analysis.493

5. Conclusions. We studied the approximation and computation efficiency of nonlinear approximation494

via compositions, especially when the dictionary DL consists of deep ReLU FNNs with width N and depth L.495

Our main goal is to quantify the best N -term approximation rate εL,f(N) for the dictionary DL when f is a496

Hölder continuous function. This topic is related to several existing approximation theories in the literature,497

but they cannot be applied to answer our problem. By introducing new analysis techniques that are merely498

based on the FNN structure instead of traditional approximation basis functions used in existing work, we499

have established a new theory to address our problem.500

In particular, for any function f on [0,1], regardless of its smoothness and even the continuity, if f can501

be approximated using a dictionary when L = 1 with the best N -term approximation rate εL,f = O(N−η), we502

showed that dictionaries with L = 2 can improve the best N -term approximation rate to εL,f = O(N−2η). We503

also showed that for Hölder continuous functions of order α on [0,1]d, the application of a dictionary with L = 3504
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Table 4
Comparison between shallow FNNs and deep FNNs when the total number of parameters (#parameter) is fixed. “Time” in

this table is the total running time spent on 20000 training steps with training batch size 10000, and the unit is second(s).

#parameter depth width test error improvement ratio time

5038 2 69 1.13 × 10−2 – 3.84 × 101

5041 4 40 1.65 × 10−4 – 3.80 × 101

4993 8 26 1.69 × 10−5 – 5.07 × 101

5029 33 12 4.77 × 10−3 – 1.28 × 102

9997 2 98 4.69 × 10−3 2.41 4.40 × 101

10090 4 57 7.69 × 10−5 2.14 4.67 × 101

9954 8 37 7.43 × 10−6 2.27 5.92 × 101

10021 65 12 2.80 × 10−1 0.02 2.31 × 102

19878 2 139 1.43 × 10−3 3.28 5.18 × 101

20170 4 81 2.30 × 10−5 3.34 6.26 × 101

20194 8 53 2.97 × 10−6 2.50 7.08 × 101

20005 129 12 3.17 × 10−1 0.88 4.30 × 102

in nonlinear approximation can achieve an essentially tight best N -term approximation rate εL,f = O(N−2α/d),505

and increasing L further cannot improve the approximation rate in N . Finally, we showed that dictionaries506

consisting of wide FNNs with a few hidden layers are more attractive in terms of computational efficiency than507

dictionaries with narrow and very deep FNNs for approximating Hölder continuous functions if the number508

of computer cores is larger than N in parallel computing.509

Our results were based on the L1-norm in the analysis of constructive approximations in Section 3.1;510

while we used L∞-norm in the unachievable approximation rate in Section 3.2. In fact, we can define a new511

norm that is weaker than the L∞-norm and stronger than the L1-norm such that all theorems in this paper512

hold in the same norm. The analysis based on the new norm can be found in (Zhang, n.d.) and our future513

work, and it shows that the approximation rate in this paper is tight in the same norm. Finally, although the514

current result is only valid for Hölder continuous functions, it is easy to generalize it to general continuous515

functions by introducing the moduli of continuity, which is also left as future work.516
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