
DEEP NEURAL NETWORK

APPROXIMATION VIA FUNCTION

COMPOSITIONS

ZHANG SHIJUN

(B.Sc., Wuhan University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2020

Supervisors:

Professor Shen Zuowei, Main Supervisor

Assistant Professor Yang Haizhao, Co-Supervisor

Examiners:

Associate Professor Ji Hui

Assistant Professor Li Qianxiao

Professor Cai Jianfeng, Hong Kong University of Science and Technology

To my family

DECLARATION

I hereby declare that the thesis is my original work and it has

been written by me in its entirety. I have duly

acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree

in any university previously.

Zhang Shijun

December 30, 2020

Acknowledgments

This dissertation would never be completed without the guidance of my supervisors,

the help from my friends, and the support from my family.

First, I would like to express my sincere gratitude to my main supervisor professor

Shen Zuowei, for his immense knowledge and research experience, and his guidance

through each stage of my Ph.D. studies. His research philosophy plays a key role

in defining the path of my research. During our discussions, I have gained a lot of

knowledge and skills, especially the way of thinking and doing research. Without his

constructive comments and suggestions, I would hardly complete my research work

and this dissertation. It is my honor and pleasure to work with such an outstanding

main supervisor.

Next, I would like to acknowledge my co-supervisor assistant professor Yang

Haizhao, for his patience and enthusiasm, and his continuous support for my Ph.D.

studies and related research. He convincingly guided and encouraged me to be

professional. He has taught me a lot of things, including writing a research paper

professionally, expressing my own opinions regarding a research problem precisely

and clearly, etc. They benefited me a lot during my Ph.D. studies. Without his

insightful feedback, I would hardly complete my research work and this dissertation.

I am so lucky to do research with such a wonderful co-supervisor.

v

vi Acknowledgments

Besides my supervisors, I am also immensely grateful to associate professor Ji

Hui, all members of the NUS Wavelet group, and all my classmates in the same

student office as me. The numerous discussions with them in the group seminars

or the student office helped me improve my knowledge in the research topics and

develop a lot of skills for computer programming.

Finally, I would like to thank my family for their encouragement and under-

standing. My grandparents and parents raised me and supported me in achieving

my pursuits. They kept me going on and this dissertation would not have been

possibly finished without their input.

Contents

Acknowledgments v

Summary ix

1 Introduction 1

1.1 Contributions . 2

1.2 Related work . 5

2 Preliminaries 9

2.1 Notations . 9

2.1.1 Basic notations . 9

2.1.2 Set notations . 12

2.1.3 Neural network notations . 13

2.2 Architecture of neural networks . 14

2.2.1 Descriptions . 15

2.2.2 Compositions and combinations 17

2.3 General ideas of approximation by networks 20

2.3.1 ReLU networks . 20

2.3.2 Floor-ReLU networks . 23

3 Basic results of ReLU networks 25

3.1 Wide networks to deep ones . 25

3.2 Power of networks to fit points . 27

3.2.1 Width power of networks to fit points 28

vii

viii Contents

3.2.2 Depth power of networks to fit points 40

3.3 Approximation in the trifling region 48

3.4 Approximation of step functions . 59

4 Approximation by ReLU networks 65

4.1 Approximation of polynomials . 65

4.1.1 Main theorem . 65

4.1.2 Approximation of x2 . 66

4.1.3 Approximation of x1x2 · · ·xk 70

4.1.4 Proof of main theorem . 75

4.2 Approximation of continuous functions 76

4.2.1 Main theorem and its proof 76

4.2.2 Proof of auxiliary theorem . 79

4.2.3 Proof of key proposition for auxiliary theorem 86

4.3 Approximation of smooth functions 91

4.3.1 Main theorem and its proof 91

4.3.2 Ideas of proving auxiliary theorem 94

4.3.3 Proof of auxiliary theorem . 96

4.3.4 Proof of key proposition for auxiliary theorem 103

4.4 Optimality of approximation by networks 106

4.4.1 Hölder continuous functions 107

4.4.2 Smooth functions . 111

5 Approximation by Floor-ReLU networks 117

5.1 Main theorem and its proof . 117

5.2 Proof of auxiliary theorem . 122

5.3 Proof of key proposition for auxiliary theorem 128

6 Conclusion 135

Bibliography 137

Summary

This dissertation is a summary of our previous papers [38, 52, 53, 54], focusing

on the approximation theory of neural networks. We provide (nearly optimal) ap-

proximation error estimates in terms of the width and depth when constructing

ReLU (max{0, x}) networks, via the idea of function compositions, to uniformly

approximate polynomials, (Hölder) continuous functions, and smooth functions on

a hypercube [0, 1]d. The optimality is discussed via studying the connection be-

tween the approximation error and VC-dimension. 1○ To overcome the limitation

of ReLU networks that (nearly) exponential approximation errors 2○ hold only for

polynomials among all function spaces considered, we introduce new networks built

with either Floor (bxc) or ReLU as the activation function in each neuron. We call

such networks Floor-ReLU networks. It is proved by construction that nearly expo-

nential approximation errors can be attained when using Floor-ReLU networks to

approximate (Hölder) continuous functions on [0, 1]d. See Table 1.1 for a summary.

Chapter 1 is the introduction of this dissertation, including our main contribu-

tions and the literature review.

1○See the definition of VC-dimension in Section 4.4.
2○Throughout this dissertation, “exponential (approximation) error(s)” means “(approximation)

error(s) with exponential decay”, similar to [21,46,54].

ix

x Summary

Chapter 2 is the preliminary chapter. In this chapter, we present the nota-

tions used throughout this dissertation, discuss the architecture of neural networks,

and provide the general ideas of constructing neural networks to approximate given

functions.

In Chapter 3, we prove several basic results of ReLU networks, which will be

used in later chapters. The chapter consists of four parts. The first part investigates

representing shallow ReLU networks by deep ones with a similar number of neurons.

Part 2 discusses the width and depth power of ReLU networks to fit points. The third

part looks at the approximation in a small region if a ReLU network approximates

the target function well except for this small region. That is, we modify this network

to let it approximate the target function uniformly well on the whole region. The

final part deals with the approximation of step functions by ReLU networks.

Chapter 4 focuses on the approximation by ReLU networks and is divided into

four parts. The first part aims to construct ReLU networks to approximate gen-

eral polynomials on [0, 1]d with exponential approximation errors. The second and

third parts provide the detailed constructions of ReLU networks for approximating

(Hölder) continuous functions and smooth functions on [0, 1]d with (nearly optimal)

approximation errors, respectively. The final part looks at the optimality of the

approximation by ReLU networks via studying the connection between the approx-

imation error and VC-dimension.

Chapter 5 aims to reveal the approximation power of Floor-ReLU networks. We

provide nearly exponential approximation error estimates when constructing Floor-

ReLU networks with fixed architectures 3○ to uniformly approximate (Hölder) con-

tinuous functions on [0, 1]d. In other words, the approximation errors are improved

from polynomial ones to nearly exponential ones by adding a simple activation func-

tion (Floor) to ReLU networks.

Chapter 6 concludes this dissertation with a short discussion.

3○A Floor-ReLU network with a fixed architecture means all the components of this network
architecture is determined except for the values of the parameters. In particular, the choice of
activation functions (Floor or ReLU) in each neuron is independent of the target function.

List of Tables

Table 1.1: A summary of the main results in this dissertation, aiming to

design neural networks to approximate functions in several func-

tion spaces . 2

Table 4.1: Key ideas of approximating a smooth function 97

xi

This page is intentionally left blank.

List of Figures

Figure 1.1: A sketch of most existing results and new results in this dis-

sertation . 3

Figure 2.1: Two examples of trifling regions 13

Figure 2.2: An example of a ReLU network with width 4 and depth 3 . . . 16

Figure 2.3: A detailed example of a ReLU network with two inputs x1, x2

and an output φ(x1, x2) . 17

Figure 2.4: An illustration of the implementation of the identity map by

a ReLU network . 19

Figure 2.5: Illustrations of Ω([0, 1]d, K, δ), Qβ, and xβ for any β ∈ {0, 1, · · · , K−
1}d . 21

Figure 2.6: An illustration of the main ideas of constructing φ = φ2 ◦Φ1 . 21

Figure 2.7: An example of a step function for the case K = 4 and d = 1 . 22

Figure 2.8: Illustrations of Qβ and xβ for any β ∈ {0, 1, · · · , K − 1}d . . . 24

Figure 3.1: An illustration of the main idea of proving Theorem 3.1 26

Figure 3.2: An illustration of the desired network architecture for proving

Theorem 3.1 . 27

Figure 3.3: An illustration of g = (g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n) and g̃ = σ(g) =

(g̃0, g̃
+
1 , g̃

−
1 , · · · , g̃+

n , g̃
−
n) for the case m = n = 2 30

Figure 3.4: Illustrations of the proof of Theorem 3.2 34

Figure 3.5: An illustration of g+
k and g̃+

k = σ(g+
k) 36

Figure 3.6: An illustration of the network architecture implementing the

desired function φ based on Equation (3.4) 43

xiii

xiv List of Figures

Figure 3.7: An illustration of the ReLU network architecture for proving

Lemma 3.6 . 47

Figure 3.8: An illustration of the desired network architecture for proving

Theorem 3.5 . 48

Figure 3.9: An illustration of the desired network architecture implement-

ing max(x1, x2, x3) . 50

Figure 3.10: An illustration of Qk,i for i = 1, 2, 3, 4 52

Figure 3.11: Illustrations of E` for ` = 0, 1, 2 when K = 4 and d = 2 56

Figure 3.12: An example of a step function for the case K = 4 and d = 1 . 60

Figure 3.13: An illustration of the desired network architecture for proving

Theorem 3.12 . 62

Figure 4.1: Examples of “sawtooth” functions T1, T2, T3, and T4 67

Figure 4.2: Illustrations of f1, f2, and f3 for approximating x2 68

Figure 4.3: Illustrations of f1 − f2 and f2 − f3 68

Figure 4.4: An illustration of the target network architecture for approxi-

mating x2 on x ∈ [0, 1] . 69

Figure 4.5: An illustration of the network architecture implementing φ for

approximating xy on [0, 1]2 . 71

Figure 4.6: An illustration of the network architecture implementing φ for

approximating xy on [a, b]2 . 72

Figure 4.7: Illustrations of Ω([0, 1]d, K, δ), Qβ, and xβ for any β ∈ {0, 1, · · · , K−
1}d . 81

Figure 4.8: An illustration of A1, A2, {1}, and g for the case d = 2 and

K = 4 . 84

Figure 4.9: Illustrations of two sub-network architectures for implementing

the desired function φ = φ2 ◦ φ1 based on Equation (4.15) . . . 88

Figure 4.10: An illustration of the network architecture implementing the

desired function φ based on Equation (4.17) 90

List of Figures xv

Figure 4.11: Illustrations of Ω([0, 1]d, K, δ), Qβ, and xβ for any β ∈ {0, 1, · · · , K−
1}d . 95

Figure 4.12: An illustration of the sub-network architecture implementing

ϕ
(
φα(Ψ(x))

α!
, Pα

(
x−Ψ(x)

))
for each α ∈ Nd with ‖α‖ ≤ s− 1 103

Figure 4.13: An illustration of the network architecture implementing φ̃(i) =
∑J

j=1 2−jφj(i) . 105

Figure 4.14: An illustration of the network architecture for proving Propo-

sition 4.14 . 106

Figure 5.1: An example of a Floor-ReLU network with width 5 and depth 2118

Figure 5.2: Illustrations of Qβ and xβ for any β ∈ {0, 1, · · · , K − 1}d . . . 124

Figure 5.3: An illustration of φ1 on [0, 1] for the case K = 4 125

Figure 5.4: An illustration of the desired network architecture implement-

ing φ2 . 127

Figure 5.5: An illustration of the network architecture implementing φ̃ =

φ2 ◦Φ1 . 128

Figure 5.6: An illustration of g(x) = σ
(
σ(x)− σ(x+δ−1

δ
)
)

. 129

Figure 5.7: An illustration of the desired network architecture for proving

Lemma 5.7 . 130

Figure 5.8: An illustration of the Floor-ReLU network architecture imple-

menting φk+1 based on Equation (5.6), (5.7), and (5.8). 132

This page is intentionally left blank.

Chapter 1
Introduction

Deep neural networks have made significant impacts in many fields of com-

puter science and engineering, especially for large-scale and high-dimensional learn-

ing problems. Well-designed neural network architectures, efficient training algo-

rithms, and high-performance computing technologies have made neural-network-

based methods very successful in a great number of real applications. Especially in

supervised learning, e.g., image classification and objective detection, the great ad-

vantages of neural-network-based methods have been demonstrated over traditional

learning methods. Understanding the approximation capacity of deep neural net-

works has become a key question for revealing the power of deep learning. A large

number of experiments in real applications have shown the large capacity of deep

neural networks from many empirical perspectives, drawing a great deal of attention

to the theoretical foundation of the approximation theory of deep neural networks.

In particular, there are three main directions in the error analysis of the ap-

proximation theory of neural networks: the approximation error estimate, the

optimization error estimate, and the generalization error estimate. See [38,54]

for the introduction of these three error estimates. This dissertation concentrates

on the approximation error estimate for neural networks. To this end, we need to

solve three fundamental problems listed below.

Problem 1: How do we construct a neural network to approximate a function in a

1

2 Chapter 1. Introduction

given space?

Problem 2: Is there an error estimate for the approximation in Problem 1 in terms

of the size of networks, characterized by either the number of param-

eters or the width and depth simultaneously?

Problem 3: If an error estimate exists in Problem 2, is this error estimate (nearly)

optimal for the given function space?

This dissertation solves these three problems for several function spaces. See Ta-

ble 1.1 for a summary of the main results in this dissertation, focusing on designing

neural networks to approximate functions in several given function spaces.

1.1 Contributions

The main contribution of this dissertation is to provide (nearly optimal) approx-

imation error estimates in terms of the width and depth when constructing neural

networks to uniformly approximate polynomials, Hölder continuous functions of

order α ∈ (0, 1] with a Hölder constant λ > 0 (Hölder([0, 1]d, α, λ)), continuous

functions (C([0, 1]d)), and smooth functions (Cs([0, 1]d)) on [0, 1]d. See Table 1.1

for a summary. Note that all approximation errors in Table 1.1 hold for arbitrary

N,L ∈ N+ and on [0, 1]d uniformly. All constants in O(·) are explicitly esti-

mated in this dissertation, and ωf (·) is the modulus of continuity of f defined by

ωf (r) = sup{|f(x)− f(y)| : ‖x− y‖2 ≤ r, x,y ∈ [0, 1]d}.

Table 1.1: A summary of the main results in this dissertation, aiming to design

neural networks to approximate functions in several function spaces.

target function activation function width depth (#hidden-layer) approximation error optimality

Lemma 4.2 f(x) = x2 ReLU 3N L N−L

Theorem 4.1 polynomial f(x) = xα1
1 x

α2
2 · · ·xαdd ReLU O(N) O(L) O(N−L)

Corollary 4.7 f ∈ Hölder([0, 1]d, α, λ) ReLU O(N) O(L) O(λN−2α/dL−2α/d) nearly optimal in N and L, see Section 4.4.1

Theorem 4.6 f ∈ C([0, 1]d) ReLU O(N) O(L) O
(
ωf (N

−2/dL−2/d)
)

Theorem 4.11 f ∈ Cs([0, 1]d), s ∈ N+ ReLU O
(
N ln(N + 1)

)
O
(
L ln(L+ 1)

)
O(‖f‖CsN−2s/dL−2s/d) nearly optimal in N and L, see Section 4.4.2

Corollary 5.3 f ∈ Hölder([0, 1]d, α, λ) Floor and ReLU max{d, 5N + 13} 64dL+ 3 3λdα/2N−α
√
L

Theorem 5.1 f ∈ C([0, 1]d) Floor and ReLU max{d, 5N + 13} 64dL+ 3 ωf (
√
dN−

√
L) + 2ωf (

√
d)N−

√
L

1.1 Contributions 3

We would like to point out that most results in Table 1.1 can be generalized

from [0, 1]d to any compact set E ⊆ Rd. Such a generalization is mainly based on

two key ideas: 1) an affine linear map La,b(x) = (b − a)x + a with proper a, b ∈ R

satisfying E ⊆ [a, b]d; 2) the function extension (e.g., see Lemma 4.2 of [53] for the

extension of continuous functions).

1 L depthL

O(d)

widthN

Figure 1.1: A sketch of most existing results and new results in this dissertation.

L represents a sufficiently large unknown number. Most existing results (e.g.,

[18, 23, 35, 39, 57, 59, 60]) are applicable in the areas in or , while our

results are suitable for almost all areas characterized by .

As far as we know, most existing works focus on either one-hidden-layer networks

(visualized by the region in in Figure 1.1), or very deep networks with a

constant width (visualized by the region in in Figure 1.1). Meanwhile, these

works only provide asymptotic 1○ approximation errors in terms of the number of

parameters, which are valid for particular network architectures. They are unable

to give approximation error estimates for other network architectures with the same

number of parameters. To overcome this, we provide general approximation error

characterizations with explicit formulas for the prefactors, in terms of the width

and depth simultaneously (visualized by the region in in Figure 1.1), which is

of more practical interest in real applications and requires innovative proofs. This

gives us much more freedom to design neural networks for a good approximation

and we can always give an error estimate via the width and depth no matter what

network architecture is given, though the error estimate may not be optimal for

1○“Asymptotic” means the approximation error is described via big O notation O(·) without an
explicit formula for the prefactor.

4 Chapter 1. Introduction

unusual architectures. In fact, many results in previous works can be regarded as

the corollaries of this dissertation.

Problem 1 and 2 are completely solved by providing approximation error es-

timates in terms of the width and depth simultaneously. For Problem 3, we use

VC-dimension to show our approximation error estimates are nearly optimal for

the Hölder continuous function space (Hölder([0, 1]d, α, λ) and the smooth function

space (Cs([0, 1]d)). The optimality becomes insignificant if (nearly) exponential ap-

proximation errors are attained.

Table 1.1 (Theorem 4.1) shows that ReLU networks with width O(N) and depth

O(L) are able to approximate d-dimensional polynomials on [0, 1]d within an error

O(N−L). This reveals the power of depth in ReLU networks for approximating poly-

nomials, from function compositions. Generally speaking, such an approximation

error is the best (up to constants) what we can expect since ReLU networks with

width O(N) and depth O(L) are continuous piecewise linear functions with at most

O(N)O(L) linear pieces. The starting point of a good approximation of functions is

to approximate polynomials with high accuracy. In classical approximation theory,

the approximation power of a lot of numerical schemes depends on the degree of

polynomials that can be locally reproduced. Being able to approximate polynomi-

als with an exponential error plays a vital role in the approximation power of deep

ReLU networks. It is interesting to study whether there are any other function

spaces with a reasonable size, besides the polynomial space, having an exponential

error when approximated by neural networks.

In particular, we introduce new networks built with either Floor (bxc) or ReLU

(max{0, x}) as the activation function in each neuron. We call such networks Floor-

ReLU networks. It is proved by construction that nearly exponential approximation

errors can be attained when using Floor-ReLU networks with fixed architectures to

approximate Hölder continuous functions and general continuous functions on [0, 1]d.

As shown in Table 1.1, approximation errors are improved from polynomial ones to

nearly exponential ones by adding a simple activation function (Floor) to ReLU

1.2 Related work 5

networks. This reveals the power of deep Floor-ReLU network architectures. As we

shall see later, the idea of function compositions is the most significant cornerstone

of the proofs for the results listed in Table 1.1. Finally, we would like to remark

that the architecture of the final Floor-ReLU network is independent of the target

function f . That is, only the values of the parameters rely on the target function

f . In particular, the choice of activation functions (Floor or ReLU) in each neuron

is independent of the target function f .

1.2 Related work

This dissertation is a summary of our previous papers [38,52,53,54], focusing on

the approximation error estimate for neural networks. Thus, all the contents of this

dissertation focus on three main problems, Problem 1, 2, and 3. In the following,

only the previous works related to them are reviewed.

The approximation theory of neural networks has been an active research topic in

the past few decades. Previously, as a special kind of ridge function approximation,

shallow neural networks with one hidden layer and various activation functions (e.g.,

wavelets pursuits [12, 41], adaptive splines [19, 49], radial basis functions [10, 18, 23,

47, 57], sigmoid functions [8, 13, 14, 15, 24, 32, 33, 37, 40]) were widely discussed and

admit good approximation properties, e.g., the universal approximation property

[16, 24, 25], overcoming the curse of dimensionality [3], and providing attractive

approximation errors in nonlinear approximation [12,18,19,23,41,49,57].

The introduction of deep neural networks with more than one hidden layers

has made significant impacts in many fields in computer science and engineering

including computer vision [31] and natural language processing [1]. New scientific

computing tools based on deep networks have also emerged and facilitated large-scale

and high-dimensional problems that were impractical previously [20,22]. The design

of deep ReLU networks and high-performance computing technologies are the key of

such a revolution. These breakthroughs have stimulated broad research topics from

6 Chapter 1. Introduction

different points of views to study the power of deep ReLU networks, e.g., in terms of

combinatorics [44], topology [7], Vapnik-Chervonenkis (VC) dimension [4,5,51], fat-

shattering dimension [2,29], information theory [48], classical approximation theory

[3, 16,25,38,52,53,54,59], optimization [27,28,45], etc.

Particularly in approximation theory, non-quantitative and asymptotic approxi-

mation errors of ReLU networks have been proposed for various types of functions.

For example, smooth functions [21, 34, 38, 39, 58], piecewise smooth functions [48],

band-limited functions [43], continuous functions [53, 59]. However, to the best of

our knowledge, existing theories [17, 21, 34, 39, 42, 43, 48, 55, 58, 59] can only provide

implicit formulas. In other words, the approximation error contains an unknown

prefactor, or they work only for sufficiently large network size. For example, an

approximation error cdL
−2α/d for Lipschitz continuous functions on [0, 1]d is esti-

mated in [59] via a narrow and deep ReLU network with L hidden layers, where

cd is an unknown number depending on d. For another example, the existence of a

ReLU network with a constant width and W parameters is constructed in [60] to

approximate a smooth function in Cs([0, 1]d) within an error cs,dW
−2s/d(lnW)2s/d,

where cs,d is still an unknown number depending on s and d. Generally, most of

these works can be divided into two cases: 1) networks with varying width and only

one hidden layer [18, 23, 35, 57] (visualized by the region in in Figure 1.1); 2)

networks with a fixed width of O(d) and a varying depth larger than an unknown

number L [39, 59,60] (represented by the region in in Figure 1.1).

Almost all works listed above answer Problem 1 and 2 for given activation func-

tions and special function spaces. Most of them estimate the approximation error

in terms of the number of parameters. In other words, their approximation er-

rors are only valid for very special network architectures, such as very deep but

very narrow networks, complicated networks generated by compositing shallow-

wide sub-networks and deep-narrow sub-networks, etc., while our approximation

error estimates in this dissertation are valid for arbitrary width and depth up to

absolute constants. It means the shape of our network architectures is a rectangle

1.2 Related work 7

with free choice of width (the maximum width of networks) and length (the depth

of networks), which is of more practical interest in real applications and requires

innovative proofs.

Finally, let us turn to Problem 3. A typical method characterizing optimality in

the approximation theory of neural networks is essentially to study the connection

between the approximation error and VC-dimension [38,52,53,58,59,60]. Of course,

this method relies on the VC-dimension upper bound given in [4]. In this disser-

tation, we adopt this method with several modifications to simplify the proof. As

we shall see later in Section 4.4, the optimality is discussed for two function spaces:

1) the Hölder function space (see Section 4.4.1); 2) the smooth function space (see

Section 4.4.2).

This page is intentionally left blank.

Chapter 2
Preliminaries

Before moving to the main body of this dissertation, we first introduce the prelim-

inaries related to this dissertation including notations used throughout this disserta-

tion, the architecture of neural networks, and the general ideas of the approximation

by neural networks.

2.1 Notations

For convenience, we present all notations used throughout this dissertation in

this section. Several notations used only in a particular section are not presented

here.

2.1.1 Basic notations

Basic notations are listed below.

• Let Z and R denote the set of integers and real numbers, respectively.

• Let N denote the set of natural numbers and N+ denote the set containing all

positive integers, i.e., N = {0, 1, 2, · · · } and N+ = {1, 2, 3, · · · }.

• Matrices are denoted by bold uppercase letters, e.g.,A ∈ Rm×n is a real matrix

of size m × n, and AT denotes the transpose of A. Correspondingly, A(i, j)

9

10 Chapter 2. Preliminaries

is the (i, j)-th entry of A; A(:, j) is the j-th column of A; A(i, :) is the i-th

row of A.

• Vectors are denoted as bold lowercase letters, e.g.,

v = [v1, · · · , vd]T =



v1
...
vd




is a column vector of size d and v(i) is the i-th element of v. For simplicity, a

vector v ∈ Rd can also be denoted by v = (v1, · · · , vd).

• By convention, “[” and “]” are used to partition matrices (vectors) into blocks,

e.g., a matrix A can be partitioned into A =
[
A11 A12
A21 A22

]
and a row vector v

can be denoted by v = [v1, v2, · · · , vd] ∈ Rd.

• We say a map (transform) L : Rm → Rn is affine linear if there exist W ∈
Rn×m and b ∈ Rn such that L(x) = W · x+ b for any x ∈ Rm. In particular,

an affine linear map is also called a linear function in the case n = 1.

• For a real number p ∈ [1,∞), the p-norm (or `p-norm) of a vector x =

(x1, x2, · · · , xd) ∈ Rd is defined by

‖x‖p :=
(
|x1|p + |x2|p + · · · + |xd|p

)1/p
.

• A d-dimensional multi-index is a d-tuple α = (α1, α2, · · · , αd) ∈ Nd. Several

related notations are listed below.

∗ ‖α‖1 = |α1|+ |α2|+ · · · + |αd|;

∗ xα = xα1
1 x

α2
2 · · ·xαdd , where x = (x1, x2, · · · , xd);

∗ α! = α1!α2! · · ·αd!;

∗ ∂α = ∂α1

∂x
α1
1

∂α2

∂x
α2
2
· · · ∂αd

∂x
αd
d

.

2.1 Notations 11

• Let O(·) denote the big O notation. That is, for any n ∈ Nd and functions f

and g, f(n) = O(g(n)) means that there exist C > 0 and n0 ∈ Nd independent

of n, f , and g such that f(n) ≤ Cg(n) when n(i) ≥ n0(i) for all i.

• The floor function (Floor) is defined as bxc := max{n : n ≤ x, n ∈ Z} for

any x ∈ R. bxc means applying b·c elementwisely to x. Similarly, the ceiling

function (Ceiling) is defined as dxe := min{n : n ≥ x, n ∈ Z} for any x ∈ R.

• Similar to “min” and “max”, let mid(x1, x2, x3) denote the middle value of

three inputs x1, x2, and x3. 1○

• For any θ ∈ [0, 1), suppose its binary representation is θ =
∑∞

`=1 θ`2
−` with

θ` ∈ {0, 1}. We introduce a special notation bin0.θ1θ2 · · · θL to denote the

L-term binary representation of θ, i.e., bin0.θ1θ2 · · · θL :=
∑L

`=1 θ`2
−`.

• Let Hölder([0, 1]d, α, λ) denote the space of Hölder continuous functions of

order α ∈ (0, 1] on [0, 1]d with a Hölder constant λ > 0. To be precise, each

function f of Hölder([0, 1]d, α, λ) satisfies

|f(x)− f(y)| ≤ λ‖x− y‖α2 , for any x,y ∈ [0, 1]d.

• Given E ⊆ Rd, let Cs(E) denote the set containing all functions, all k-th

order partial derivatives of which exist and are continuous on E for any k ∈ N

with 0 ≤ k ≤ s. In particular, C0(E), also denoted by C(E), is the set of

continuous functions on E. For the case s = ∞, C∞(E) = ∩∞s=0C
s(E). The

Cs-norm is defined by

‖f‖Cs(E) := max
{
‖∂αf‖L∞(E) : α ∈ Nd with ‖α‖1 ≤ s

}
.

Generally, E is assigned as [0, 1]d in this dissertation. In particular, the closed

1○Note that “mid” can be defined via mid(x1, x2, x3) = x1 + x2 + x3 − max(x1, x2, x3) −
min(x1, x2, x3), which can be implemented by a ReLU network with width 14 and depth 2, as
shown in Lemma 3.8.

12 Chapter 2. Preliminaries

unit ball of Cs([0, 1]d) is denoted by

Cs
u([0, 1]d) :=

{
f ∈ Cs([0, 1]d) : ‖f‖Cs([0,1]d) ≤ 1

}
.

• The modulus of continuity of a continuous function f ∈ C([0, 1]d) is defined

by

ωf (r) := sup
{
|f(x)− f(y)| : ‖x− y‖2 ≤ r, x,y ∈ [0, 1]d

}
, for r ≥ 0.

Clearly, ωf (nr) ≤ nωf (r) for any n ∈ N+ and r ≥ 0.

2.1.2 Set notations

All set notations used in this dissertation can be found below.

• The Lebesgue measure of a measurable set S ∈ Rd is denoted by µ(S).

• Let |S| denote the size of a finite set S, i.e., the number of all elements in S.

• The set difference of two sets A and B is denoted by A\B := {x : x ∈ A, x /∈
B}.

• For a set of numbers A and a real number x, A− x := {y − x : y ∈ A}.

• Let 1S be the characteristic function on a set S, i.e., 1S is equal to 1 on S

and 0 outside S. S can be simply described by one or more conditions, e.g.,

1{n≤m} is equal to 1 if n ≤ m and 0 if n > m.

• Let B(x, r) ⊆ Rd denote the closed ball, in `2-norm, with a center x ⊆ Rd and

a radius r, i.e.,

B(x, r) :=
{
y ∈ Rd : ‖x− y‖2 ≤ r

}
.

• Given any K ∈ N+ and δ ∈ (0, 1
K

), define a trifling region Ω([0, 1]d, K, δ) of

2.1 Notations 13

[0, 1]d as

Ω([0, 1]d, K, δ) :=
d⋃

i=1

{
x = (x1, · · · , xd) ∈ [0, 1]d : xi ∈ ∪K−1

k=1 (k
K
−δ, k

K
)
}
. (2.1)

In particular, Ω([0, 1]d, K, δ) = ∅ if K = 1. See Figure 2.1 for two examples of

trifling regions.

0.0 0.2 0.4 0.6 0.8 1.0

δ δ δ δ

Ω([0, 1]d, K, δ) for K = 5, d = 1

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Ω([0, 1]d, K, δ) for K = 4, d = 2

(b)

Figure 2.1: Two examples of trifling regions. (a) K = 5, d = 1. (b) K = 4, d = 2.

2.1.3 Neural network notations

We list neural network notations as follows.

• Let σ : R→ R denote the rectified linear unit (ReLU), i.e., σ(x) = max{0, x}.
With a slight abuse of notation, we define σ : Rd → Rd as σ(x) =

[
max{0,x1}

...
max{0,xd}

]

for any x = (x1, · · · , xd) ∈ Rd.

• The expression “a network (architecture) with width N and depth L” means

∗ The maximum width of this network (architecture) for all hidden layers

is no more than N .

∗ The number of hidden layers of this network (architecture) is no more

than L.

• The expression “a (vector-valued) function is implemented by a network (ar-

chitecture)” means, by specifying the parameters as proper real numbers, this

14 Chapter 2. Preliminaries

network (architecture) has the same output as this function for each input.

• We use “NN ” as “functions implemented by ReLU neural networks” for

short and use Python-type notations to specify a class of functions imple-

mented by ReLU networks with several conditions. To be precise, we use

NN (c1; c2; · · · ; cm) to denote the function set containing all functions im-

plemented by ReLU network architectures satisfying m conditions given by

{ci}1≤i≤m, each of which may specify the number of inputs (#input), the num-

ber of outputs (#output), the maximum width of all hidden layers (width), the

number of hidden layers (depth), the width in each hidden layer (widthvec),

the total number of parameters (#parameter), etc. For example, if φ ∈
NN (#input = 2; widthvec = [100, 100]; #output = 1), then φ is a func-

tion satisfying the following conditions.

∗ φ is a two-dimensional function that maps from R2 to R.

∗ φ can be implemented by a two-hidden-layer ReLU network that the

number of neurons in each hidden layer is 100.

We would like to point out that each element of NN (c1; c2; · · · ; cm) is a

continuous piecewise linear function.

2.2 Architecture of neural networks

There are a large number of types of neural network architectures, e.g., convo-

lution neural networks (CNN), recurrent neural networks (RNN), and generative

adversarial networks (GAN), variational auto encoders (VAE), residual networks

(ResNet), etc. This dissertation focuses on feed-forward fully connected neural

networks. If there are no special instructions, “feed-forward fully connected neural

network(s)” is abbreviated to “network(s)” throughout this dissertation. In this sec-

tion, we will describe the architecture of networks mathematically and intuitively in

2.2 Architecture of neural networks 15

Section 2.2.1 and study the compositions and combinations of network architectures

in Section 2.2.2.

2.2.1 Descriptions

First, we use mathematical formulas to describe network architectures. Assume

%1, · · · , %r are one-dimensional functions. Let N0 = d, NL+1 ∈ N+, and N` be

the number of neurons in `-th hidden layer of a network with activation functions

%1, · · · , %r for ` = 1, 2, · · · , L, then the architecture of this network with input x and

output φ(x) can be described as

x = h̃0
W0, b0 h1

%1, · · · , %r h̃1 · · · WL−1, bL−1 hL
%1, · · · , %r h̃L

WL, bL hL+1 = φ(x), (2.2)

where W` ∈ RN`+1×N` , b` ∈ RN`+1 ,

h`+1 = W` · h̃` + b` =: L`(h̃`), for ` = 0, 1, · · · , L,

and

h̃`,n ∈
{
%1(h`,n), · · · , %r(h`,n)

}
, for ` = 1, 2, · · · , L and n = 1, 2, · · · , N`,

where h` = (h`,1, · · · ,h`,N`), h̃` = (h̃`,1, · · · , h̃`,N`) for each ` = 1, 2, · · · , L, and L` is

an affine linear map given by L`(z) := W` · z + b` for each ` = 0, 1, 2, · · · , L.

The most common type of activation function is the rectified linear unit (ReLU),

denoted by σ in this dissertation. We remark that using the ReLU activation func-

tion is not much different from using any other continuous piecewise linear

activation function with finitely many linear pieces. In fact, if we let σ̃ be a con-

tinuous piecewise linear activation function with finitely many linear pieces, then

we can always replace a network, using one of {σ, σ̃} as activation function, by an-

other network having the other activation function in {σ, σ̃} while only increasing

the width and depth by absolute constant factors.

16 Chapter 2. Preliminaries

The networks with only ReLU activation function, i.e., %1 = · · · = %r =

σ in Equation (2.2), are called ReLU networks. In this case, the set of func-

tions implemented by the architecture in Equation (2.2) is exactly NN (#input =

d; widthvec = [N1, N2, · · · , NL]). Moreover, the (vector-valued) function φ imple-

mented by the network in the Equation (2.2) can also be represented in a compositive

manner by

φ = LL ◦ σ ◦ LL−1 ◦ σ ◦ · · · ◦ L2 ◦ σ ◦ L1 ◦ σ ◦ L0.

In particular, if r = 2, %1 = σ, and %2(x) = bxc for any x ∈ R, the network

described by Equation (2.2) is a Floor-ReLU network. We will discuss more details

of Floor-ReLU networks in Chapter 5.

To visualize the network architecture, we take ReLU networks as examples. Fig-

ure 2.2 provides an example of a ReLU network with width 4 and depth 3. Note

that the affine linear transform and the activation function are contained in a single

neuron in Figure 2.2. To make the architecture of a ReLU network more clear, we

put the affine linear transform and the activation function into different neurons in

another example shown in Figure 2.3.

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

Input Hidden Hidden Hidden Output

Figure 2.2: An example of a ReLU network with width 4 and depth 3. This network

has two neurons in the input layer, one neuron in the output layer, and four neurons

in each hidden layer.

2.2 Architecture of neural networks 17

(x1, x2)

x1

x2

h1

h1,1

h1,2

h1,3

h1,4

h̃1

h̃2,1

h̃2,2

h̃2,3

h̃2,4

h2

h2,1

h2,2

h2,3

h2,4

h2,5

h̃2

h̃2,1

h̃2,2

h̃2,3

h̃2,4

h̃2,5

φ(x1, x2)

φ(x1, x2)

W0, b0

L0

W1, b1

L1

W2, b2

L2

ReLU (σ) ReLU (σ)

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 2.3: A detailed example of a ReLU network with two inputs x1, x2 and an

output φ(x1, x2). Here, h1 = (h1,1, h1,2, h1,3, h1,4), h2 = (h2,1, h2,2, h2,3, h2,4, h2,5),

h̃1 = σ(h1) = (h̃1,1, h̃1,2, h̃1,3, h̃1,4), and h̃2 = σ(h2) = (h̃2,1, h̃2,2, h̃2,3, h̃2,4, h̃2,5).

2.2.2 Compositions and combinations

We use a lemma below to describe the compositions and combinations of ReLU

network architectures.

Lemma 2.1. The following three statements hold.

(i) For any N,L, d1, d2, d3, d4 ∈ N+, assume that L1 : Rd1 → Rd2 and L2 :

Rd3 → Rd4 are two affine linear maps, and Φ ∈ NN (#input = d2; width ≤
N ; depth ≤ L; #output = d3). Then

Φ ◦ L1 ∈ NN (#input = d1; width ≤ N ; depth ≤ L; #output = d3)

and

L2 ◦Φ ∈ NN (#input = d2; width ≤ N ; depth ≤ L; #output = d4).

(ii) For any N1, N2, L1, L2, d1, d2, d3 ∈ N+, if Φ1 ∈ NN (#input = d1; width ≤
N1; depth ≤ L1; #output = d2) and Φ2 ∈ NN (#input = d2; width ≤
N2; depth ≤ L2; #output = d3), then Φ2 ◦Φ1 is in

NN (#input = d1; width ≤ max{N1, N2}; depth ≤ L1 + L2; #output = d3).

18 Chapter 2. Preliminaries

(iii) For any N1, N2, L1, L2, d ∈ N+ and a, b, c ∈ R with N1 ≥ 2 and N2 ≥ 2, if

φ1 ∈ NN (#input = d; width ≤ N1; depth ≤ L1; #output = 1) and φ2 ∈
NN (#input = d; width ≤ N2; depth ≤ L2; #output = 1), then aφ1 + bφ2 + c

is in

NN (#input = d; width ≤ N1 +N2; depth ≤ max{L1, L2}; #output = 1)

Proof. Let first prove Part (i). The case L = 1 is trivial, we consider L ≥ 2 below.

Since Φ ∈ NN (width ≤ N ; depth ≤ L), there exist two affine linear maps L̂1, L̂2

and Ψ1,Ψ2 ∈ NN (width ≤ N ; depth ≤ L− 1) such that

Φ = Ψ1 ◦ σ ◦ L̂1, and Φ = L̂2 ◦ σ ◦Ψ2.

Therefore,

Φ◦L1 = Ψ1◦σ◦L̂1◦L1 = Ψ1◦σ◦L̃1, and L2◦Φ = L2◦L̂2◦σ◦Ψ2 = L̃2◦σ◦Ψ2,

where L̃1 = L̂1 ◦ L1 and L̃2 = L2 ◦ L̂2 are two new affine linear maps, implying

Φ ◦ L1 ∈ NN (#input = d1; width ≤ N ; depth ≤ L; #output = d3)

and

L2 ◦Φ ∈ NN (#input = d2; width ≤ N ; depth ≤ L; #output = d4).

Next, let us focus on Part (ii). The case L1 = 1 or L2 = 1 is trivial, so we assume

L1 ≥ 2 and L2 ≥ 2 below. Since Φ1 ∈ NN (width ≤ N1; depth ≤ L1) and Φ2 ∈
NN (width ≤ N2; depth ≤ L2), there exist Ψ1 ∈ NN (width ≤ N1; depth ≤ L1− 1)

and Ψ2 ∈ NN (width ≤ N2; depth ≤ L2 − 1) such that

Φ1 = L1 ◦ σ ◦Ψ1, and Φ2 = Ψ2 ◦ σ ◦ L2,

2.2 Architecture of neural networks 19

where L1,L2 are two affine linear maps. Therefore,

Φ2 ◦Φ1 = Ψ2 ◦ σ ◦ L2 ◦ L1 ◦ σ ◦Ψ1 = Ψ2 ◦ σ ◦ L ◦ σ ◦Ψ1,

where L = L2◦L1 is a new affine linear map. Thus, Φ2◦Φ1 can be implemented by a

ReLU network with width max{N1, N2} and depth (L1−1)+1+1+(L2−1) = L1+L2,

implying Φ2 ◦Φ1 is in

NN (#input = d1; width ≤ max{N1, N2}; depth ≤ L1 + L2; #output = d3).

Finally, let us consider Part (iii). Let ι denote the one-dimensional identity map.

As shown in Figure 2.4, ι can be understood as an implementation of a ReLU network

with an arbitrary number of hidden layers and width 2. Thus, for j = 1, 2, ι◦φj can

x

σ(x)

σ(−x)

σ(x)

σ(−x)

σ(x)

σ(−x)
σ(x)− σ(−x) = x

· · ·
· · ·

Figure 2.4: An illustration of the implementation of the identity map by a ReLU

network based on the fact σ ◦ σ = σ.

be regarded as an implementation of ReLU network with max{L1, L2} hidden layers

and width max{Nj, 2} = Nj. By placing the two networks implementing ι ◦ φ1 and

ι ◦ φ2 in parallel (share the inputs), we have

Φ ∈ NN (#input = d; width ≤ N1 +N2; depth ≤ max{L1, L2}; #output = 2),

where Φ : Rd → R2 is defined by Φ(x) =
(
φ1(x), φ2(x)

)
for any x ∈ Rd. Define

an affine linear map L : R2 → R via L(x, y) = ax + by + c. By Part (i), we

have aφ1 + bφ2 + c = L ◦ Φ ∈ NN (#input = d; width ≤ N1 + N2; depth ≤
max{L1, L2}; #output = 1). So we finish the proof.

20 Chapter 2. Preliminaries

2.3 General ideas of approximation by networks

In this section, we discuss the general ideas of approximation by networks. Uni-

versal approximation theorem shows that one-hidden-layer networks can approxi-

mate continuous functions arbitrarily well on [0, 1]d as long as the network size is

large enough. However, it is non-trivial to characterize the approximation error in

terms of the width and depth simultaneously as we will do in later chapters. Thus,

let us discuss the general ideas to warm up the later constructions and proofs.

2.3.1 ReLU networks

First, let us consider the approximation by ReLU networks. To illustrate the gen-

eral ideas, we take continuous functions as examples. The ideas of smooth functions

are similar by applying Taylor expansion, as we shall see later in Section 4.3. To

approximate a continuous function f on [0, 1]d, we essentially construct a piecewise

constant function via function compositions. However, piecewise constant functions

cannot be implemented by ReLU networks because of their discontinuity. To over-

come this, we introduce the trifling region Ω([0, 1]d, K, δ), defined in Equation (2.1),

and construct ReLU networks to implement almost piecewise linear functions to

approximate the target functions outside the trifling region. For the sake of clarity,

we divide the main ideas into four steps. See Figure 2.6 for an illustration.

1. Normalize f as f̃ , partition [0, 1]d into a union of sub-cubes 2○ {Qβ}β∈{0,1,···,K−1}d

and the trifling region Ω([0, 1]d, K, δ), and let xβ denote the vertex of Qβ with

minimum ‖·‖1 norm, where K ∈ N+ and δ ∈ (0, 1
3K

] are two numbers determined

later. See Figure 2.5 for illustrations of Ω([0, 1]d, K, δ), Qβ, and xβ for any

β ∈ {0, 1, · · · , K − 1}d.

2. Construct a sub-network to implement a vector-valued function Φ1 : Rd → Rd

projecting the whole cube Qβ to the d-dimensional index β for each β, i.e.,

Φ1(x) = β for all x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d.
2○For simplicity, we abbreviate (d-dimensional) hypercube to cube.

2.3 General ideas of approximation by networks 21

3. Construct a sub-network to implement a function φ2 : Rd → R mapping the index

β approximately to f(xβ) for each β. Then φ2 ◦Φ1(x) = φ2(β) ≈ f̃(xβ) for any

x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d, implying φ̃ := φ2 ◦ Φ1 approximate f̃

within an error O(ωf (1/K)) outside the trifling region.

4. Re-scale and shift φ̃ to obtain a function φ approximating f well outside the

trifling region. Then modify φ to let it approximate f uniformly well on [0, 1]d

and determine the network architecture implementing the modified function φ.

0.0 0.2 0.4 0.6 0.8 1.0

δ

Q0

δ

Q1

δ

Q2

δ

Q3 Q4

Ω([0, 1]d, K, δ) for K = 5, d = 1

Qβ for β ∈ {0, 1, 2, 3, 4}
xβ for β ∈ {0, 1, 2, 3, 4}

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q0,1 Q0,2 Q0,3

Q1,0 Q1,1 Q1,2 Q1,3

Q2,0 Q2,1 Q2,2 Q2,3

Q3,0 Q3,1 Q3,2 Q3,3

Ω([0, 1]d, K, δ) for K = 4, d = 2

Qβ for β ∈ {0, 1, 2, 3}2

xβ for β ∈ {0, 1, 2, 3}2

(b)

Figure 2.5: Illustrations of Ω([0, 1]d, K, δ), Qβ, and xβ for any β ∈ {0, 1, · · · , K−1}d.
(a) K = 5 and d = 1. (b) K = 4 and d = 2.

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q0,1 Q0,2 Q0,3

Q1,0 Q1,1 Q1,2 Q1,3

Q2,0 Q2,1 Q2,2 Q2,3

Q3,0 Q3,1 Q3,2 Q3,3

Ω([0, 1]d, K, δ) for K = 4, d = 2

Qβ for β ∈ {0, 1, 2, 3}2

xβ for β ∈ {0, 1, 2, 3}2

Φ1(x)=β
=⇒
for x∈Qβ

A set of
d-dimensional indices:

β ∈ {0, 1, · · · , K − 1}d
φ2(β)≈f(xβ)
=⇒

A set of function values
at representatives:{

f(xβ) : β ∈ {0, 1, · · · , K − 1}d
}

Figure 2.6: An illustration of the main ideas of constructing φ = φ2 ◦Φ1. Note that

φ ≈ f on [0, 1]d\Ω([0, 1]d, K, δ), since φ(x) = φ2 ◦Φ1(x) = φ2(β) ≈ f(xβ) for any

x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d.

The first step is straightforward. The construction of Φ1 in Step 2 is trivial if the

network size is large enough. To control the width and depth of the network imple-

menting Φ1, we establish a theorem, Theorem 3.12 in Section 3.4, to help construct

Φ1. Assume φ1 is the one-dimensional step function attained by Theorem 3.12, then

22 Chapter 2. Preliminaries

we can attain Φ1 via defining

Φ1(x) :=
(
φ1(x1), φ1(x2), · · · , φ1(xd)

)
, for any x = (x1, x2, · · · , xd) ∈ Rd.

See Figure 2.7 for an illustration.

0 1/4 2/4 3/4 1
0

1

2

3
φ1

trifling region

Figure 2.7: An example of a step function for the case K = 4 and d = 1. We do not

need to care about the values of φ1 in the trifling region while constructing a ReLU

network to implement φ1.

Step 3 is the core step. We would like to point out that we only need to let φ2 map

β approximately to f̃(xβ) within an error O(ωf (1/K)) for each β ∈ {0, 1, · · · , K −
1}d when constructing φ2 in Step 3. In other words, it is not necessary to care

about the values of φ2 outside the set of points {0, 1, · · · , K − 1}d, which plays a

key role in constructing a ReLU network to implement φ2 in Step 3. Thus, with Φ1

in hand, a function approximation problem is converted to a point fitting problem

for φ2 via the idea of function compositions (φ2 ◦Φ1), 3○ which reveals the power of

function compositions in some sense. However, designing a network to solve such

a point fitting problem is still a challenging task due to the limitation of the width

and depth of the target network. To simplify the construction of a ReLU network

solving this point fitting problem, we investigate the width power (Theorem 3.2)

and the depth power (Theorem 3.4) of ReLU networks to fit a collection of points

in Section 3.2.1 and 3.2.2, respectively. Then we can construct the desired ReLU

network by combining these two properties together.

The final step is pretty technical, since φ may oscillate greatly in the trifling

region. To overcome this, we use two main ideas: “horizontal shift” and “middle

3○Solving a point fitting problem is to design a function to fit a collection of points {(xi, yi)}i in
Rd+1, namely, the target function takes the value close to yi at the location xi.

2.3 General ideas of approximation by networks 23

value”. For example, if g approximates a one-dimensional continuous function f

well except for an interval in R with a small length δ, then

mid
(
g(x− δ), g(x), g(x+ δ)

)

can approximate f well on the whole domain R, where mid(·, ·, ·) is a function

returning the middle value of three inputs. See Section 3.3 for more details.

2.3.2 Floor-ReLU networks

Next, let us discuss the general ideas of the approximation by Floor-ReLU net-

works, which are similar to those of ReLU networks except for the trifling region.

Since Floor-ReLU networks can approximate step functions uniformly well on [0, 1]d,

we do not need to introduce the trifling region again. The main ideas can be divided

into four steps as follows.

1. Normalize f as f̃ satisfying f̃(x) ∈ [0, 1] for any x ∈ [0, 1]d, partition [0, 1]d into

a set of non-overlapping cubes {Qβ}β∈{0,1,···,K−1}d , and denote xβ as the vertex

of Qβ with minimum ‖ · ‖1 norm, where K is an integer determined later. See

Figure 2.8 for the illustrations of Qβ and xβ for any β ∈ {0, 1, · · · , K − 1}d.

2. Construct a Floor-ReLU sub-network to implement a vector-valued function Φ1 :

Rd → Rd projecting the whole cube Qβ to the index β for each β, i.e., Φ1(x) = β

for all x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d.

3. Construct a Floor-ReLU sub-network to implement a function φ2 : Rd → R

mapping β ∈ {0, 1, · · · , K − 1}d approximately to f̃(xβ), i.e., φ2(β) ≈ f̃(xβ)

for each β. Then φ2 ◦ Φ1(x) = φ2(β) ≈ f̃(xβ) for any x ∈ Qβ and each

β ∈ {0, 1, · · · , K − 1}d, implying φ̃ := φ2 ◦ Φ1 approximates f̃ within an error

O(ωf (1/K)) on [0, 1]d.

4. Re-scale and shift φ̃ to obtain the desired function φ approximating f well and

determine the final Floor-ReLU network to implement φ.

24 Chapter 2. Preliminaries

0 1/4 2/4 3/4 1

Q0 Q1 Q2 Q3

[0, 1/4) [1/4, 2/4) [2/4, 3/4) [3/4, 1]

xβ for β ∈ {0, 1, · · · , K − 1}d

(a)

0 1/4 2/4 3/4 1

0

1/4

2/4

3/4

1

Q0,0 Q1,0 Q2,0 Q3,0

Q0,1 Q1,1 Q2,1 Q3,1

Q0,2 Q1,2 Q2,2 Q3,2

Q0,3 Q1,3 Q2,3 Q3,3

xβ for β ∈ {0, 1, · · · , K − 1}d

(b)

Figure 2.8: Illustrations of Qβ and xβ for any β ∈ {0, 1, · · · , K − 1}d. (a) K =

4, d = 1. (b) K = 4, d = 2.

The implementations of Step 1, 2, and 4 are straightforward. Step 3 is the core step.

Similar to ReLU networks, we only need to solve a point fitting problem due to the

power of function compositions. It is still a highly technical problem. Thus, we

introduce a proposition, Proposition 5.6, to help implement this step. As we shall

see later in Section 5.3, the key idea of proving Proposition 5.6 is the modified “bit

extraction” technique derived from [5].

Finnaly, we would like to point out that the key reason Floor-ReLU networks

can attain much better approximation errors than those of ReLU networks is that

Floor (bxc) has infinite (constant) pieces, while ReLU (max{0, x}) has only two

(linear) pieces. Thus, roughly speaking, one Floor activation function can do what

many ReLU activation functions do in our construction. For this reason, compared

to ReLU networks, Floor-ReLU networks attain significantly better approximation

errors.

Chapter 3
Basic results of ReLU networks

In this chapter, we introduce several basic results of ReLU networks, which will

be used in the later chapters.

3.1 Wide networks to deep ones

Generally, it is easier to construct shallow and wide sub-networks to meet the

requirements during designing the final network. To control the width of the final

network, we consider representing wide and shallow networks by deep and narrow

ones. To this end, we establish a theorem, Theorem 3.1 below, to convert wide

networks with two hidden layers to deep and narrow ones.

Theorem 3.1. For any N,L, d ∈ N+, it holds that

NN (#input = d; widthvec = [N,NL]; #output = 1)

⊆ NN (#input = d; width ≤ 2N + 2; depth ≤ L+ 1; #output = 1).

This theorem shows that if a function φ can be implemented by a two-hidden-

layer ReLU network that the first and second hidden layers have N and NL neurons,

respectively, then there exists a new ReLU network with width 2N + 2 and depth

L+ 1 to implement φ.

25

26 Chapter 3. Basic results of ReLU networks

g

·
··

h1

h2

hL

=⇒

0 2 4 6

−1

0

1

g

h1

g

h2

g

h3

g

h4

g

· · ·

· · ·

· · ·
Figure 3.1: An illustration of the main idea of proving Theorem 3.1

The key idea to prove Theorem 3.1 is to re-assemble sub-networks in the shallower

network in the left of Figure 3.1 to form a deeper one with width O(N) and depth

O(L) on the right of Figure 3.1.

Proof of Theorem 3.1. For any φ ∈ NN (#input = d; widthvec = [N,NL]; #output =

1), φ can be implemented by a ReLU network described as

x
W0, b0

σ
g

W1, b1
σ

h
W2, b2 φ(x),

where g and h are the output of the first and second hidden layers, respectively.

That is,

g = σ(W0 · x+ b0), h = σ(W1 · g + b1), and φ(x) = W2 · h+ b2.

We can evenly divide h ∈ RNL, b1 ∈ RNL, W1 ∈ RNL×N , and W2 ∈ R1×NL into L

parts as follows.

h =




h1

h2

...

hL



, b1 =




b1,1

b1,2

...

b1,L



, W1 =




W1,1

W1,2

...

W1,L



,

and W2 = [W2,1,W2,2, · · · ,W2,L], where h` ∈ RN , b1,` ∈ RN , W1,` ∈ RN×N , and

3.2 Power of networks to fit points 27

W2,` ∈ R1×N for ` = 1, 2, · · · , L. Then, for ` = 1, 2, · · · , L, we have

h` = σ(W1,` · g + b1,`) and φ(x) = W2 · h+ b2 =
L∑

j=1

W2,j · hj + b2. (3.1)

Define

s0 := 0 and s` :=
∑̀

j=1

W2,j · hj, for ` = 1, 2, · · · , L.

Then φ(x) = W2 · h+ b2 = sL + b2 and

s` = s`−1 +W2,` · h`, for ` = 1, 2, · · · , L. (3.2)

Hence, it is easy to check that φ can be also implemented by the deep network shown

in Figure 3.2. Clearly, the network architecture in Figure 3.2 is with width 2N + 2

x g

h1

g

σ(s1)

σ(−s1)

h2

g

σ(s2)

σ(−s2)

h3

g

· · ·

σ(sL−1)

σ(−sL−1)

hL

g

sL + b2 = φ(x)

Figure 3.2: An illustration of the desired network implementing φ based on Equa-

tion (3.1) and (3.2), and the fact x = σ(x)− σ(−x) for any x ∈ R. 1○

and depth L+ 1. So we finish the proof.

3.2 Power of networks to fit points

As mentioned earlier in Section 2.3, we need to construct a ReLU sub-networks

with the desired width and depth to solve a point fitting problem. To this end,

1○In this figure, we omit ReLU (σ) for a neuron if its output is non-negative without ReLU. Such
a simplification will be applied to similar figures in the rest of this dissertation.

28 Chapter 3. Basic results of ReLU networks

we discuss the power of ReLU networks to fit points from two perspectives: 1) the

width power of ReLU networks to fit points in Section 3.2.1; 2) the depth power of

ReLU networks to fit points in Section 3.2.2.

3.2.1 Width power of networks to fit points

Let us first discuss the width power of ReLU network to fit points. Roughly

speaking, we would like to minimize the width by fixing the depth when constructing

ReLU networks to fit a given number of points. In fact, we prove in Theorem 3.2

that a function φ ∈ NN (#input = 1; widthvec = [2m, 2n + 1]; #output = 1) can

fit m(n+ 1) + 1 points in R2 with several conditions.

Theorem 3.2. For any m,n ∈ N+, given any m(n + 1) + 1 samples (xi, yi) ∈ R2

with x0 < x1 < x2 < · · · < xm(n+1) and yi ≥ 0 for i = 0, 1, · · · ,m(n + 1), there

exists φ ∈ NN (#input = 1; widthvec = [2m, 2n + 1]; #output = 1) satisfying the

following three conditions.

(i) φ(xi) = yi for i = 0, 1, · · · ,m(n+ 1).

(ii) φ is linear on each interval [xi−1, xi] for all i /∈ {j(n+ 1) : j = 1, 2, · · · ,m}.

(iii) φ is bounded by a constant determined by m,n, xi, yi for i = 0, 1, · · · ,m(n+1).

To be exact,

sup
x∈[x0, xm(n+1)]

|φ(x)| ≤ C max
i∈{0,1,···,m(n+1)}

yi,

where

C = 1 +
n∏

k=1

(
1 + max

{
xj(n+1)+n − xj(n+1)+k−1

xj(n+1)+k − xj(n+1)+k−1

: j = 0, 1, · · · ,m− 1

})
.

We would like to point out that φ may not be linear on an interval [xi−1, xi] for

some i ∈ {j(n+ 1) : j = 1, 2, · · · ,m}. So φ may oscillate greatly in the region

⋃

i∈{j(n+1):j=1,2,···,m}
[xi−1, xi],

3.2 Power of networks to fit points 29

which is called the “don’t-care” region in the proof of Theorem 3.2. However, we are

able to choose the values of x0, x1, · · · , xm(n+1) properly to make the “don’t-care”

region small enough, the idea of which is similar to that of the trifling region defined

in Equation (2.1).

Before proving Theorem 3.2, let us first study the properties of ReLU networks

with only one hidden layer to warm up in Lemma 3.3 below. Recall that for a

continuous piecewise linear function f(x), the x values where the slope changes are

typically called breakpoints.

Lemma 3.3. Suppose φ ∈ NN(#input = 1; widthvec = [N]; #output = 1) can be

implemented by a ReLU network architecture

x
W0, b0 h σ h̃

W1, b1 φ(x).

That is, φ(x) is a function determined by W0, b0, W1, and b1. Given a sequence

of strictly increasing numbers x0, x1,· · · , xN , set W0 = (1, 1, · · · , 1) ∈ RN×1 and

b0 = (−x0,−x1, · · · ,−xN−1) ∈ RN . Then we have

(i) The breakpoints of φ are exactly x0, x1, · · · , xN on the interval [x0, xN] 2○;

(ii) For any sequence (yi)
N
i=0, we are able to choose W1 and b1 properly such that

φ(xi) = yi for i = 0, 1, · · · , N and φ is linear on each interval [xi, xi+1] for

i = 0, 1, · · · , N − 1.

Part (i) in Lemma 3.3 is straightforward. The existence in Part (ii) is equivalent

to the existence of a solution for a non-singular system of linear equations, which is

left for the reader.

With Lemma 3.3 in hand, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. For any φ ∈ NN (#input = 1; widthvec = [2m, 2n+1]; #output =

2○We only consider the interval [x0, xN] and hence x0 and xN are treated as breakpoints. φ(x)
might not have a real breakpoint in a small open neighborhood of x0 or xN .

30 Chapter 3. Basic results of ReLU networks

1), φ can be implemented by the following ReLU network architecture

x
W0, b0 h σ h̃

W1, b1 g σ g̃
W2, b2 φ(x). (3.3)

Clearly, φ(x) is a function determined by W0, b0,W1, b1,W2, b2. So our goal is to

choose W0, b0,W1, b1,W2, b2 properly in order to make Condition (i)-(iii) true.

Note that g = g(x) is a vector-valued function mapping x ∈ R to g(x) ∈ R2n+1

and determined byW0, b0,W1, b1. Hence each entry of g(x) itself is a function imple-

mented by a sub-network with one hidden layer. Denote g = (g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n),

then {g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n } ⊆ NN (#input = 1; widthvec = [2m]; #output = 1).

See Figure 3.3 for an illustration of g = (g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n) and g̃ = σ(g) =

(g̃0, g̃
+
1 , g̃

−
1 , · · · , g̃+

n , g̃
−
n) for the case m = n = 2. Our proof of Theorem 3.2 is mainly

x

x

h h̃ g

g0

g+1

g−1

g+2

g−2

g̃

g̃0

g̃+1

g̃−1

g̃+2

g̃−2

φ(x)

φ(x)

W0, b0 W1, b1 W2, b2ReLU (σ) ReLU (σ)

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 3.3: An illustration of g = (g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n) and g̃ = σ(g) =

(g̃0, g̃
+
1 , g̃

−
1 , · · · , g̃+

n , g̃
−
n) for the case m = n = 2.

based on the repeated applications of Lemma 3.3 to determineW0, b0,W1, b1,W2, b2

such that Conditions (i)-(iii) hold.

To simplify the notations, we define two index sets I1(m,n) and I2(m,n) for any

m,n ∈ N+ as

I1(m,n) := {j(n+ 1) : j = 1, 2, · · · ,m}

and

I2(m,n) := I1(m,n) ∪
(
I1(m,n)− 1

)
∪ {0},

3.2 Power of networks to fit points 31

where I1(m,n)− 1 =
{
k− 1 : k ∈ I1(m,n)

}
. For example, I1(4, 4) = {5, 10, 15, 20}

and I2(4, 4) = {0, 4, 5, 9, 10, 14, 15, 19, 20}.

Step 1: Determine W0 and b0.

Clearly, the index set I2(m,n) has 2m + 1 elements. Convert the point set
{
xi : i ∈ I2(m,n)

}
in ascending order to a vector ξ = (ξ0, ξ1, · · · , ξ2m) ∈ R2m+1.

Then setW0 = (1, 1, · · · , 1) ∈ R2m×1 and b0 =
(
−ξ0,−ξ1, · · · ,−ξ2m−1

)
∈ R2m. Note

that ξ2m = xm(n+1) is the right endpoint of the interval [x0, xm(n+1)]. By Lemma 3.3

(set N = 2m therein), we have

• All functions in {g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n } have the same set of breakpoints

{ξj : j = 0, 1, · · · , 2m} =
{
xi : i ∈ I2(m,n)

}
,

that is, each function in {g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n } is linear between any two

adjacent points of
{
xi : i ∈ I2(m,n)

}
, no matter what W1 and b1 are.

• We are able to identify W1 ∈ R(2n+1)×2m and b1 ∈ R2n+1 to freely determine

the values of each function in {g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n } at all points of

{
xi : i ∈

I2(m,n)
}

.

Step 2: Determine W1 and b1.

This is the key step of the proof. Our ultimate goal is to set up

g = (g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n)

by determining W1 and b1 such that, after a nonlinear activation function (ReLU),

there exists a linear combination in the last step of our network (specified byW2 and

b2 as shown in Equation (3.3)) that can generate a desired function φ(x) matching

the sample points {(xi, yi)}0≤i≤m(n+1). In the previous step, we have determined the

breakpoints of {g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n } by setting up W0 and b0; in this step, we will

32 Chapter 3. Basic results of ReLU networks

identify W1 ∈ R(2n+1)×2m and b1 ∈ R2n+1 to fully determine {g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n }.

This will be conducted in two sub-steps.

Step 2.1: Set up.

Let f0(x) be a continuous piecewise linear function defined on [0, 1] satisfying

• f0(xi) = yi for all i ∈ {0, 1, · · · ,m(n+ 1)}.

• f0 is linear between any two adjacent points of
{
xi : i ∈ {0, 1, · · · ,m(n+ 1)}

}
.

Note that
{
xi : i ∈ I2(m,n)

}
is the set of breakpoints of g0. By Lemma 3.3 and

the setting of Step 1, we are able to choose W1(1, :) and b1(1) properly such that

g0(xi) = f0(xi) for all i ∈ I2(m,n) and g0 is linear between any two adjacent points

of
{
xi : i ∈ I2(m,n)

}
.

We would like to inductively construct a sequence of fk for all k ∈ {1, 2, · · · , n+1}
satisfying

• fk(xi) = 0 for all i ∈ ∪k−1
`=0 (I1(m,n)− n− 1 + `) ∪ {m(n+ 1)}.

• fk is linear on each interval [xi−1, xi] for all i /∈ I1(m,n).

As we shall see later in Step 3, the construction of the final function φ is mainly

based on fn+1.

First, let us consider the case k = 1. Define f1 := f0− g̃0, where g̃0 = σ(g0) = g0

as shown in Equation (3.3), since g0 is positive by the construction of Lemma 3.3.

Note that

(I1(m,n)− n− 1) ∪ {m(n+ 1)} = {j(n+ 1) : j = 0, 1, · · · ,m} ⊆ I2(m,n).

Then we have

• f1(xi) = f0(xi)− g̃0(xi) = 0 for all i ∈ (I1(m,n)− n− 1) ∪ {m(n+ 1)}.

• f1 is linear on each interval [xi−1, xi] for all i.

3.2 Power of networks to fit points 33

Thus, the desired f1 has been constructed. See Figure 3.4 (a) for an illustration of

f0, f1, and g0.

Step 2.2: Mathematical induction.

The initialization of the mathematical induction, f1, has been constructed in

Step 2.1. Hence, it is enough to show how to proceed with an arbitrary k. See

Figure 3.4 (b)-(d) for the illustration of the first two induction steps.

Now assume fk is defined for some k ∈ {1, 2, · · · , n}, we need to construct fk+1

satisfying similar conditions as follows.

• fk+1(xi) = 0 for all i ∈ ∪k`=0(I1(m,n)− n− 1 + `) ∪ {m(n+ 1)}.

• fk+1 is linear on each interval [xi−1, xi] for all i /∈ I1(m,n).

Then we shall determine

W1(2k, :), b1(2k), W1(2k + 1, :), and b1(2k + 1)

to completely specify g+
k and g−k , which in turn can determine fk+1. This induction

process can be further divided into four sub-steps.

Step 2.2.1: Define index sets.

Define

Λ+
k (m,n) := {j : fk(xj(n+1)+k) ≥ 0, 0 ≤ j < m}

and

Λ−k (m,n) := {j : fk(xj(n+1)+k) < 0, 0 ≤ j < m}.

Clearly, Λ+
k (m,n) ∪ Λ−k (m,n) = {0, 1, · · · ,m − 1}. Recall that g+

k and g−k are two

continuous piecewise linear functions with the same set of breakpoints
{
xi : i ∈

I2(m,n)
}

. We will use Λ+
k (m,n) and Λ−k (m,n) to generate 2m+ 1 samples in

{
(x, y) ∈ R2 : x ∈

{
xi : i ∈ I2(m,n)

}}

34 Chapter 3. Basic results of ReLU networks

0.00 0.25 0.50 0.75 1.00

−1

0

1

f0

g0

f1

(a)

0.00 0.25 0.50 0.75 1.00

−1

0

1 Λ+
1

Λ−1 g+
1

g−1
f1

(b)

0.00 0.25 0.50 0.75 1.00

−1

0

1

Λ+
2

Λ−2 g+
2

g−2
f2

(c)

0.00 0.25 0.50 0.75 1.00

−1

0

1

Λ+
3

Λ−3

f3

(d)

Figure 3.4: Illustrations of the proof of Theorem 3.2, especially Step 2 of the

proof, when m = n = 4, with the “don’t-care” region ∪i∈I1(m,n)[xi−1, xi] in red.

g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n share the same set of breakpoints {xi : i ∈ I2(m,n)} marked

with black “diamonds”. Λ+
k and Λ−k are short of Λ+

k (m,n) and Λ−k (m,n), respec-

tively. (a) Given samples {(xi, yi) : i = 0, 1, · · · ,m(n + 1)} marked with black

“stars”, let f0(x) be the continuous piecewise linear function fitting these samples,

construct g0 such that f1 = f0− σ(g0) is closer to 0 than f0 in a larger subset of the

“important” region. (b) Construct g+
1 and g−1 such that f2 = f1 − σ(g+

1) + σ(g−1) is

closer to 0 than f1 in a larger subset of the “important” region. (c) Construct g+
2

and g−2 such that f3 = f2− σ(g+
2) + σ(g−2) is closer to 0 than f2 in a larger subset of

the “important” region. (d) The visualization of f3, which is 0 in the “important”

areas that have been processed and may remain large near the “don’t-care” region.

fk will decay quickly to 0 outside the “don’t-care” region as k increases.

3.2 Power of networks to fit points 35

to fully determine g+
k and g−k by identifying W1(2k, :), b1(2k), W1(2k + 1, :), and

b1(2k + 1) in the following steps.

Step 2.2.2: Determine W2(2k, :) and b2(2k).

By Lemma 3.3 and the setting of Step 1, we can choose W2(2k, :) and b2(2k) to

fully determine g+
k such that each g+

k (xi) matches a specific value for all i ∈ I2(m,n).

Note that I2(m,n) is the union of three sets: {m(n+ 1)},

{
j(n+ 1) : j ∈ Λ+

k (m,n) ∪ Λ−k (m,n)
}
,

and
{
j(n+ 1) + n : j ∈ Λ+

k (m,n) ∪ Λ−k (m,n)
}
.

The values of
{
g+
k (xi) : i ∈ I2(m,n)

}
are specified as as follows.

• If j ∈ Λ+
k (m,n), specify the values of g+

k (xj(n+1)) and g+
k (xj(n+1)+n) such that

g+
k (xj(n+1)+k−1) = 0 and g+

k (xj(n+1)+k) = fk(xj(n+1)+k) ≥ 0.

The existence of these values fulfilling the requirements above comes from the

fact that g+
k is linear on the interval [xj(n+1), xj(n+1)+n] and g+

k only depends

on the values of g+
k (xj(n+1)+k−1) and g+

k (xj(n+1)+k) on [xj(n+1), xj(n+1)+n]. See

Figure 3.5 for an illustration. Now it is easy to verify that g̃+
k = σ(g+

k) satisfies

∗ g̃+
k (xj(n+1)+`) = 0 for ` = 0, 1, · · · , k − 1 and

g̃+
k (xj(n+1)+k) = fk(xj(n+1)+k) ≥ 0.

∗ g̃+
k is linear on each interval [xj(n+1)+`, xj(n+1)+`+1] for all ` ∈ {0, 1, · · · , n−

1}.

• If j ∈ Λ−k (m,n), let g+
k (xj(n+1)) = g+

k (xj(n+1)+n) = 0. Then g̃+
k = σ(g+

k) = 0

on the interval [xj(n+1), xj(n+1)+n].

36 Chapter 3. Basic results of ReLU networks

xj(n+1) xj(n+1)+k−1 xj(n+1)+k xj(n+1)+n

0 g+
k

g̃+
k = σ(g+

k)

Figure 3.5: An illustration of g+
k and g̃+

k = σ(g+
k). To design fk+1 with

fk+1(xj(n+1)+k) = 0, we shall specify the y-coordinates of two blue “stars” as

fk(xj(n+1)+k−1) = 0 and fk(xj(n+1)+k) ≥ 0, respectively. Four “stars” should be

kept in a straight line. Thus, two blue “stars” determine two black “stars”, which in

turn determine g+
k on [xj(n+1), xj(n+1)+n] since the x-coordinates of two black “stars”

are two adjacent breakpoints of g+
k . By doing so, we have fk − g̃+

k = 0 at xj(n+1)+`

for ` = 0, 1, · · · , k, which is a big step forward in constructing fk+1.

• Finally, specify the value of g+
k at xm(n+1) as 0.

Step 2.2.3: Determine W2(2k + 1, :) and b2(2k + 1).

Similarly, we choose W2(2k + 1, :) and b2(2k + 1) such that g−k matches specific

values as follows.

• If j ∈ Λ−k (m,n), specify the values of g−k (xj(n+1)) and g−k (xj(n+1)+n) such that

g−k (xj(n+1)+k−1) = 0 and g−k (xj(n+1)+k) = −fk(xj(n+1)+k) > 0.

Then g̃−k = σ(g−k) satisfies

∗ g̃−k (xj(n+1)+`) = 0 for ` = 0, 1, · · · , k − 1 and

g̃−k (xj(n+1)+k) = −fk(xj(n+1)+k) > 0.

∗ g̃−k is linear on each interval [xj(n+1)+`, xj(n+1)+`+1] for all ` ∈ {0, 1, · · · , n−
1}.

• If j ∈ Λ+
k (m,n), let g−k (xj(n+1)) = g−k (xj(n+)+n) = 0. Then g̃−k = σ(g−k) = 0 on

the interval [xj(n+1), xj(n+1)+n].

3.2 Power of networks to fit points 37

• Finally, specify the value of g−k at xm(n+1) as 0.

Step 2.2.4: Construct fk+1 from g+
k and g−k .

For the sake of clarity, the properties of g+
k and g−k constructed in Step 2.2.3 are

summarized below.

• g̃+
k (xi) = g̃−k (xi) = 0 for all i ∈ ∪k−1

`=0 (I1(m,n)− n− 1 + `) ∪ {m(n+ 1)}.

• If j ∈ Λ+
k (m,n), g̃+

k (xj(n+1)+k) = fk(xj(n+1)+k) ≥ 0 and g̃−k (xj(n+1)+k) = 0.

• If j ∈ Λ−k (m,n), g̃−k (xj(n+1)+k) = −fk(xj(n+1)+k) > 0 and g̃+
k (xj(n+1)+k) = 0.

• g̃+
k and g̃−k are linear on each interval [xj(n+1)+`, xj(n+1)+`+1] for each ` ∈
{0, 1, · · · , n−1} and each j ∈ Λ+

k (m,n)∪Λ−k (m,n) = {0, 1, · · · ,m−1}. In other

words, g̃+
k and g̃−k are linear on each interval [xi−1, xi] for all i /∈ {j(n + 1) :

j = 1, 2, · · · ,m} = I1(m,n).

See Figure 3.4 (a)-(c) for the illustration of g0, g+
1 , g−1 , g+

2 , and g−2 , and to verify

their properties as listed above. By the induction hypothesis, we have

• fk(xi) = 0 for all i ∈ ∪k−1
`=0 (I1(m,n)− n− 1 + `) ∪ {m(n+ 1)}.

• fk is linear on each interval [xi−1, xi] for all i /∈ I1(m,n).

Thus, fk(xi)− g̃+
k (xi) + g̃−k (xi) = 0 for all i in

(
∪k−1
`=0 (I1(m,n)− n− 1 + `) ∪ {m(n+ 1)}

)⋃{
j(n+ 1) + k : j ∈ Λ+

k (m,n) ∪ Λ−k (m,n)
}

= ∪k`=0(I1(m,n)− n− 1 + `) ∪ {m(n+ 1)},

where the equality comes from the fact Λ+
k (m,n) ∪ Λ−k (m,n) = {0, 1, · · · ,m− 1}.

Therefore, by defining

fk+1 := fk − g̃+
k + g̃−k ,

we have

• fk+1(xi) = 0 for all i ∈ ∪k`=0(I1(m,n)− n− 1 + `) ∪ {m(n+ 1)}.

38 Chapter 3. Basic results of ReLU networks

• fk+1 is linear on each interval [xi−1, xi] for all i /∈ I1(m,n).

See Figure 3.4 (b)-(d) for the illustration of f1, f2, and f3, and to verify their

properties as listed just above. This finishes the mathematical induction process.

As we can imagine based on Figure 3.4, when k increases, the support of fk shrinks

to the “don’t-care” region.

Step 3: Determine W2 and b2.

With the special vector-valued function g = (g0, g
+
1 , g

−
1 , · · · , g+

n , g
−
n) constructed

in Step 2, we are able to specify W2 and b2 to generate a desired φ(x) matching the

samples {(xi, yi)}0≤i≤m(n+1).

In fact, we can simply set W2 = (1, 1,−1, 1,−1, · · · , 1,−1) ∈ R1×(2n+1) and

b2 = 0, which finishes the implementation of φ = g̃0 +
∑n

`=1 g̃
+
` −

∑n
`=1 g̃

−
` . The

rest of the proof is to verify the properties of φ. By the principle of mathematical

induction, we have

• fn+1 = f1 +
∑n

`=1(g̃−` − g̃+
`) = f0 − g̃0 −

∑n
`=1 g̃

+
` +

∑n
`=1 g̃

−
` = f0 − φ.

• fn+1(xi) = 0 for all i in

∪n`=0(I1(m,n)− n− 1 + `) ∪ {m(n+ 1)} = {0, 1, · · · ,m(n+ 1)}.

• fn+1 is linear on each interval [xi−1, xi] for all i /∈ I1(m,n).

Hence, φ = g̃0 +
∑n

`=1 g̃
+
` −

∑n
`=1 g̃

−
` = f0 − fn+1. Then

φ(xi) = f0(xi)− fn+1(xi) = yi, for all i ∈ {0, 1, · · · ,m(n+ 1)},

which verifies Condition (i), and φ = f0 − fn+1 is linear on each interval [xi−1, xi]

for i /∈ I1(m,n), which verifies Condition (ii). It remains to check that φ satisfies

Condition (iii).

3.2 Power of networks to fit points 39

By the definition of f1 = f0 − g̃0, we have

− max
i∈{0,1,···,m(n+1)}

yi ≤ −g̃0(x) ≤ f0(x)− g̃0(x) ≤ f0(x) ≤ max
i∈{0,1,···,m(n+1)}

yi,

for any x ∈ [x0, xm(n+1)], implying

sup
x∈[x0, xm(n+1)]

|f1(x)| ≤ max
i∈{0,1,···,m(n+1)}

yi.

By the induction process in Step 2, for any k ∈ {1, 2, · · · , n}, it holds that

sup
x∈[x0, xm(n+1)]

|g̃+
k (x)| ≤ Ck(m,n) sup

x∈[x0, xm(n+1)]

|fk(x)|

and

sup
x∈[x0, xm(n+1)]

|g̃−k (x)| ≤ Ck(m,n) sup
x∈[x0, xm(n+1)]

|fk(x)|,

where

Ck(m,n) := max

{
xj(n+1)+n − xj(n+1)+k−1

xj(n+1)+k − xj(n+1)+k−1

: j = 0, 1, · · · ,m− 1

}
.

Since either g̃+
k (x) or g̃−k (x) is equal to 0 for any x ∈ [x0, xm(n+1)], we have

sup
x∈[x0, xm(n+1)]

|g̃+
k (x)− g̃−k (x)| ≤ Ck(m,n) sup

x∈[x0, xm(n+1)]

|fk(x)|.

It follows from fk+1 = fk − g̃+
k + g̃−k that, for any k ∈ {1, 2, · · · , n},

sup
x∈[x0, xm(n+1)]

|fk+1(x)| ≤ sup
x∈[x0, xm(n+1)]

|g̃+
k (x)− g̃−k (x)|+ sup

x∈[x0, xm(n+1)]

|fk(x)|

≤
(
Ck(m,n) + 1

)
sup

x∈[x0, xm(n+1)]

|fk(x)|.

40 Chapter 3. Basic results of ReLU networks

Hence,

sup
x∈[x0, xm(n+1)]

|fn+1(x)| ≤
(n∏

k=1

(
Ck(m,n) + 1

))
sup

x∈[x0, xm(n+1)]

|f1(x)|

≤
(n∏

k=1

(
Ck(m,n) + 1

))
max

i∈{0,1,···,m(n+1)}
yi.

Therefore,

sup
x∈[x0, xm(n+1)]

|φ(x)| ≤ sup
x∈[x0, xm(n+1)]

|f0(x)|+ sup
x∈[x0, xm(n+1)]

|fn+1(x)|

≤
(

1 +
n∏

k=1

(
Ck(m,n) + 1

))
max

i∈{0,1,···,m(n+1)}
yi

:= C max
i∈{0,1,···,m(n+1)}

yi,

where

C = 1 +
n∏

k=1

(
1 + max

{
xj(n+1)+n − xj(n+1)+k−1

xj(n+1)+k − xj(n+1)+k−1

: j = 0, 1, · · · ,m− 1

})
.

So we finish the proof.

3.2.2 Depth power of networks to fit points

Next, let us discuss the depth power of ReLU networks to fit points. Roughly

speaking, we would like to minimize the depth by fixing the width while constructing

ReLU networks to fit a given number of points. In fact, we prove in Theorem 3.4 that

a function φ ∈ NN (#input = 1; width ≤ 8N + 6; depth ≤ 5L + 7; #output = 1)

can fit N2L2 points in R2 with several conditions.

Theorem 3.4. For any N,L ∈ N+ and any θi ∈ {0, 1} for i = 0, 1, · · · , N2L2 − 1,

there exists a function φ implemented by a ReLU network with width 8N + 6 and

depth 5L+ 7 such that

φ(i) = θi, for i = 0, 1, · · · , N2L2 − 1.

3.2 Power of networks to fit points 41

We would like to remark that the key idea in the proof of Theorem 3.4 is the

“bit extraction” technique in [5], which allows us to store L bits in a binary number

bin0.θ1θ2 · · · θL and extract each bit θi. The extraction operator can be efficiently

carried out via a deep ReLU network architecture, demonstrating the power of depth.

Next, we introduce Theorem 3.5, a variant of Theorem 3.4, which is easier to

prove and can deduce 3.4 simply. Theorem 3.4 and 3.5 characterize the depth power

of ReLU networks. Both of them will be used in the later chapters.

Theorem 3.5. For any N,L ∈ N+, any θm,` ∈ {0, 1} for m = 0, 1, · · · ,M − 1 and

` = 0, 1, · · · , L − 1, where M = N2L, there exists a function φ implemented by a

ReLU network with width 4N + 3 and depth 3L+ 3 such that

φ(m, `) =
∑̀

j=0

θm,j, for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1.

We denote M = N2L in Theorem 3.5 because it is roughly the number of pa-

rameters. The choice of outputting
∑`

j=0 θm,j rather than θm,` not only guarantees

the proof of Theorem 3.4 but also simplifies the construction of ReLU networks to

approximate continuous functions in C([0, 1]d) in Section 4.2.

Theorem 3.5 will be proven later in this section. Let us first prove Theorem 3.4

based on Theorem 3.5.

Proof of Theorem 3.4. The case L = 1 is clear. We assume L ≥ 2 below.

Denote M = N2L, then N2L2 = ML. For each i ∈ {0, 1, · · · , N2L2 − 1},
there exists a unique representation i = mL + ` for m = 0, 1, · · · ,M − 1 and ` =

0, 1, · · · , L− 1. Thus, we can define, for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1,

am,` := θi, where i = mL+ `.

Then, for each m ∈ {0, 1, · · · ,M − 1}, we set bm,0 = 0 and bm,` = am,`−1 for

` = 1, · · · , L− 1.

42 Chapter 3. Basic results of ReLU networks

By Theorem 3.5, there exist φ1, φ2 ∈ NN (width ≤ 4N + 3; depth ≤ 3L + 3)

such that

φ1(m, `) =
∑̀

j=0

am,j and φ2(m, `) =
∑̀

j=0

bm,j,

for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1.

We consider the sample set

{(mL,m) : m = 0, 1, · · · ,M} ∪
{(

(m+ 1)L− 1,m
)

: m = 0, 1, · · · ,M − 1
}
.

Its size is 2M + 1 = N ·
(
(2NL − 1) + 1

)
+ 1. By Theorem 3.2 (set m = N and

n = 2NL− 1 therein), there exists

ψ ∈ NN (widthvec = [2N, 2(2NL− 1) + 1])

= NN (widthvec = [2N, 4NL− 1])

such that

• ψ(ML) = M and ψ(mL) = ψ
(
(m+ 1)L− 1

)
= m for m = 0, 1, · · · ,M − 1.

• ψ is linear on each interval [mL, (m+ 1)L− 1] for m = 0, 1, · · · ,M − 1.

It follows that

ψ(x) = m, if x ∈ [mL, (m+ 1)L− 1], for m = 0, 1, · · · ,M − 1,

implying

ψ(mL+ `) = m for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1.

For i = 0, 1, · · · , N2L2 − 1, by representing i = mL + ` for m = 0, 1, · · · ,M − 1

3.2 Power of networks to fit points 43

and ` = 0, 1, · · · , L− 1, we have ψ(i) = ψ(mL+ `) = m and i−Lψ(i) = `, deducing

φ1

(
ψ(i), i− Lψ(i)

)
− φ2

(
ψ(i), i− Lψ(i)

)

= φ1(m, `)− φ2(m, `) =
∑̀

j=0

am,j −
∑̀

j=0

bm,j

=
∑̀

j=0

am,j −
∑̀

j=1

am,j−1 − b0 = am,` = θi.

(3.4)

Therefore, the desired function φ can be implemented by the network architecture

described in Figure 3.6.

i

ψ(i)

i

ψ(i)

i− Lψ(i)

φ1
(
ψ(i), i− Lψ(i)

)

φ2
(
ψ(i), i− Lψ(i)

) θi =: φ(i)
ψ φ1

φ2

Figure 3.6: An illustration of the network architecture implementing the desired

function φ based on Equation (3.4) for i = 0, 1, · · · , N2L2 − 1. 3○

Note that

φ1, φ2 ∈ NN (width ≤ 4N + 3; depth ≤ 3L+ 3).

By Theorem 3.1,

ψ ∈ NN (widthvec = [2N, 4NL− 1])

⊆ NN (width ≤ 4N + 2; depth ≤ 2L+ 1).

Hence, the network architecture shown in Figure 3.6 is with width

max{4L+ 2 + 1, 2(4L+ 3)} = 8N + 6

3○In this figure, “ψ”, “φ1”, and “φ2” and cyan arrows (“−→”) adjacent to them represent the
ReLU networks implementing themselves. We use similar notations in the rest of this dissertation.
For example, “ φ ” means the network architecture that implements a function φ : R2 → R.

44 Chapter 3. Basic results of ReLU networks

and depth

(2L+ 1) + 2 + (3L+ 3) + 1 = 5L+ 7,

implying φ ∈ NN (width ≤ 8N + 6; depth ≤ 5L+ 7). So we finish the proof.

It remains to prove Theorem 3.5, which relies on the “bit extraction” technique

introduced in [5]. We modify this technique to extract the sum of many bits rather

than one bit and this modification can be summarized in Lemma 3.6 below.

Lemma 3.6 (Bit extraction). For any L ∈ N+, there exists a function φ in

NN (#input = 2; width ≤ 7; depth ≤ 2L+ 1; #output = 1)

such that, for any θ1, θ2, · · · , θL ∈ {0, 1}, we have

φ(bin0.θ1θ2 · · · θL, `) =
∑̀

j=1

θj, for ` = 1, 2, · · · , L.

Proof. Given any θ1, θ2, · · · , θL ∈ {0, 1}, define

ξj := bin0.θjθj+1 · · · θL, for j = 1, 2, · · · , L

and

T (x) :=

{
1, x ≥ 0,

0, x < 0.

Then we have

θj = T (ξj − 1/2), for j = 1, 2, · · · , L,

and

ξj+1 = 2ξj − θj, for j = 1, 2, · · · , L− 1.

We would like to point out that, by above two iteration equations, we can iteratively

get ξ1, θ1, ξ2, θ2, · · · , ξL, θL when ξ1 = bin0.θ1θ2 · · · θL is given. Based on this idea,

the rest proof can be divided into three steps.

3.2 Power of networks to fit points 45

Step 1: Simplify two iteration equations.

Note that T (x) = σ(x/δ + 1) − σ(x/δ) for any x /∈ (−δ, 0). By setting δ =

1/2−∑L
j=2 2−j = 2−L, we have ξj − 1/2 /∈ (−δ, 0) for all j, implying

θj = T (ξj − 1/2) = σ
(
(ξj − 1/2)/δ + 1

)
− σ

(
(ξj − 1/2)/δ

)

= σ
(
L(ξj) + 1

)
− σ

(
L(ξj)

)
,

(3.5)

for j = 1, 2, · · · , L, where L is an affine linear map given by L(x) = (x− 1/2)/δ. It

follows that, for j = 1, 2, · · · , L− 1,

ξj+1 = 2ξj − θj = 2ξj − σ
(
L(ξj) + 1

)
+ σ
(
L(ξj)

)
. (3.6)

Step 2: Design a ReLU network to output
∑`

j=1 θj.

It is easy to design a ReLU network to output θ1, θ2, · · · , θL by Equation (3.5)

and (3.6) when using ξ1 = bin0.θ1θ2 · · · θL as the input. However, it is highly non-

trivial to construct a ReLU network to output
∑`

j=1 θj with another input `, since

many operations like multiplication and comparison are not allowed in designing

ReLU networks.

Now let us establish a formula to represent
∑`

j=1 θj in a form of a ReLU network.

Recall two facts: 1) x1x2 = σ(x1 + x2 − 1) for any x1, x2 ∈ {0, 1}; 2) T (n) =

σ(n+ 1)− σ(n) for any integer n. Thus, for ` = 1, 2, · · · , L, we have

∑̀

j=1

θj =
L∑

j=1

θjT (`− j) =
L∑

j=1

σ
(
θj + T (`− j)− 1

)

=
L∑

j=1

σ
(
θj + σ(`− j + 1)− σ(`− j)− 1

)
.

To simplify the notations, we define

z`,j := σ
(
θj + σ(`− j + 1)− σ(`− j)− 1

)
, (3.7)

46 Chapter 3. Basic results of ReLU networks

for ` = 1, 2, · · · , L and j = 1, 2, · · · , L. Then,

∑̀

j=1

θj =
L∑

j=1

z`,j, for ` = 1, 2, · · · , L. (3.8)

With Equation (3.5), (3.6), (3.7), and (3.8) in hand, it is easy to construct

a function φ implemented by a ReLU network with the desired width and depth

outputting
∑`

j=1 θj =
∑L

j=1 z`,j for the given input (ξ1, `) = (bin0.θ1θ2 · · · θL, `) for

` ∈ {1, 2, · · · , L} and θ1, θ2, · · · , θL ∈ {0, 1}. The detailed construction is shown in

Figure 3.7. It is easy to verify by Figure 3.7 that

φ ∈ NN (#input = 2; width ≤ 7; depth ≤ 2L+ 1; #output = 1).

So we finish the proof.

With Lemma 3.6 in hand, we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Define

ym := bin0.θm,0θm,1 · · · θm,L−1, for m = 0, 1, · · · ,M − 1.

Consider the sample set {(m, ym) : m = 0, 1, · · · ,M}, whose size is M + 1 =

N
(
(NL − 1) + 1

)
+ 1. By Theorem 3.2 (set m = N and n = NL − 1 therein),

there exists

φ1 ∈ NN (widthvec = [2N, 2(NL− 1) + 1])

= NN (widthvec = [2N, 2NL− 1])

such that

φ1(m) = ym, for m = 0, 1, · · · ,M − 1.

By Lemma 3.6, there exists

φ2 ∈ NN (#input = 2; width ≤ 7; depth ≤ 2L+ 1; #output = 1)

3.2 Power of networks to fit points 47

ξ1

`

ξ1

σ
(
L(ξ1) + 1

)

σ
(
L(ξ1)

)

σ(`− 1)

σ(1− `)

ξ2

θ1

σ(`− 1 + 1)

σ(`− 1)

σ(1− `)

ξ2

σ
(
L(ξ2) + 1

)

σ
(
L(ξ2)

)

z`,1

σ(`− 2)

σ(2− `)

ξ3

θ2

∑1
j=1 z`,j

σ(`− 2 + 1)

σ(`− 2)

σ(2− `)

ξ3

σ
(
L(ξ3) + 1

)

σ
(
L(ξ3)

)

∑1
j=1 z`,j

z`,2

σ(`− 3)

σ(3− `)

· · ·

Input 1 2 3 4 5

ξL

θL−1

∑L−2
j=1 z`,j

σ(`− (L− 1) + 1)

σ(`− (L− 1))

σ((L− 1)− `)

ξL

σ
(
L(ξL) + 1

)

σ
(
L(ξL)

)

∑L−2
j=1 z`,j

z`,L−1

σ(`− L)

σ(L− `)

θL

∑L−1
j=1 z`,j

σ(`− L+ 1)

σ(`− L)

∑L−1
j=1 z`,j

z`,L

∑L
j=1 z`,j =

∑`
j=1 θj =: φ(ξ1, `)· · ·

2L− 2 2L− 1 2L 2L + 1 Output

Figure 3.7: An illustration of the target ReLU network implementing φ to out-

put
∑L

j=1 zj,` =
∑`

j=1 θj = φ(ξ1, `) for the given input (ξ1, `) = (bin0.θ1θ2 · · · θL, `)
for ` ∈ {1, 2, · · · , L} and θ1, θ2, · · · , θL ∈ {0, 1}. The construction is mainly based

on Equation (3.5), (3.6), (3.7), and (3.8). The red numbers above the architec-

ture indicate the order of hidden layers and every two adjacent layers builds a

whole iteration step. We output both σ(` − j) and σ(j − `) in a hidden layer

because we can get the value ` − j in the next hidden layer because of the fact

x = σ(x) − σ(−x) for any x ∈ R. We omit ReLU (σ) for a neuron if its output

is non-negative without ReLU. Note that all parameters of this network are de-

termined by Equation (3.5), (3.6), (3.7), and (3.8), which are valid no matter what

θ1, θ2, · · · , θL ∈ {0, 1} are. Thus, the desired function φ implemented by this network

is independent of θ1, θ2, · · · , θL ∈ {0, 1}.

48 Chapter 3. Basic results of ReLU networks

such that, for any ξ1, ξ2, · · · , ξL ∈ {0, 1}, we have

φ2(bin0.ξ1ξ2 · · · ξL, `) =
∑̀

j=1

ξj, for ` = 1, 2, · · · , L.

It follows that, for any ξ0, ξ1, · · · , ξL−1 ∈ {0, 1}, we have

φ2(bin0.ξ0ξ1 · · · ξL−1, `+ 1) =
∑̀

j=0

ξj, for ` = 0, 1, · · · , L− 1.

Thus, for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1, we have

φ2

(
φ1(m), `+ 1

)
= φ2(ym, `+ 1) = φ2(0.θm,0θm,1 · · · θm,L−1, `+ 1) =

∑̀

j=0

θm,j.

m

`

φ1(m)

`+ 1

φ2
(
φ1(m), `+ 1

)
=
∑`

j=0 θm,j =: φ(m, `)

φ1
φ2

Figure 3.8: An illustration of the network architecture implementing the desired

function φ based on φ1 and φ2 for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1.

Hence, the desired function φ can be implemented by the network shown in

Figure 3.8. By Theorem 3.1, φ1 ∈ NN (widthvec = [2N, 2NL− 1]) ⊆ NN (width ≤
4N + 2; depth ≤ L + 1). Recall that φ2 ∈ NN (width ≤ 7; depth ≤ 2L + 1).

Therefore, the network in Figure 3.8 is with width max{(4N + 2) + 1, 7} = 4N + 3

and depth (L+ 1) + 1 + (2L+ 1) = 3L+ 3. So we finish the proof.

3.3 Approximation in the trifling region

As mentioned earlier in Section 2.3, we need to modify a ReLU network to let it

approximate the target function f uniformly well on the whole region [0, 1]d, if this

ReLU network approximates f well outside the trifling region Ω([0, 1]d, K, δ) defined

in Equation (2.1).

3.3 Approximation in the trifling region 49

Theorem 3.7. Given any ε > 0, N,L,K ∈ N+, and δ ∈ (0, 1
3K

], assume f is a

continuous function in C([0, 1]d) and φ̃ is a function implemented by a ReLU network

with width N and depth L. If

|φ̃(x)− f(x)| ≤ ε, for any x ∈ [0, 1]d\Ω([0, 1]d, K, δ),

then there exists a new ReLU network with width 3d(N + 4) and depth L + 2d

implementing a new function φ such that

|φ(x)− f(x)| ≤ ε+ d · ωf (δ), for any x ∈ [0, 1]d.

Intuitively speaking, Theorem 3.7 shows that: If a function φ̃, implemented by

a ReLU network, approximates f well except for the trifling region, then we can

modify φ̃ to get φ, implemented by a new ReLU network with similar width and

depth to the old one, to approximate f uniformly well on the whole domain. For

example, if φ̃ approximates a one-dimensional continuous function f well except

for an interval in R with a small length δ, then mid
(
φ̃(x − δ), φ̃(x), φ̃(x + δ)

)
can

approximate f well on the whole domain, where mid(·, ·, ·) is a function returning

the middle value of three inputs and can be implemented via a ReLU network as

shown in Lemma 3.8.

Lemma 3.8. The middle value function mid(x1, x2, x3) can be implemented by a

ReLU network with width 14 and depth 2.

Proof. Recall the fact

x = σ(x)− σ(−x) and |x| = σ(x) + σ(−x), for any x ∈ R. (3.9)

Therefore,

max(x, y) =
x+ y + |x− y|

2

= 1
2
σ(x+ y)− 1

2
σ(−x− y) + 1

2
σ(x− y) + 1

2
σ(−x+ y),

(3.10)

50 Chapter 3. Basic results of ReLU networks

for any x, y ∈ R. Thus, max(x1, x2, x3) can be implemented by the network shown

in Figure 3.9.

x1

x2

x3

σ(x1 + x2)

σ(−x1 − x2)

σ(x1 − x2)

σ(−x1 + x2)

σ(x3)

σ(−x3)

σ
(
max(x1, x2) + x3

)

σ
(
−max(x1, x2)− x3

)

σ
(
max(x1, x2)− x3

)

σ
(
−max(x1, x2) + x3

)

max
(
max(x1, x2), x3

)
= max(x1, x2, x3)

Figure 3.9: An illustration of the network architecture implementing max(x1, x2, x3)

based on Equation (3.9) and (3.10).

Clearly,

max(x1, x2, x3) ∈ NN (#input = 3; widthvec = [6, 4]).

Similarly, we have

min(x1, x2, x3) ∈ NN (#input = 3; widthvec = [6, 4]).

It is easy to check that

mid(x1, x2, x3)

= x1 + x2 + x3 −max(x1, x2, x3)−min(x1, x2, x3)

= σ(x1 + x2 + x3)− σ(−x1 − x2 − x3)−max(x1, x2, x3)−min(x1, x2, x3).

Hence,

mid(x1, x2, x3) ∈ NN (#input = 3; widthvec = [14, 10]).

That means mid(x1, x2, x3) can be implemented by a ReLU network with width 14

and depth 2. So we finish the proof.

3.3 Approximation in the trifling region 51

The next lemma shows a simple but useful property of the mid(x1, x2, x3) func-

tion that helps to exclude poor approximation in the trifling region.

Lemma 3.9. For any ε > 0, if at least two of {x1, x2, x3} are in B(y, ε), then

mid(x1, x2, x3) ∈ B(y, ε).

Proof. Without loss of generality, we may assume x1, x2 ∈ B(y, ε) and x1 ≤ x2.

Then the proof can be divided into three cases.

• If x3 < x1, then mid(x1, x2, x3) = x1 ∈ B(y, ε).

• If x1 ≤ x3 ≤ x2, then mid(x1, x2, x3) = x3 ∈ B(y, ε) since

y − ε ≤ x1 ≤ x3 ≤ x2 ≤ y + ε.

• If x2 < x3, then mid(x1, x2, x3) = x2 ∈ B(y, ε).

So we finish the proof.

Next, given a function g approximating f well on [0,1] except for the trifling

region, Lemma 3.10 below shows how to use the mid(x1, x2, x3) function to construct

a new function φ uniformly approximating f well on [0, 1], leveraging the useful

property of mid(x1, x2, x3) in Lemma 3.9.

Lemma 3.10. Given any ε > 0, K ∈ N+, and δ ∈ (0, 1
3K

], assume f is a continuous

function in C([0, 1]) and g : R→ R is a general function satisfying

|g(x)− f(x)| ≤ ε, i.e., f(x) ∈ B
(
g(x), ε

)
, (3.11)

for any x ∈ [0, 1]\Ω([0, 1], K, δ). Then

|φ(x)− f(x)| ≤ ε+ ωf (δ), for any x ∈ [0, 1],

where

φ(x) := mid
(
g(x− δ), g(x), g(x+ δ)

)
, for any x ∈ R.

52 Chapter 3. Basic results of ReLU networks

Proof. Divide [0, 1] into K small intervals denoted by Qk = [k
K
, k+1
K

] for k =

0, 1, · · · , K − 1. For each k, we further partition Qk into four small closed inter-

vals as shown in Figure 3.10. To be exact,

Qk = Qk,1 ∪Qk,2 ∪Qk,3 ∪Qk,4,

where Qk,1 = [k
K
, k
K

+ δ], Qk,2 = [k
K

+ δ, k+1
K
− 2δ], Qk,3 = [k+1

K
− 2δ, k+1

K
− δ], and

Qk,4 = [k+1
K
− δ, k+1

K
].

δ

Qk,1

1/K − 3δ

Qk,2

δ

Qk,3

δ

Qk,4

k
K

k
K + δ k+1

K − 2δ k+1
K − δ k+1

K

Figure 3.10: An illustration of Qk,i for i = 1, 2, 3, 4.

Recall that Ω([0, 1], K, δ) is the trifling region defined in Equation (2.1). Clearly,

QK−1,4 ⊆ [0, 1]\Ω([0, 1], K, δ) and Qk,i ⊆ [0, 1]\Ω([0, 1], K, δ) for k = 0, 1, · · · , K − 1

and i = 1, 2, 3.

To estimate the difference between φ(x) and f(x), we consider the following four

cases of x in [0, 1] for any k ∈ {0, 1, · · · , K − 1}.

Case 1: x ∈ Qk,1.

If x ∈ Qk,1, then x ∈ [0, 1]\Ω([0, 1], K, δ) and

x+ δ ∈ Qk,2 ∪Qk,3 ⊆ [0, 1]\Ω([0, 1], K, δ).

It follows from Equation (3.11) that

g(x) ∈ B
(
f(x), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)

and

g(x+ δ) ∈ B
(
f(x+ δ), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)
.

3.3 Approximation in the trifling region 53

By Lemma 3.9, we get

mid
(
g(x− δ), g(x), g(x+ δ)

)
∈ B

(
f(x), ε+ ωf (δ)

)
.

Case 2: x ∈ Qk,2.

If x ∈ Qk,2, then x − δ, x, x + δ ∈ [0, 1]\Ω([0, 1], K, δ). It follows from Equa-

tion (3.11) that

g(x− δ) ∈ B
(
f(x− δ), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)
,

g(x) ∈ B
(
f(x), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)
,

and

g(x+ δ) ∈ B
(
f(x+ δ), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)
.

Then, by Lemma 3.9, we have

mid
(
g(x− δ), g(x), g(x+ δ)

)
∈ B

(
f(x), ε+ ωf (δ)

)
.

Case 3: x ∈ Qk,3.

If x ∈ Qk,3, then x ∈ [0, 1]\Ω([0, 1], K, δ) and

x− δ ∈ Qk,1 ∪Qk,2 ⊆ [0, 1]\Ω([0, 1], K, δ).

It follows from Equation (3.11) that

g(x) ∈ B
(
f(x), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)

and

g(x− δ) ∈ B
(
f(x− δ), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)
.

54 Chapter 3. Basic results of ReLU networks

By Lemma 3.9, we get

mid
(
g(x− δ), g(x), g(x+ δ)

)
∈ B

(
f(x), ε+ ωf (δ)

)
.

Case 4: x ∈ Qk,4.

If x ∈ Qk,4, we can divide this case into two sub-cases.

• If k ∈ {0, 1, · · · , K − 2}, then x − δ ∈ Qk,3 ∈ [0, 1]\Ω([0, 1], K, δ) and x + δ ∈
Qk+1,1 ⊆ [0, 1]\Ω([0, 1], K, δ). It follows from Equation (3.11) that

g(x− δ) ∈ B
(
f(x− δ), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)

and

g(x+ δ) ∈ B
(
f(x+ δ), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)
.

By Lemma 3.9, we get

mid
(
g(x− δ), g(x), g(x+ δ)

)
∈ B

(
f(x), ε+ ωf (δ)

)
.

• If k = K − 1, then x ∈ Qk,4 = QK−1,4 ⊆ [0, 1]\Ω([0, 1], K, δ) and x − δ ∈
Qk,3 ⊆ [0, 1]\Ω([0, 1], K, δ). It follows from Equation (3.11) that

g(x) ∈ B
(
f(x), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)

and

g(x− δ) ∈ B
(
f(x− δ), ε

)
⊆ B

(
f(x), ε+ ωf (δ)

)
.

By Lemma 3.9, we get

mid
(
g(x− δ), g(x), g(x+ δ)

)
∈ B

(
f(x), ε+ ωf (δ)

)
.

3.3 Approximation in the trifling region 55

Since [0, 1] = ∪K−1
k=0

(
∪4
i=1 Qk,i

)
, we have

mid
(
g(x− δ), g(x), g(x+ δ)

)
∈ B

(
f(x), ε+ ωf (δ)

)
, for any x ∈ [0, 1].

Recall that φ(x) = mid
(
g(x− δ), g(x), g(x+ δ)

)
. Then we have

|φ(x)− f(x)| ≤ ε+ ωf (δ), for any x ∈ [0, 1].

So we finish the proof.

The next lemma below is an analog of Lemma 3.10 for the multidimensional

case.

Lemma 3.11. Given any ε > 0, K ∈ N+, and δ ∈ (0, 1
3K

], assume f is a continuous

function in C([0, 1]d) and g : Rd → R is a general function satisfying

|g(x)− f(x)| ≤ ε, i.e., f(x) ∈ B
(
g(x), ε

)
, (3.12)

for any x ∈ [0, 1]d\Ω([0, 1]d, K, δ). Then

|φ(x)− f(x)| ≤ ε+ d · ωf (δ), for any x ∈ [0, 1]d,

where φ := φd is defined by induction through

φi+1(x) := mid
(
φi(x−δei+1), φi(x), φi(x+δei+1)

)
, for i = 0, 1, · · · , d− 1, (3.13)

where φ0 is equal to g and {ei}di=1 is the standard basis in Rd.

Proof. For ` = 0, 1, · · · , d, we define

E` :=

{
x = (x1, x2, · · · , xd) : xi ∈

{
[0,1], if i≤`,
[0,1]\Ω([0,1],K,δ), if i>`

}
.

56 Chapter 3. Basic results of ReLU networks

Clearly, E0 = [0, 1]d\Ω([0, 1]d, K, δ) and Ed = [0, 1]d. See Figure 3.11 for the illus-

trations of E` for ` = 0, 1, · · · , d when K = 4 and d = 2.

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

E` for ` = 0

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

E` for ` = 1

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

E` for ` = 2

Figure 3.11: Illustrations of E` for ` = 0, 1, 2 when K = 4 and d = 2.

We would like to construct a sequence of functions φ0, φ1, · · · , φd by induction,

based on the iteration equation (3.13), such that, for each ` ∈ {0, 1, · · · , d},

φ`(x) ∈ B
(
f(x), ε+ ` · ωf (δ)

)
, for any x ∈ E`. (3.14)

Let us first consider the case ` = 0. Note that [0, 1]d\Ω([0, 1]d, K, δ) = E0. Then,

by Equation (3.12), we have

φ0(x) = g(x) ∈ B
(
f(x), ε

)
, for any x ∈ E0.

That is, Equation (3.14) is true for ` = 0.

Now assume Equation (3.14) is true for ` = i ∈ {0, 1, · · · , d− 1}. We will prove

that it also holds for ` = i+ 1. By the induction hypothesis, we have

φi(x1, · · · , xi, t, xi+2, · · · , xd) ∈ B
(
f(x1, · · · , xi, t, xi+2, · · · , xd), ε+ i · ωf (δ)

)
, (3.15)

for any x1, · · · , xi ∈ [0, 1] and t, xi+2, · · · , xd ∈ [0, 1]\Ω([0, 1], K, δ).

Fix x1, · · · , xi ∈ [0, 1] and xi+2, · · · , xd ∈ [0, 1]\Ω([0, 1], K, δ), and denote

x[i] := (x1, · · · , xi, xi+2, · · · , xd) ∈ Rd−1.

3.3 Approximation in the trifling region 57

Then define

ψx[i](t) := φi(x1, · · · , xi, t, xi+2, · · · , xd), for any t ∈ R,

and

fx[i](t) := f(x1, · · · , xi, t, xi+2, · · · , xd), for any t ∈ R.

It follows from Equation (3.15) that

ψx[i](t) ∈ B
(
fx[i](t), ε+ i · ωf (δ)

)
, for any t ∈ [0, 1]\Ω([0, 1], K, δ).

Then by Lemma 3.10 (set g = ψx[i] and f = fx[i] therein), we get, for any t ∈ [0, 1],

mid
(
ψx[i](t− δ), ψx[i](t), ψx[i](t+ δ)

)
∈ B

(
fx[i](t), ε+ i · ωf (δ) + ωf

x[i]
(δ)
)

⊆ B
(
fx[i](t), ε+ (i+ 1)ωf (δ)

)
.

That is, for any xi+1 = t ∈ [0, 1],

mid
(
φi(x1, · · · , xi, xi+1 − δ, xi+2, · · · , xd), φi(x1, · · · , xd), φi(x1, · · · , xi, xi+1 + δ, xi+2, · · · , xd)

)

∈ B
(
f(x1, · · · , xd), ε+ (i+ 1)ωf (δ)

)
.

Note that x1, · · · , xi ∈ [0, 1] and xi+2, · · · , xd ∈ [0, 1]\Ω([0, 1], K, δ) are arbitrary.

Thus, for any x ∈ Ei+1,

mid
(
φi(x− δei+1), φi(x), φi(x+ δei+1)

)
∈ B

(
f(x), ε+ (i+ 1)ωf (δ)

)
,

implying

φi+1(x) ∈ B
(
f(x), ε+ (i+ 1)ωf (δ)

)
, for any x ∈ Ei+1.

So Equation (3.14) holds for ` = i+ 1, which means we finish the process of math-

ematical induction.

58 Chapter 3. Basic results of ReLU networks

By the principle of induction, we have

φ(x) := φd(x) ∈ B
(
f(x), ε+ d · ωf (δ)

)
, for any x ∈ Ed = [0, 1]d.

Therefore,

|φ(x)− f(x)| ≤ ε+ d · ωf (δ), for any x ∈ [0, 1]d,

which means we finish the proof.

Now we are ready to prove Theorem 3.7.

Proof of Theorem 3.7. Set φ0 = φ̃ and define φi for i ∈ {1, 2, · · · , d} by induction

through

φi+1(x) := mid
(
φi(x− δei+1), φi(x), φi(x+ δei+1)

)
, for i = 0, 1, · · · , d− 1,

where {ei}di=1 is the standard basis in Rd. Then by Lemma 3.11 with φ = φd, we

have

|φ(x)− f(x)| ≤ ε+ d · ωf (δ), for any x ∈ [0, 1]d.

It remains to determine the network architecture implementing φ = φd.

Define a vector-valued function Φ0 : Rd → R3 as

Φ0(x) :=
(
φ0(x− δe1), φ0(x), φ0(x+ δe1)

)
, for any x ∈ Rd.

Note that φ0 = φ̃ ∈ NN (width ≤ N ; depth ≤ L). Hence, φ0(· − δe1),

φ0(·), and φ0(· + δe1) can be generated by three networks with the same num-

ber of hidden layers, and these three networks are all with width N and depth L.

Therefore, by putting these three networks in parallel (share the inputs), we have

Φ0 ∈ NN (#input = d; width ≤ 3N ; depth ≤ L; #output = 3).

Recall that mid(·, ·, ·) ∈ NN (width ≤ 14; depth ≤ 2) by Lemma 3.8. Therefore,

3.4 Approximation of step functions 59

by Lemma 2.1 (ii),

φ1 = min(·, ·, ·) ◦Φ0 ∈ NN
(

width ≤ max{3N, 14} ≤ 3(N + 4); depth ≤ L+ 2
)

Similarly, by the iterative formula

φi+1(x) := mid
(
φi(x− δei+1), φi(x), φi(x+ δei+1)

)
, for i = 0, 1, · · · , d− 1,

it is easy to verify

φ = φd ∈ NN
(

width ≤ 3d(N + 4); depth ≤ L+ 2d
)
.

So we finish the proof.

3.4 Approximation of step functions

As mentioned earlier in Section 2.3, we need to construct a ReLU sub-network

to project a cube to a point. We only need to approximate one-dimensional step

functions, because in the multidimensional case we can simply set

Φ(x) =
(
φ(x1), φ(x2), · · · , φ(xd)

)
, for any x = (x1, x2, · · · , xd) ∈ Rd,

where φ is a one-dimensional step function. The theorem below, Theorem 3.12,

shows that ReLU networks with width O(N1/d) and depth O(L) can implement one-

dimensional step functions with O(K) = O(N2/dL2/d) “steps” outside the trifling

region for any d ∈ N+. See Figure 3.12 for an example.

Theorem 3.12. For any N,L, d ∈ N+ and δ ∈ (0, 1
3K

] with K = bN1/dc2bL2/dc,
there exists a one-dimensional function φ implemented by a ReLU network with

60 Chapter 3. Basic results of ReLU networks

0 1/4 2/4 3/4 1
0

1

2

3
φ

trifling region

Figure 3.12: An example of a step function for the case K = 4 and d = 1. We do

not need to care about the values of φ in the trifling region while constructing a

ReLU network to implement φ.

width 4bN1/dc+ 3 and depth 4L+ 5 such that

φ(x) = k, if x ∈ [k
K
, k+1
K
− δ · 1{k≤K−2}], for k = 0, 1, · · · , K − 1.

The setting K = bN1/dc2bL2/dc = O(N2/dL2/d) is not neat here, but it is very

convenient for later use. Now, let us present the detailed proof of Theorem 3.12.

Proof of Theorem 3.12. We divide the proof into two cases: d = 1 and d ≥ 2.

Case 1: d = 1.

In this case, K = bN1/dc2bL2/dc = N2L2. Denote M = N2L and consider the

sample set

{
(1,M − 1), (2, 0)

}
∪
{

(m
M
,m) : m = 0, 1, · · · ,M − 1

}

∪
{

(m+1
M
− δ,m) : m = 0, 1, · · · ,M − 2

}
.

Its size is 2M + 1 = N ·
(
(2NL − 1) + 1

)
+ 1. By Theorem 3.2 (set m = N and

n = 2NL− 1 therein), there exists

φ1 ∈ NN (widthvec = [2N, 2(2NL− 1) + 1])

= NN (widthvec = [2N, 4NL− 1])

such that

• φ1(M−1
M

) = φ1(1) = M−1 and φ1(m
M

) = φ1(m+1
M
−δ) = m for m = 0, 1, · · · ,M−

3.4 Approximation of step functions 61

2.

• φ1 is linear on [M−1
M

, 1] and each interval [m
M
, m+1

M
− δ] for m = 0, 1, · · · ,M − 2.

Then, for m = 0, 1, · · · ,M − 1, we have

φ1(x) = m, for any x ∈ [m
M
, m+1

M
− δ · 1{m≤M−2}]. (3.16)

Now consider the another sample set

{
(1
M
, L− 1), (2, 0)

}
∪
{

(`
ML

, `) : ` = 0, 1, · · · , L− 1
}

∪
{

(`+1
ML
− δ, `) : ` = 0, 1, · · · , L− 2

}
.

Its size is 2L+1 = 1 ·
(
(2L−1)+1

)
+1. By Theorem 3.2 (set m = 1 and n = 2L−1

therein), there exists

φ2 ∈ NN (widthvec = [2, 2(2L− 1) + 1])

= NN (widthvec = [2, 4L− 1])

such that

• φ2(L−1
ML

) = φ2(1
M

) = L−1 and φ2(`
ML

) = φ2(`+1
ML
−δ) = ` for ` = 0, 1, · · · , L−2.

• φ2 is linear on [L−1
ML

, 1
M

] and each interval [`
ML

, `+1
ML
− δ] for ` = 0, 1, · · · , L− 2.

It follows that, for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1,

φ2(x− m
M

) = `, for any x ∈ [mL+`
ML

, mL+`+1
ML

− δ · 1{`≤L−2}]. (3.17)

K = ML implies any k ∈ {0, 1, · · · , K − 1} can be unique represented by k =

mL + ` for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1. Then the desired function

φ can be implemented by a ReLU network shown in Figure 3.13.

Clearly,

φ(x) = k, if x ∈ [k
K
, k
K
− δ · 1{k≤K−2}], for any k ∈ {0, 1, · · · , K − 1}.

62 Chapter 3. Basic results of ReLU networks

x

φ1(x) = m

x

m

x− m
M

m

φ2(x− m
M) = `

mL+ ` = k =: φ(x)
φ1

φ2

Figure 3.13: An illustration of the network architecture implementing φ based on

Equation (3.16) and (3.17) for x ∈ [k
K
, k
K
− δ · 1{k≤K−2}] = [mL+`

ML
, mL+`+1

ML
− δ ·

1{m≤M−2 or `≤L−2}], where k = mL+` for m = 0, 1, · · · ,M−1 and ` = 0, 1, · · · , L−1.

By Theorem 3.1, we have

φ1 ∈ NN (widthvec = [2N, 4NL− 1]) ⊆ NN (width ≤ 4N + 2; depth ≤ 2L+ 1)

and

φ2 ∈ NN (widthvec = [2, 4L− 1]) ⊆ NN (width ≤ 6; depth ≤ 2L+ 1),

implying by Figure 3.13 that φ can be implemented by a ReLU network with width

max{4N + 2 + 1, 6 + 1} = 4N + 3

and depth

(2L+ 1) + 2 + (2L+ 1) + 1 = 4L+ 5.

So we finish the proof for the case d = 1.

Case 2: d ≥ 2.

Now we consider the case when d ≥ 2. Consider the sample set

{
(1, K − 1), (2, 0)

}
∪
{

(k
K
, k) : k = 0, 1, · · · , K − 1

}

∪
{

(k+1
K
− δ, k) : k = 0, 1, · · · , K − 2

}
.

Its size is

2K + 1 = bN1/dc
(
(2bN1/dcbL2/dc − 1) + 1

)
+ 1.

3.4 Approximation of step functions 63

By Theorem 3.2 (set m = bN1/dc and n = 2bN1/dcbL2/dc − 1 therein), there exists

φ ∈ NN
(

widthvec = [2bN1/dc, 2
(
2bN1/dcbL2/dc − 1

)
+ 1]

)

= NN
(

widthvec = [2bN1/dc, 4bN1/dcbL2/dc − 1]
)

such that

• φ(K−1
K

) = φ(1) = K − 1, and φ(k
K

) = φ(k+1
K
− δ) = k for k = 0, 1, · · · , K − 2.

• φ is linear on [K−1
K
, 1] and each interval [k

K
, k+1
K
− δ] for k = 0, 1, · · · , K − 2.

Then, for k = 0, 1, · · · , K − 1, we have

φ(x) = k, for any x ∈ [k
K
, k+1
K
− δ · 1{k≤K−2}].

By Theorem 3.1,

φ ∈ NN (widthvec = [2bN1/dc, 4bN1/dcbL2/dc − 1])

⊆ NN (width ≤ 4bN1/dc+ 2; depth ≤ 2bL2/dc+ 1)

⊆ NN (width ≤ 4bN1/dc+ 3; depth ≤ 4L+ 5).

Thus, we finish the proof for the case d ≥ 2.

This page is intentionally left blank.

Chapter 4
Approximation by ReLU networks

4.1 Approximation of polynomials

In this section, we show how to construct a ReLU network to approximate a

multidimensional polynomial P (x).

4.1.1 Main theorem

For simplicity, we may assume a polynomial P (x) has only one term with coeffi-

cient one, namely, P (x) = xα = xα1
1 x

α2
2 · · ·xαdd for some α = (α1, α2, · · · , αd) ∈ Nd.

As shown in the following theorem, Theorem 4.1, ReLU networks can uniformly

approximate polynomials on [0, 1]d with exponential errors.

Theorem 4.1. Given any k ∈ N+ and α = (α1, · · · , αd) ∈ Nd, assume P (x) =

xα = xα1
1 x

α2
2 · · ·xαdd with ‖α‖1 ≤ k. For any N,L ∈ N+, there exists a function φ

implemented by a ReLU network with width 9(N + 1) + k − 1 and depth 7k2L such

that

|φ(x)− P (x)| ≤ 9k(N + 1)−7kL, for any x ∈ [0, 1]d.

The choice of depth 7k2L is not neat here, but it is convenient for later use.

Theorem 4.1 shows that ReLU networks with width O(N) and depth O(L) are able

to approximate polynomials on [0, 1]d within an error O(N−L). This reveals the

65

66 Chapter 4. Approximation by ReLU networks

power of depth in ReLU networks for approximating polynomials, from function

compositions. Theorem 4.1 can be generalized to the case of polynomials defined on

an arbitrary hypercube [a, b]d by scaling. To prove Theorem 4.1, we will construct

ReLU networks to approximate polynomials following the four steps below.

• f(x) = x2. We approximate f(x) = x2 by the combinations and compositions

of “sawtooth” functions as shown in Figure 4.1 and 4.2.

• f(x, y) = xy. To approximate f(x, y) = xy, we use the result of the previous

step and the fact xy = 2
(
(x+y

2
)2 − (x

2
)2 − (y

2
)2
)
.

• f(x1, x2, · · · , xk) = x1x2 · · ·xk. We approximate f(x1, x2, · · · , xk) = x1x2 · · ·xk
via mathematical induction based on the result of the previous step.

• A general polynomial P (x) = xα = xα1
1 x

α2
2 · · ·xαdd with ‖α‖1 ≤ k ∈ N+. P (x)

can be written as P (x) = z1z2 · · · zk, where z = (z1, z2, · · · , zk) is a vector

with each of its entries equal to 1 or an entry of x. Then use the result of the

previous step.

4.1.2 Approximation of x2

Let us show how to approximate f(x) = x2 by linear combinations of “sawtooth”

functions, which can be easily implemented by ReLU networks. The idea of using

“sawtooth” functions (see Figure 4.1) was first raised in [58] for approximating

x2 using networks with depth O(L) and a constant width, and achieving an error

O(2−L). Our construction is different to and more general than that in [58], working

for ReLU networks of width 3N and depth L for any N,L ∈ N+, and achieving an

error N−L as shown in Lemma 4.2.

Lemma 4.2. For any N,L ∈ N+, there exists a function φ implemented by a ReLU

network with width 3N and depth L such that

0 ≤ φ(x)− x2 ≤ N−L, for any x ∈ [0, 1].

4.1 Approximation of polynomials 67

Proof. Define a set of “sawtooth” functions Ti : [0, 1]→ [0, 1] by induction as follows.

Let

T1(x) =

{
2x, if x ∈ [0, 1

2
],

2(1− x), if x ∈ (1
2
, 1]

and

Ti = Ti−1 ◦ T1, for i = 2, 3, 4, · · · .

It is easy to check that Ti has 2i−1 “sawteeth” and

Tm+n = Tm ◦ Tn, for any m,n ∈ N+.

See Figure 4.1 for illustrations of Ti for i = 1, 2, 3, 4.

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T1

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T2

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T3

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

T4

Figure 4.1: Examples of “sawtooth” functions T1, T2, T3, and T4.

Define piecewise linear functions fs : [0, 1] → [0, 1] for s ∈ N+ satisfying the

following two requirements (see Figure 4.2 for several examples of fs).

• fs(x) = x2 for any x ∈ { j
2s

: j = 0, 1, 2, · · · , 2s}.

• fs(x) is linear between any two adjacent points of { j
2s

: j = 0, 1, 2, · · · , 2s}.

Recall the fact

0 ≤ tx2
1 + (1− t)x2

2 −
(
tx1 + (1− t)x2

)2

≤ (x2 − x1)2

4
, for any t, x1, x2 ∈ [0, 1].

Thus, we have

0 ≤ fs(x)− x2 ≤ (2−s)2

4
= 2−2(s+1), for any x ∈ [0, 1] and s ∈ N+. (4.1)

68 Chapter 4. Approximation by ReLU networks

0 1/2 1

0.0

0.2

0.4

0.6

0.8

1.0 x2

f1(x)

0 1/4 2/4 3/4 1

0.0

0.2

0.4

0.6

0.8

1.0 x2

f2(x)

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

0.0

0.2

0.4

0.6

0.8

1.0 x2

f3(x)

0 1/8 2/8
0.00

0.02

0.04

0.06

0.08

0.10

x2

f3(x)

Figure 4.2: Illustrations of f1, f2, and f3 for approximating x2.

Note that fi−1(x) = fi(x) = x2 for each x ∈ { j
2i−1 : j = 0, 1, 2, · · · , 2i−1} and the

graph of fi−1 − fi is a symmetric “sawtooth” between any two adjacent points of

{ j
2i−1 : j = 0, 1, 2, · · · , 2i−1}. See Figure 4.3 for illustrations.

0 1/4 2/4 3/4 1

0.0

0.2

0.4

0.6

0.8

1.0 f1

f2

0 1/4 2/4 3/4 1

0

2−4

f1 − f2

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

0.0

0.2

0.4

0.6

0.8

1.0 f2

f3

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

0

2−6

f2 − f3

Figure 4.3: Illustrations of f1 − f2 and f2 − f3.

Thus, it is easy to verify

fi−1(x)− fi(x) =
Ti(x)

22i
, for any x ∈ [0, 1] and i = 2, 3, 4, · · · .

Therefore, for any x ∈ [0, 1] and s ∈ N+, we have

fs(x) = f1(x) +
s∑

i=2

(fi − fi−1) = x− (x− f1(x))−
s∑

i=2

Ti(x)

22i
= x−

s∑

i=1

Ti(x)

22i
.

Given any N ∈ N+, there exists a unique k ∈ N+ such that

(k − 1)2k−1 + 1 ≤ N ≤ k2k.

For this k, we can construct a ReLU network as shown in Figure 4.4 to implement

4.1 Approximation of polynomials 69

a function φ = fLk approximating x2 well. Note that Ti has 2i−1 “sawteeth” and

hence has 2i + 1 breakpoints including the endpoints for any i ∈ N+. Then, by

Lemma 3.3, Ti can be implemented by a one-hidden-layer ReLU network with width

2i. Therefore, the network in Figure 4.4 has width k2k + 1 ≤ 3N 1○ and depth 2L.

x

T1

T2

Tk

x

Tk+1

Tk+2

Tk+k

x−
k∑

i=1

Ti(x)
22i

Tjk+1

Tjk+2

Tjk+k

x−
jk∑

i=1

Ti(x)
22i

T(j+1)k+1

T(j+1)k+2

T(j+1)k+k

x−
(j+1)k∑

i=1

Ti(x)
22i

T(L−1)k+1

T(L−1)k+2

T(L−1)k+k

x−
(L−1)k∑

i=1

Ti(x)
22i

x−
Lk∑

i=1

Ti(x)
22i

= fLk(x) =: φ(x)

Input 1 2 3 4 2(j+1) 2(j+1)+1 2(j+2) 2L Output

Tk Tk

Tk Tk

Tk Tk
Tk

T2

T1
...· · · · · ·

Figure 4.4: An illustration of the target network architecture for approximating x2

on x ∈ [0, 1]. Ti can be implemented by a one-hidden-layer ReLU network with

width 2i for i = 1, 2, · · · , k. The red numbers below the architecture indicate the

order of hidden layers.

As shown in Figure 4.4, all neurons in (2`)-th hidden layer of the network have

the identify function as their activation functions for ` = 1, 2, · · · , L. Thus, the

network in Figure 4.4 can be interpreted as a ReLU network with width 3N and

depth L. In fact, if all activation functions in a certain hidden layer are identity

maps, the depth can be reduced by one via combining adjacent two affine linear

transforms into one, the idea of which is similar to that of Lemma 2.1. For example,

suppose W1 ∈ RN2×N1 , b1 ∈ RN2 , W2 ∈ RN3×N2 , b2 ∈ RN3 , % is an identity map

that can be applied to vectors or matrices elementwisely, and Li is an affine linear

map given by Li(x) = Wi · x+ bi for i = 1, 2. Then, we have

L2 ◦ % ◦ L1(x) = W2%(W1 · x+ b1) + b2 = W3 · x+ b3, for any x ∈ RN1 ,

where W3 = W2 ·W1 ∈ RN3×N1 , b3 = W2 · b1 + b2 ∈ RN3 .

1○This inequality is clear for k = 1, 2, 3, 4. In the case k ≥ 5, we have k2k + 1 ≤ k2k+1
N N ≤

(k+1)2k

(k−1)2k−1N ≤ 2k+1
k−1N ≤ 3N .

70 Chapter 4. Approximation by ReLU networks

It remains to estimate the approximation error of φ(x) ≈ x2. By Equation (4.1),

for any x ∈ [0, 1], we have

0 ≤ φ(x)− x2 = fLk(x)− x2 ≤ 2−2(Lk+1) ≤
(
22k
)−L ≤ N−L,

where the last inequality comes from N ≤ k2k ≤ 22k. So we finish the proof.

4.1.3 Approximation of x1x2 · · ·xk
We have constructed a ReLU network to approximate f(x) = x2. By the fact

xy = 2
(
(x+y

2
)2 − (x

2
)2 − (y

2
)2
)
, it is easy to construct a new ReLU network to ap-

proximate f(x, y) = xy as follows.

Lemma 4.3. For any N,L ∈ N+, there exists a function φ implemented by a ReLU

network with width 9N and depth L such that

|φ(x, y)− xy| ≤ 6N−L, for any x, y ∈ [0, 1].

Proof. By Lemma 4.2, there exists a function ψ implemented by a ReLU network

with width 3N and depth L such that

|ψ(x)− x2| ≤ N−L, for any x ∈ [0, 1].

Recall the fact

xy = 2
(
(x+y

2
)2 − (x

2
)2 − (y

2
)2
)
, for any x, y ∈ R.

The target function φ is defined as

φ(x, y) := 2
(
ψ(x+y

2
)− ψ(x

2
)− ψ(y

2
)
)
, for any x, y ∈ R. (4.2)

Then φ can be implemented by the network architecture in Figure 4.5.

4.1 Approximation of polynomials 71

x

y

x
2

y
2

x+y
2

ψ(x2)

ψ(y2)

ψ(x+y
2)

φ(x, y)

ψ

ψ

ψ

Figure 4.5: An illustration of the network architecture implementing φ for approxi-

mating xy on [0, 1]2.

It follows from ψ ∈ NN (width ≤ 3N ; depth ≤ L) that the network in Fig-

ure 4.5 is with width 9N and depth L+ 2. Similar to the discussion in the proof of

Lemma 4.2, the network in Figure 4.5 can be interpreted as a ReLU network with

width 9N and depth L, since two of hidden layers have the identify map as their

activation functions. Moreover, for any x, y ∈ [0, 1],

|φ(x, y)− xy| =
∣∣2
(
ψ(x+y

2
)− ψ(x

2
)− ψ(y

2
)
)
− 2
(
(x+y

2
)2 − (x

2
)2 − (y

2
)2
)∣∣

≤ 2
∣∣ψ(x+y

2
)− (x+y

2
)2
∣∣+ 2

∣∣ψ(x
2
)− (x

2
)2
∣∣+ 2

∣∣ψ(y
2
)− (y

2
)2
∣∣ ≤ 6N−L.

Therefore, we have finished the proof.

We would like to remark that we can also use Lemma 2.1 to verify the function

φ defined in Equation (4.2) can be implemented by a ReLU network with width 9N

and depth L, since ψ ∈ NN (width ≤ 3N ; depth ≤ L).

Now let us show how to construct a ReLU network to approximate f(x, y) = xy

on [a, b]2 with arbitrary a < b, i.e., a rescaled version of Lemma 4.3.

Lemma 4.4. For any N,L ∈ N+ and a, b ∈ R with a < b, there exists a function φ

implemented by a ReLU network with width 9N + 1 and depth L such that

|φ(x, y)− xy| ≤ 6(b− a)2N−L, for any x, y ∈ [a, b].

Proof. By Lemma 4.3, there exists a function ψ implemented by a ReLU network

with width 9N and depth L such that

|ψ(x̃, ỹ)− x̃ỹ| ≤ 6N−L, for any x̃, ỹ ∈ [0, 1].

72 Chapter 4. Approximation by ReLU networks

Given any x, y ∈ [a, b], by setting x̃ = x−a
b−a and ỹ = y−a

b−a , we have x̃, ỹ ∈ [0, 1],

implying
∣∣ψ(x−a

b−a ,
y−a
b−a)− x−a

b−a
y−a
b−a
∣∣ ≤ 6N−L, for any x, y ∈ [a, b].

It follows that, for any x, y ∈ [a, b],

∣∣(b− a)2ψ(x−a
b−a ,

y−a
b−a) + a(x+ y)− a2 − xy

∣∣ ≤ 6(b− a)2N−L. (4.3)

Define, for any x, y ∈ R,

φ(x, y) := (b− a)2ψ(x−a
b−a ,

y−a
b−a) + a · σ(x+ y + 2|a|)− a2 − 2a|a|.

Then φ can be implemented by the network architecture in Figure 4.6.

x

y

x−a
b−a

y−a
b−a

x+ y + 2|a|

ψ
(

x−a
b−a ,

y−a
b−a

)

σ(x+ y + 2|a|)

φ(x, y)

ψ

Figure 4.6: An illustration of the network architecture implementing φ for approxi-

mating xy on [a, b]2. Two of hidden layers has the identify function as their activation

functions, since the red “σ” comes from the red arrow “−→”, where the red arrow

“−→” represents a ReLU network with width 1 and depth L ≥ 1.

If follows from ψ ∈ NN (width ≤ 9N ; depth ≤ L) that the network in Figure 4.6

is with width 9N + 1 and depth L + 2. Similar to the discussion in the proof of

Lemma 4.2, the network in Figure 4.6 can be interpreted as a ReLU network with

width 9N + 1 and depth L, since two of hidden layers have the identify function as

their activation functions.

Note that x+ y + 2|a| ≥ 0 for any x, y ∈ [a, b], implying

φ(x, y) = (b− a)2ψ(x−a
b−a ,

y−a
b−a) + a(x+ y)− a2, for any x, y ∈ [a, b].

4.1 Approximation of polynomials 73

Hence, by Equation (4.3), we have

∣∣φ(x, y)− xy
∣∣ ≤ 6(b− a)2N−L, for any x, y ∈ [a, b].

So we finish the proof.

The next lemma constructs a ReLU network to approximate a multivariable

function f(x1, x2, · · · , xk) = x1x2 · · ·xk on [0, 1]k.

Lemma 4.5. For any N,L, k ∈ N+ with k ≥ 2, there exists a function φ imple-

mented by a ReLU network with width 9(N + 1) + k − 1 and depth 7kL(k − 1) such

that

|φ(x)− x1x2 · · ·xk| ≤ 9(k − 1)(N + 1)−7kL,

for any x = (x1, x2, · · · , xk) ∈ [0, 1]k.

Proof. By Lemma 4.4, there exists a function φ1 implemented by a ReLU network

with width 9(N + 1) + 1 and depth 7kL such that

|φ1(x, y)− xy| ≤ 6(1.2)2(N + 1)−7kL ≤ 9(N + 1)−7kL, for any x, y ∈ [−0.1, 1.1]. (4.4)

This equation means the case k = 2 is clear. We may assume k ≥ 3 below. We

would like to construct a sequence of functions φi : [0, 1]i+1 → [0, 1] for any i ∈
{1, 2, · · · , k − 1} by induction such that

(i) φi ∈ NN (width ≤ 9(N + 1) + i; depth ≤ 7kLi) for any i ∈ {1, 2, · · · , k − 1}.

(ii) For any i ∈ {1, 2, · · · , k − 1} and x1, x2, · · · , xi+1 ∈ [0, 1], it holds that

|φi(x1, x2, · · · , xi+1)− x1x2 · · ·xi+1| ≤ 9i(N + 1)−7kL. (4.5)

First, let us consider the case i = 1. It is obvious that the two required conditions

are true: 1) 9(N + 1) + i = 9(N + 1) + 1 and 7kLi = 7kL in the case i = 1; 2)

Equation (4.4) implies Equation (4.5) for i = 1.

74 Chapter 4. Approximation by ReLU networks

Now assume φi has been defined for some i ∈ {1, 2, · · · , k − 2}, we define

φi+1(x1, x2, · · · , xi+2) := φ1

(
φi(x1, x2, · · · , xi+1), σ(xi+2)

)
, (4.6)

for any x1, x2, · · · , xi+2 ∈ R. By the induction hypothesis, we have

φi ∈ NN (width ≤ 9(N + 1) + i; depth ≤ 7kLi)

and

|φi(x1, x2, · · · , xi+1)− x1x2 · · ·xi+1| ≤ 9i(N + 1)−7kL, (4.7)

for any x1, x2, · · · , xi+1 ∈ [0, 1]. Clearly, φ1 ∈ NN (width ≤ 9(N + 1) + 1; depth ≤
7kL). Then φi+1, defined in Equation (4.6), can be implemented via a ReLU network

with width

max{9(N + 1) + i+ 1, 9(N + 1) + 1} = 9(N + 1) + (i+ 1)

and depth 7kLi+ 7kL = 7kL(i+ 1).

Note that 9i(N+1)−7kL ≤ 9k2−7k ≤ 0.1 for anyN,L, k ∈ N+ and i ∈ {1, 2, · · · , k}.
It follows from Equation (4.7) that

φi(x1, x2, · · · , xi+1) ∈ [−0.1, 1.1], for any x1, x2, · · · , xi+1 ∈ [0, 1].

Therefore, by Equation (4.4) and (4.7), we have

∣∣φi+1(x1, · · · , xi+2)− x1x2 · · ·xi+2

∣∣ =
∣∣∣φ1

(
φi(x1, · · · , xi+1), σ(xi+2)

)
− x1x2 · · ·xi+2

∣∣∣

≤
∣∣∣φ1

(
φi(x1, · · · , xi+1), xi+2

)
− φi(x1, · · · , xi+1)xi+2

∣∣∣+
∣∣φi(x1, · · · , xi+1)xi+2 − x1x2 · · · xi+2

∣∣

≤ 9(N + 1)−7kL + 9i(N + 1)−7kL = 9(i+ 1)(N + 1)−7kL,

for any x1, x2, · · · , xi+2 ∈ [0, 1], which means we finish the process of induction.

4.1 Approximation of polynomials 75

Now let φ := φk−1, by the principle of induction, we have

φ = φk−1 ∈ NN
(
width ≤ 9(N + 1) + k − 1; depth ≤ 7kL(k − 1)

)

and

|φ(x1, x2, · · · , xk)− x1x2 · · ·xk| = |φk−1(x1, x2, · · · , xk)− x1x2 · · ·xk|

≤ 9(k − 1)(N + 1)−7kL,

for any x1, x2, · · · , xk ∈ [0, 1]. So we finish the proof.

4.1.4 Proof of main theorem

With Lemma 4.5 in hand, we are ready to prove Theorem 4.1 for approximating

general multivariable polynomials by ReLU networks.

Proof of Theorem 4.1. The case k = 1 is trivial, so we assume k ≥ 2 below. Set

k̃ = ‖α‖1 ≤ k, denote α = (α1, α2, · · · , αd), and let (z1, z2, · · · , zk̃) ∈ Rk̃ be the

vector satisfying

z` = xj, if

j−1∑

i=1

αi < ` ≤
j∑

i=1

αi, for j = 1, 2, · · · , d.

That is,

(z1, z2, · · · , zk̃) =
(α1 times︷ ︸︸ ︷
x1, · · · , x1,

α2 times︷ ︸︸ ︷
x2, · · · , x2, · · · ,

αd times︷ ︸︸ ︷
xd, · · · , xd

)
∈ Rk̃.

Then we have P (x) = xα = xα1
1 x

α2
2 · · ·xαdd = z1z2 · · · zk̃.

We construct the target ReLU network in two steps. First, there exists an affine

linear map L : Rd → Rk that duplicates x to form a new vector

(z1, z2, · · · , zk̃, 1, · · · , 1) ∈ Rk,

76 Chapter 4. Approximation by ReLU networks

i.e., L(x) = (z1, z2, · · · , zk̃, 1, · · · , 1) ∈ Rk for any x ∈ Rd. Second, by Lemma 4.5,

there exists a function ψ : Rk → R implemented by a ReLU network with width

9(N+1)+k−1 and depth 7kL(k−1) such that ψ maps (z1, z2, · · · , zk̃, 1, · · · , 1) ∈ Rk

to z1z2 · · · zk̃ within an error 9(k − 1)(N + 1)−7kL for any z1, z2, · · · , zk̃ ∈ [0, 1].

Hence, we can construct our final target function via φ := ψ ◦ L. Then by

Lemma 2.1 (i), φ can implemented by a ReLU network with width 9(N + 1) + k− 1

and depth 7kL(k − 1) ≤ 7k2L, and

|φ(x)− P (x)| = |φ(x)− xα| = |ψ ◦ L(x)− xα1
1 x

α2
2 · · ·xαd |

= |ψ(z1, z2, · · · , zk̃, 1, · · · , 1)− z1z2 · · · zk̃|

≤ 9(k − 1)(N + 1)−7kL ≤ 9k(N + 1)−7kL,

for any x1, x2, · · · , xd ∈ [0, 1]. So we finish the proof.

4.2 Approximation of continuous functions

In this section, let us focus on constructing ReLU networks to approximate

continuous functions on [0, 1]d.

4.2.1 Main theorem and its proof

Theorem 4.6 below shows that ReLU networks with width O(N) and depth O(L)

can approximate f ∈ C([0, 1]d) with an approximation error 19
√
dωf (N

−2/dL−2/d).

Theorem 4.6. Given a continuous function f ∈ C([0, 1]d), for any N,L ∈ N+ and

p ∈ [1,∞], there exists a function φ implemented by a ReLU network with width

C1 max
{
dbN1/dc, N + 1

}
and depth 12L+ C2 such that

‖φ− f‖Lp([0,1]d) ≤ 19
√
dωf (N

−2/dL−2/d),

where C1 = 12 and C2 = 14 if p ∈ [1,∞); C1 = 3d+3 and C2 = 14 + 2d if p =∞.

4.2 Approximation of continuous functions 77

The approximation error becomes 19
√
dλN−2α/dL−2α/d when Theorem 4.6 is ap-

plied to a function f ∈ Hölder([0, 1]d, α, λ) as shown in the corollary below, where

Hölder([0, 1]d, α, λ) is the space of Hölder continuous functions of order α ∈ (0, 1]

with a Hölder constant λ > 0.

Corollary 4.7. Given a function f ∈ Hölder([0, 1]d, α, λ), for any N,L ∈ N+ and

p ∈ [1,∞], there exists a function φ implemented by a ReLU network with width

C1 max
{
dbN1/dc, N + 1

}
and depth 12L+ C2 such that

‖φ− f‖Lp([0,1]d) ≤ 19
√
dλN−2α/dL−2α/d,

where C1 = 12 and C2 = 14 if p ∈ [1,∞); C1 = 3d+3 and C2 = 14 + 2d if p =∞.

The next question is: How much we can improve the approximation error in

Theorem 4.6 and Corollary 4.7? In fact, for the Hölder continuous function space,

the approximation error in Corollary 4.7 is nearly optimal based on VC-dimension

as we shall see later in Section 4.4.

To prove Theorem 4.6, we introduce a theorem below, Theorem 4.8, to construct

ReLU networks to uniformly approximate continuous functions outside the trifling

region, which can deduce Theorem 4.6 easily by applying Theorem 3.7.

Theorem 4.8. Given a continuous function f ∈ C([0, 1]d), for any N,L ∈ N+, there

exists a function φ implemented by a ReLU network with width max
{

4dbN1/dc +

3d, 12N + 8
}

and depth 12L+ 14 such that ‖φ‖L∞(Rd) ≤ |f(0)|+ ωf (
√
d) and

|φ(x)− f(x)| ≤ 18
√
dωf (N

−2/dL−2/d), for any x ∈ [0, 1]d\Ω([0, 1]d, K, δ),

where K = bN1/dc2bL2/dc and δ is an arbitrary number in (0, 1
3K

].

Now we are ready to prove Theorem 4.6 by assuming Theorem 4.8 is true, which

will be proved later in this section.

Proof of Theorem 4.6. Let us first consider the case p ∈ [1,∞). We may assume f

is not a constant function since it is a trivial case. Then ωf (r) > 0 for any r > 0.

78 Chapter 4. Approximation by ReLU networks

Set K = bN1/dc2bL2/dc and choose a small δ ∈ (0, 1
3K

] such that

Kdδ
(
2|f(0)|+ 2ωf (

√
d)
)p

= bN1/dc2bL2/dcdδ
(
2|f(0)|+ 2ωf (

√
d)
)p

≤
(
ωf (N

−2/dL−2/d)
)p
.

(4.8)

By Theorem 4.8, there exists a function φ implemented by a ReLU network with

width

max
{

4dbN1/dc+ 3d, 12N + 8
}
≤ 12 max

{
dbN1/dc, N + 1

}

and depth 12L+ 14 such that ‖φ‖L∞(Rd) ≤ |f(0)|+ ωf (
√
d) and

|f(x)− φ(x)| ≤ 18
√
dωf (N

−2/dL−2/d), for any x ∈ [0, 1]d\Ω([0, 1]d, K, δ).

Note that µ(Ω([0, 1]d, K, δ)) ≤ Kdδ and ‖f‖L∞([0,1]d) ≤ |f(0)| + ωf (
√
d). Then, by

Equation (4.8), we have

‖f − φ‖p
Lp([0,1]d)

=

∫

Ω([0,1]d,K,δ)

|f(x)− φ(x)|pdx+

∫

[0,1]d\Ω([0,1]d,K,δ)

|f(x)− φ(x)|pdx

≤ Kdδ
(
2|f(0)|+ 2ωf (

√
d)
)p

+
(
18
√
dωf (N

−2/dL−2/d)
)p

≤
(
ωf (N

−2/dL−2/d)
)p

+
(
18
√
dωf (N

−2/dL−2/d)
)p

≤
(
19
√
dωf (N

−2/dL−2/d)
)p
.

Hence, ‖f − φ‖Lp([0,1]d) ≤ 19
√
dωf (N

−2/dL−2/d).

Next, let us focus on the case p =∞. Set K = bN1/dc2bL2/dc and choose a small

δ ∈ (0, 1
3K

] such that

d · ωf (δ) ≤ ωf (N
−2/dL−2/d).

By Theorem 4.8, there exists a function implemented φ̃ by a ReLU network with

width max
{

4dbN1/dc+ 3d, 12N + 8
}

and depth 12L+ 14 such that

|f(x)− φ̃(x)| ≤ 18
√
dωf (N

−2/dL−2/d) =: ε, for x ∈ [0, 1]d\Ω([0, 1]d, K, δ).

4.2 Approximation of continuous functions 79

By Theorem 3.7, there exists a function φ implemented by a ReLU network with

width

3d
(

max
{

4dbN1/dc+ 3d, 12N + 8
}

+ 4
)
≤ 3d+3 max

{
dbN1/dc, N + 1

}

and depth 12L+ 14 + 2d such that

|f(x)− φ(x)| ≤ ε+ d · ωf (δ) ≤ 19
√
dωf (N

−2/dL−2/d), for any x ∈ [0, 1]d.

So we finish the proof.

It remains to prove Theorem 4.8. To this end, we establish a proposition below

to warm up the proof of Theorem 4.8.

Proposition 4.9. For any ε > 0 and arbitrary N,L, J ∈ N+ with J ≤ N2L2, given

J samples yj ≥ 0 for j = 0, 1, · · · , J − 1 with

|yj − yj−1| ≤ ε, for j = 1, 2, · · · , J − 1.

Then there exists φ ∈ NN (#input = 1; width ≤ 12N+8; depth ≤ 4L+9; #output =

1) such that

(i) |φ(j)− yj| ≤ ε for j = 0, 1, · · · , J − 1.

(ii) 0 ≤ φ(x) ≤ max{yj : j = 0, 1, · · · , J − 1} for any x ∈ R.

4.2.2 Proof of auxiliary theorem

We essentially construct an almost piecewise constant function implemented by

a ReLU network with with O(N) and depth O(L) to approximate the target con-

tinuous function f on [0, 1]d. We assume f is not a constant since it is a trivial

case. Then ωf (r) > 0 for any r > 0. It is clear that |f(x) − f(0)| ≤ ωf (
√
d) for

any x ∈ [0, 1]d. Define f̃ = f − f(0) + ωf (
√
d), then 0 ≤ f̃(x) ≤ 2ωf (

√
d) for any

80 Chapter 4. Approximation by ReLU networks

x ∈ [0, 1]d. Let M = N2L, K = bN1/dc2bL2/dc, and δ be an arbitrary number in

(0, 1
3K

]. The proof can be divided into four steps as follows.

1. Divide [0, 1]d into a union of sub-cubes {Qβ}β∈{0,1,···,K−1}d and the trifling

region Ω([0, 1]d, K, δ), and denote xβ as the vertex of Qβ with minimum ‖ · ‖1

norm for each β ∈ {0, 1, · · · , K − 1}d. See Figure 4.7 for the illustrations of

Ω([0, 1]d, K, δ), Qβ, and xβ for any β ∈ {0, 1, · · · , K − 1}d.

2. Construct a sub-network to implement a vector-valued function Φ1 projecting

the whole cube Qβ to the d-dimensional index β for each β, i.e., Φ(x) = β

for all x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d.

3. Construct a sub-network to implement a function φ2 mapping the index β

approximately to f̃(xβ) for each β. This step can be further divided into

three sub-steps.

3.1. Construct an affine linear map ψ1 : Rd → R bijectively mapping the index

set {0, 1, · · · , K − 1}d to an auxiliary set A1 ⊆
{

j
2Kd : j = 0, 1, · · · , 2Kd

}

defined later. See Figure 4.8 for an illustration.

3.2. Determine a continuous piecewise linear function g with a set of break-

points A1 ∪ A2 ∪ {1} satisfying two conditions.

• Assign the value of g at ψ(β) ∈ A1 as f̃(xβ), i.e., g ◦ψ1(β) = f̃(xβ)

for each β ∈ {0, 1, · · · , K − 1}d.

• The values of g at breakpoints in A2 ∪ {1} are properly assigned for

applying Proposition 4.9.

3.3. Apply Proposition 4.9 to construct a sub-network to implement a function

ψ2 approximating g well on A1 ∪ A2 ∪ {1}. Then φ2 = ψ2 ◦ ψ1 satisfies

φ2(β) = ψ2 ◦ψ1(β) ≈ g ◦ψ1(β) = f̃(xβ) for each β ∈ {0, 1, · · · , K − 1}d.

4. Construct the final target network to implement the desired function φ such

that φ(x) = φ2 ◦Φ1(x) + f(0) − ωf (
√
d) ≈ f̃(xβ) + f(0) − ωf (

√
d) = f(xβ)

for x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d.

4.2 Approximation of continuous functions 81

The details of these steps can be found below.

Step 1: Divide [0, 1]d into {Qβ}β∈{0,1,···,K−1}d and Ω([0, 1]d, K, δ).

Define xβ := β/K and

Qβ :=
{
x = (x1, · · · , xd) ∈ [0, 1]d : xi ∈ [βi

K
, βi+1

K
− δ · 1{βi≤K−2}] for i = 1, · · · , d

}

for each β = (β1, β2, · · · , βd) ∈ {0, 1, · · · , K − 1}d. Recall that Ω([0, 1]d, K, δ) is the

trifling region defined in Equation (2.1). Apparently, xβ is the vertex of Qβ with

minimum ‖ · ‖1 norm and

[0, 1]d =
(
∪β∈{0,1,···,K−1}d Qβ

)⋃
Ω([0, 1]d, K, δ).

See Figure 4.7 for illustrations of Ω([0, 1]d, K, δ), Qβ, and xβ for any β ∈ {0, 1, · · · , K−
1}d.

0.0 0.2 0.4 0.6 0.8 1.0

δ

Q0

δ

Q1

δ

Q2

δ

Q3 Q4

Ω([0, 1]d, K, δ) for K = 5, d = 1

Qβ for β ∈ {0, 1, 2, 3, 4}
xβ for β ∈ {0, 1, 2, 3, 4}

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q0,1 Q0,2 Q0,3

Q1,0 Q1,1 Q1,2 Q1,3

Q2,0 Q2,1 Q2,2 Q2,3

Q3,0 Q3,1 Q3,2 Q3,3

Ω([0, 1]d, K, δ) for K = 4, d = 2

Qβ for β ∈ {0, 1, 2, 3}2

xβ for β ∈ {0, 1, 2, 3}2

(b)

Figure 4.7: Illustrations of Ω([0, 1]d, K, δ), Qβ, and xβ for any β ∈ {0, 1, · · · , K−1}d.
(a) K = 5 and d = 1. (b) K = 4 and d = 2.

Step 2: Construct Φ1 mapping x ∈ Qβ to β.

By Theorem 3.12, there exists φ1 ∈ NN (width ≤ 4bN1/dc+ 3; depth ≤ 4L+ 5)

and

φ1(x) = k, if x ∈ [k
K
, k+1
K
− δ · 1{k≤K−2}], for k = 0, 1, · · · , K − 1.

82 Chapter 4. Approximation by ReLU networks

By defining

Φ1(x) :=
(
φ1(x1), φ1(x2), · · · , φ1(xd)

)
, for any x ∈ Rd,

we have Φ1(x) =
(
φ1(x1), φ1(x2), · · · , φ1(xd)

)
= β for all x ∈ Qβ and each β ∈

{0, 1, · · · , K − 1}d.

Step 3: Construct φ2 mapping β approximately to f̃(xβ).

The construction of the sub-network implementing φ2 is essentially based on

Proposition 4.9. To meet the requirements of applying Proposition 4.9, we first

define two auxiliary sets A1 and A2 as

A1 :=

{
i

Kd−1
+

k

2Kd
: i = 0, 1, · · · , Kd−1 − 1 and k = 0, 1, · · · , K − 1

}

and

A2 :=

{
i

Kd−1
+
K + k

2Kd
: i = 0, 1, · · · , Kd−1 − 1 and k = 0, 1, · · · , K − 1

}
.

Clearly, A1 ∪A2 ∪ {1} = { j
2Kd : j = 0, 1, · · · , 2Kd} and A1 ∩A2 = ∅. See Figure 4.8

for an illustration of A1 and A2. Next, we divide this step into three sub-steps.

Step 3.1: Construct ψ1 bijectively mapping {0, 1, · · · , K − 1}d to A1.

Inspired by the binary representation, we define

ψ1(x) :=
xd

2Kd
+

d−1∑

i=1

xi
Ki

, for any x = (x1, x2, · · · , xd) ∈ Rd. (4.9)

Then ψ1 is an affine linear function bijectively mapping the index set {0, 1, · · · , K−

4.2 Approximation of continuous functions 83

1}d to

{
βd

2Kd
+

d−1∑

i=1

βi
Ki

: β = (β1, · · · , βd) ∈ {0, 1, · · · , K − 1}d
}

=

{
i

Kd−1
+

k

2Kd
: i = 0, 1, · · · , Kd−1 − 1 and k = 0, 1, · · · , K − 1

}
= A1.

Step 3.2: Construct g to satisfy g ◦ψ1(β) = f̃(xβ) and to meet the requirements

of applying Proposition 4.9.

Let g : [0, 1]→ R be a continuous piecewise linear function with a set of break-

points
{

j
2Kd : j = 0, 1, · · · , 2Kd

}
= A1 ∪ A2 ∪ {1} and the values of g at these

breakpoints satisfy the following properties.

• The values of g at the breakpoints in A1 are set as

g
(
ψ1(β)

)
= f̃(xβ), for any β ∈ {0, 1, · · · , K − 1}d. (4.10)

• At the breakpoint 1, let g(1) = f̃(1), where 1 = (1, 1, · · · , 1) ∈ Rd.

• The values of g at the breakpoints in A2 are assigned to reduce the variation

of g, which is a requirement of applying Proposition 4.9. Note that

{
i

Kd−1
− K + 1

2Kd
,

i

Kd−1

}
⊆ A1 ∪ {1}, for i = 1, 2, · · · , Kd−1,

implying the values of g at i
Kd−1 − K+1

2Kd and i
Kd−1 have been assigned for

i = 1, 2, · · · , Kd−1. Thus, the values of g at the breakpoints in A2 can be

successfully assigned by letting g be linear on each interval [i
Kd−1 − K+1

2Kd ,
i

Kd−1]

for i = 1, 2, · · · , Kd−1, since A2 ⊆ ∪Kd−1

i=1 [i
Kd−1 − K+1

2Kd ,
i

Kd−1].

Apparently, such a function g exists (see Figure 4.8 for an example) and satisfies

∣∣g(j
2Kd)− g(j−1

2Kd)
∣∣ ≤ max

{
ωf (

1
K

), ωf (
√
d)/K

}
≤ ωf (

√
d
K

), for j = 1, 2, · · · , 2Kd,

84 Chapter 4. Approximation by ReLU networks

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 A1

A2

{1}
g

Figure 4.8: An illustration of A1, A2, {1}, and g for the case d = 2 and K = 4.

and

0 ≤ g(j
2Kd) ≤ 2ωf (

√
d), for j = 0, 1, · · · , 2Kd.

Step 3.3: Construct ψ2 approximating g well on A1 ∪ A2 ∪ {1}.

Since 2Kd = 2
(
bN1/dc2bL2/dc

)d ≤ 2
(
N2L2

)
≤ N2L̃2, where L̃ = 2L, by Propo-

sition 4.9 (set yj = g(j
2Kd) and ε = ωf (

√
d
K

) > 0 therein), there exists ψ̃2 ∈
NN (width ≤ 12N + 8; depth ≤ 4L̃+ 9) = NN (width ≤ 12N + 8; depth ≤ 8L+ 9)

such that

|ψ̃2(j)− g(j
2Kd)| ≤ ωf (

√
d
K

), for j = 0, 1, · · · , 2Kd − 1,

and

0 ≤ ψ̃2(x) ≤ max
{
g(j

2Kd) : j = 0, 1, · · · , 2Kd − 1
}
≤ 2ωf (

√
d), for any x ∈ R.

Define ψ2(x) := ψ̃2(2Kdx) for any x ∈ R. Then, we have ψ2 ∈ NN (width ≤
12N + 8; depth ≤ 8L+ 9) by Lemma 2.1 (i),

0 ≤ ψ2(x) = ψ̃2(2Kdx) ≤ 2ωf (
√
d), for any x ∈ R, (4.11)

and

|ψ2(j
2Kd)− g(j

2Kd)| = |ψ̃2(j)− g(j
2Kd)| ≤ ωf (

√
d
K

), (4.12)

for j = 0, 1, · · · , 2Kd − 1.

The desired function φ2 can be defined as φ2 := ψ2◦ψ1. Note that ψ1 : Rd → R is

4.2 Approximation of continuous functions 85

an affine linear map and ψ2 ∈ NN (#input = 1; width ≤ 12N +8; depth ≤ 8L+9).

Thus, by Lemma 2.1 (i), φ2 = ψ2◦ψ1 ∈ NN (#input = d; width ≤ 12N+8; depth ≤
8L+ 9). By Equation (4.10) and (4.12), we have

|φ2(β)− f̃(xβ)| = |ψ2(ψ1(β))− g(ψ1(β))| ≤ ωf (
√
d
K

), (4.13)

for any β ∈ {0, 1, · · · , K − 1}d. Equation (4.11) and φ2 = ψ2 ◦ ψ1 implies

0 ≤ φ2(x) ≤ 2ωf (
√
d), for any x ∈ Rd. (4.14)

Step 4: Construct the final network to implement the desired function φ.

Define φ := φ2 ◦Φ1 + f(0)− ωf (
√
d).

φ1 ∈ NN (#input = 1; width ≤ 4bN1/dc+ 3; depth ≤ 4L+ 5; #output = 1),

implies

Φ1 ∈ NN (#input = d; width ≤ 4dbN1/dc+ 3d; depth ≤ 4L+ 5; #output = d).

Note that φ2 ∈ NN (#input = d; width ≤ 12N + 8; depth ≤ 8L + 9). Thus, by

Lemma 2.1, φ = φ2 ◦Φ1 + f(0)− ωf (
√
d) is in

NN (width ≤ max{4dbN1/dc+3d, 12N+8}; depth ≤ (4L+5)+(8L+9) = 12L+14).

Finally, let us estimate the approximation error. Recall that f = f̃ + f(0) −
ωf (
√
d). By Equation (4.13), for any x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d, we

86 Chapter 4. Approximation by ReLU networks

have

|f(x)− φ(x)| = |f̃(x)− φ2 ◦Φ1(x)| = |f̃(x)− φ2(β)|

≤ |f̃(x)− f̃(xβ)|+ |f̃(xβ)− φ2(β)|

≤ ωf (
√
d
K

) + ωf (
√
d
K

) ≤ 2ωf (8
√
dN−2/dL−2/d),

where the last inequality comes from the fact K = bN1/dc2bL2/dc ≥ N2/dL2/d

8
for

any N,L ∈ N+. Recall the fact ωf (nr) ≤ nωf (r) for any n ∈ N+ and r ∈ [0,∞).

Therefore, for any x ∈ ∪β∈{0,1,···,K−1}dQβ = [0, 1]d\Ω([0, 1]d, K, δ), we have

|f(x)− φ(x)| ≤ 2ωf (8
√
dN−2/dL−2/d) ≤ 2

⌈
8
√
d
⌉
ωf (N

−2/dL−2/d)

≤ 18
√
dωf (N

−2/dL−2/d)

It remains to show the upper bound of φ. By Equation (4.14) and φ = φ2 ◦Φ1 +

f(0)− ωf (
√
d), we have ‖φ‖L∞(Rd) ≤ |f(0)|+ ωf (

√
d). Thus, we finish the proof.

4.2.3 Proof of key proposition for auxiliary theorem

Let us prove Proposition 4.9 to end Section 4.2. We apply Theorem 3.5 to prove

Lemma 4.10 below, which is a key intermediate conclusion to prove Proposition 4.9.

Lemma 4.10. For any ε > 0 and N,L ∈ N+, denote M = N2L and assume

ym,` ≥ 0 for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1 are samples with

|ym,` − ym,`−1| ≤ ε, for m = 0, 1, · · · ,M − 1 and ` = 1, 2, · · · , L− 1.

Then there exists φ ∈ NN (#input = 2; width ≤ 12N+8; depth ≤ 3L+6; #output =

1) such that

(i) |φ(m, `)− ym,`| ≤ ε for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1.

(ii) 0 ≤ φ(x1, x2) ≤ max{ym,` : m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L − 1} for

any x1, x2 ∈ R.

4.2 Approximation of continuous functions 87

Proof. Define

am,` := bym,`/εc, for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1.

We will construct a function implemented by a ReLU network to map the index

(m, `) to am,`ε = bym,`/εcε ≈ ym,` for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1.

Define bm,0 := 0 and bm,` := am,` − am,`−1 for m = 0, 1, · · · ,M − 1 and ` =

1, · · · , L− 1. Since |ym,` − ym,`−1| ≤ ε for all m and `, we have

bm,` = am,` − am,`−1 = bym,`/εc − bym,`−1/εc ∈ {−1, 0, 1}.

Hence, there exist cm,` and dm,` ∈ {0, 1} such that bm,` = cm,` − dm,`, which implies

am,` = am,0 +
∑̀

j=1

(am,j − am,j−1) = am,0 +
∑̀

j=1

bm,j = am,0 +
∑̀

j=0

bm,j

= am,0 +
∑̀

j=0

cm,j −
∑̀

j=0

dm,j.

for m = 0, 1, · · · ,M − 1 and ` = 1, · · · , L− 1.

Consider the sample set

{(m, am,0) : m = 0, 1, · · · ,M − 1} ∪ {(M, 0)}.

Its size is M + 1 = N ·
(
(NL − 1) + 1

)
+ 1. By Theorem 3.2 (set m = N and

n = NL− 1 therein), there exists

ψ1 ∈ NN (widthvec = [2N, 2(NL− 1) + 1]) = NN (widthvec = [2N, 2NL− 1])

such that

ψ1(m) = am,0, for m = 0, 1, · · · ,M − 1.

By Theorem 3.5, there exist ψ2, ψ3 ∈ NN (width ≤ 4N + 3; depth ≤ 3L + 3)

88 Chapter 4. Approximation by ReLU networks

such that

ψ2(m, `) =
∑̀

j=0

cm,j and ψ3(m, `) =
∑̀

j=0

dm,j,

for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1. Hence, it holds that

am,` = am,0 +
∑̀

j=0

cm,j −
∑̀

j=0

dm,j = ψ1(m) + ψ2(m, `)− ψ3(m, `), (4.15)

for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1.

Define

ymax := max{ym,` : m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1}.

Recall that, for any x1, x2 ∈ R, we have

min{x1, x2} = x1+x2−|x1−x2|
2

= σ(x1+x2)−σ(−x1−x2)−σ(x1−x2)−σ(−x1+x2)
2

. (4.16)

Then the desired function can be implemented by the composition of two sub-

networks shown in Figure 4.9.

m

`

ψ1(m)

ψ2(m, `)

ψ3(m, `)

am,`ε =: φ1(m, `)

ψ1

ψ2

ψ3

(a) φ1

x σ(x)

σ
(
σ(x) + ymax

)

σ
(
− σ(x)− ymax

)

σ
(
σ(x)− ymax

)

σ
(
− σ(x) + ymax

)

min
{
σ(x), ymax

}
=: φ2(x)

(b) φ2

Figure 4.9: Illustrations of two sub-network architectures for implementing the de-

sired function φ = φ2◦φ1 based on Equation (4.15) and (4.16) for m = 0, 1, · · · ,M−1

and ` = 0, 1, · · · , L− 1.

By Theorem 3.1, ψ1 ∈ NN (widthvec = [2N, 2NL − 1]) ⊆ NN (width ≤ 4N +

2; depth ≤ L+1). Note that ψ2, ψ3 ∈ NN (width ≤ 4N +3; depth ≤ 3L+3). Thus,

φ1 ∈ NN
(
width ≤ (4N +2)+2(4N +3) = 12N +8; depth ≤ (3L+3)+1 = 3L+4

)

as shown in Figure 4.9. It is clear that φ2 ∈ NN (width ≤ 4; depth ≤ 2), implying

4.2 Approximation of continuous functions 89

φ = φ2 ◦ φ1 ∈ NN
(
width ≤ 12N + 8; depth ≤ (3L + 4) + 2 = 3L + 6

)
by

Lemma 2.1 (ii).

Clearly, 0 ≤ φ(x1, x2) ≤ ymax for any x1, x2 ∈ R, since φ(x1, x2) = φ2 ◦
φ1(x1, x2) = max{σ(φ1(x1, x2)), ymax}.

Note that 0 ≤ am,`ε = bym,`/εcε ≤ ymax. Then we have φ(m, `) = φ2 ◦φ1(m, `) =

φ2(am,`ε) = max{σ(am,`ε), ymax} = am,`ε. Therefore,

|φ(m, `)− ym,`| = |am,`ε− ym,`| =
∣∣bym,`/εcε− ym,`

∣∣ ≤ ε,

for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1. Hence, we finish the proof.

With Lemma 4.10 in hand, we are ready to prove Proposition 4.9.

Proof of Proposition 4.9. Let M = N2L, then we may assume J = ML since we

can set yJ−1 = yJ = yJ+1 = · · · = yML−1 if J < ML.

Consider the sample set

{(mL,m) : m = 0, 1, · · · ,M} ∪ {(mL+ L− 1,m) : m = 0, 1, · · · ,M − 1},

whose size is 2M + 1 = N ·
(
(2NL− 1) + 1

)
+ 1. By Theorem 3.2 (set m = N and

n = NL− 1 therein), there exist

φ1 ∈ NN (widthvec = [2N, 2(2NL− 1) + 1]) = NN (widthvec = [2N, 4NL− 1])

such that

• φ1(ML) = M and φ1(mL) = φ1(mL+ L− 1) = m for m = 0, 1, · · · ,M − 1.

• φ1 is linear on each interval [mL,mL+ L− 1] for m = 0, 1, · · · ,M − 1.

It follows that

φ1(j) = m, and j − Lφ1(j) = `, where j = mL+ `, (4.17)

90 Chapter 4. Approximation by ReLU networks

for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1.

Note that any number j in {0, 1, . . . , J−1} can be uniquely indexed as j = mL+`

for m = 0, 1, · · · ,M−1 and ` = 0, 1, · · · , L−1. So we can denote yj = ymL+` by ym,`.

Then by Lemma 4.10, there exists φ2 ∈ NN (width ≤ 12N + 8; depth ≤ 3L + 6)

such that

|φ2(m, `)− ym,`| ≤ ε, for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1, (4.18)

and

0 ≤ φ2(x1, x2) ≤ ymax, for any x1, x2 ∈ R, (4.19)

where ymax := max{ym,` : m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L − 1} = max{yj :

j = 0, 1, · · · ,ML − 1}. Then the desired function φ can be implemented by the

network in Figure 4.10.

j

φ1(j)

j

φ1(j)

j − Lφ1(j)

φ(j) := φ2
(
φ1(j), j − Lφ1(j)

)
= φ2(m, `) = φ(j) ≈ ym,` = yj

φ1
φ2

Figure 4.10: An illustration of the network architecture implementing the desired

function φ based on Equation (4.17). The index j ∈ {0, 1, · · · ,ML − 1} is unique

represented by j = mL+ ` for m = 0, 1, · · · ,M − 1 and ` = 0, 1, · · · , L− 1.

Note that φ1 ∈ NN (widthvec = [2N, 4NL−1]) ⊆ NN (width ≤ 8N+2; depth ≤
L + 1) by Theorem 3.1 and φ2 ∈ NN (width ≤ 12N + 8; depth ≤ 3L + 6). So φ ∈
NN (width ≤ max{8N+2+1, 12N+8} = 12N+8; depth ≤ (L+1)+2+(3L+6) =

4L+ 9) as shown in Figure 4.10.

By Equation (4.19) and Figure 4.10, we have

0 ≤ φ(x) ≤ ymax = max{yj : j = 0, 1, · · · ,ML− 1}, for any x ∈ R.

Represent j ∈ {0, 1, · · · ,ML − 1} via j = mL + ` for m = 0, 1, · · · ,M − 1 and

4.3 Approximation of smooth functions 91

` = 0, 1, · · · , L− 1, then we have, by Equation (4.18),

|φ(j)− yj| = |φ2

(
φ1(j), j − Lφ1(j)

)
− yj| = |φ2(m, `)− ym,`| ≤ ε.

So we finish the proof.

We would like to remark that the key idea in the proof of Proposition 4.9 is

the “bit extraction” technique, which allows us to store L bits in a binary number

bin0.θ1θ2 · · · θL and extract each bit θi. The extraction operator can be efficiently

carried out via a deep ReLU neural network, demonstrating the power of depth.

4.3 Approximation of smooth functions

In Section 4.2, we show that the approximation of a function f ∈ C([0, 1])d, by

ReLU networks with width O(N) and depth O(L), admits an approximation error

19
√
dωf (N

−2/dL−2/d) in the Lp-norm for p ∈ [1,∞]. The next question is whether

the smoothness of functions can improve the approximation error. In this section,

we investigate the approximation of smooth functions by ReLU networks.

4.3.1 Main theorem and its proof

Theorem 4.11 below shows that ReLU networks with width O(N lnN) and depth

O(L lnL) can approximate a function f ∈ Cs([0, 1]d) with a nearly optimal ap-

proximation error O(‖f‖Cs([0,1]d)N
−2s/dL−2s/d). See Section 4.4.2 for the optimality

discussion.

Theorem 4.11. Given a smooth function f ∈ Cs([0, 1]d) with s ∈ N+, for any

N,L ∈ N+, there exists a function φ implemented by a ReLU network with width

C1(N + 2) log2(8N) and depth C2(L+ 2) log2(4L) + 2d such that

‖φ− f‖L∞([0,1]d) ≤ C3‖f‖Cs([0,1]d)N
−2s/dL−2s/d,

92 Chapter 4. Approximation by ReLU networks

where C1 = 17sd+13dd, C2 = 18s2, and C3 = 85(s+ 1)d8s.

As we can see from Theorem 4.11, the smoothness improves the approximation

error in N and L. However, we would like to remark that the improved approxima-

tion error is at the price of much larger constants.

In Theorem 4.11, the logarithmic terms in width and depth can be further re-

duced if the approximation error is weaken. Note that for any Ñ , L̃ ∈ N+ with

Ñ ≥ C1(1+2) log2(8) = 17sd+13d+2d and L̃ ≥ C2(1+2) log2(4)+2d = 108s2 +2d,

there exist N,L ∈ N+ such that

C1(N + 2) log2(8N) ≤ Ñ < C1

(
(N + 1) + 2

)
log2

(
8(N + 1)

)

and

C2(L+ 2) log2(4L) + 2d ≤ L̃ < C2

(
(L+ 1) + 2

)
log2

(
4(L+ 1)

)
+ 2d.

It follows that

N ≥ N + 3

4
>

Ñ

4C1 log2(8N + 8)
≥ Ñ

68sd+13dd log2(8Ñ + 8)

and

L ≥ L+ 3

4
>

L̃− 2d

4C2 log2(4L+ 4)
≥ L̃− 2d

72s2 log2(4L̃+ 4)
.

Thus, we have an immediate corollary.

Corollary 4.12. Given a function f ∈ Cs([0, 1]d) with s ∈ N+, for any Ñ , L̃ ∈ N+,

there exist a function φ implemented by a ReLU network with width Ñ and depth L̃

such that

‖φ− f‖L∞([0,1]d) ≤ C̃1‖f‖Cs([0,1]d)

(
Ñ

C̃2 log2(8Ñ+8)

)−2s/d(
L̃−2d

C̃3 log2(4L̃+4)

)−2s/d

,

4.3 Approximation of smooth functions 93

for any Ñ ≥ 17sd+13d+2d and L̃ ≥ 108s2 + 2d, where C̃1 = 85(s + 1)d8s, C̃2 =

68sd+13dd, and C̃3 = 72s2.

To prove Theorem 4.11, we first introduce Theorem 4.13, a simplified version of

Theorem 4.11 ignoring the approximation error in the trifling region Ω([0, 1]d, K, δ).

Then Theorem 4.11 can be easily proved by combining Theorem 3.7 and 4.13 to-

gether. Recall that Cs
u([0, 1]d) is the closed unit ball of Cs([0, 1]d).

Theorem 4.13. Given a smooth function f ∈ Cs
u([0, 1]d), for any N,L ∈ N+,

there exists a function φ implemented by ReLU network with width 16sd+1d(N +

2) log2(8N) and depth 18s2(L+ 2) log2(4L) such that

|φ(x)− f(x)| ≤ 84(s+ 1)d8sN−2s/dL−2s/d, for any x ∈ [0, 1]d\Ω([0, 1]d, K, δ),

where K = bN1/dc2bL2/dc and δ is an arbitrary number in (0, 1
3K

].

Theorem 4.13 will be proved in Section 4.3.3. By assuming Theorem 4.13 is true,

we can prove Theorem 4.11 based on Theorem 3.7.

Proof of Theorem 4.11. We may assume ‖f‖Cs([0,1]d) > 0 since ‖f‖Cs([0,1]d) = 0 is a

trivial case. Define f̃ := f
‖f‖

Cs([0,1]d)
∈ Cs

u([0, 1]d), set K = bN1/dc2bL2/dc, and choose

a small δ ∈ (0, 1
3K

] such that

d · ωf (δ) ≤ N−2s/dL−2s/d.

By Theorem 4.13, there exists a function φ̂ implemented by a ReLU network with

width 16sd+1d(N + 2) log2(8N) and depth 18s2(L+ 2) log2(4L) such that

|φ̂(x)− f̃(x)| ≤ 84(s+ 1)d8sN−2s/dL−2s/d, for any x ∈ [0, 1]d\Ω([0, 1]d, K, δ),

By Theorem 3.7, there exists a new function φ̃ implemented by a ReLU network

94 Chapter 4. Approximation by ReLU networks

with width

3d
(

16sd+1d(N + 2) log2(8N) + 4
)
≤ 17sd+13dd(N + 2) log2(8N)

and depth 18s2(L+ 2) log2(4L) + 2d such that

‖φ̃− f̃‖L∞([0,1]d) ≤ 84(s+ 1)d8sN−2s/dL−2s/d + d · ωf (δ)

≤ 85(s+ 1)d8sN−2s/dL−2s/d.

Finally, set φ = ‖f‖Cs([0,1]d) · φ̃, then

‖φ− f‖L∞([0,1]d) = ‖f‖Cs([0,1]d) · ‖f̃ − φ̃‖L∞([0,1]d)

≤ 85(s+ 1)d8s‖f‖Cs([0,1]d)N
−2s/dL−2s/d,

and φ can also be implemented by a ReLU network with width 17sd+13dd(N +

2) log2(8N) and depth 18s2(L+ 2) log2(4L) + 2d. So we finish the proof.

It remains to prove Theorem 4.13, a weaker version of Theorem 4.11 targeting

a ReLU network constructed to approximate a smooth function outside the trifling

region. We discuss the ideas of the proof in Section 4.3.2 and give the detailed proof

in Section 4.3.3.

4.3.2 Ideas of proving auxiliary theorem

Set K = O(N2/dL2/d) and let Ω([0, 1]d, K, δ) partition [0, 1]d into Kd cubes Qβ for

β ∈ {0, 1, · · · , K − 1}d. In particular, for each β = (β1, β2, · · · , βd) ∈ {0, 1, · · · , K −
1}d, we define xβ := β/K and

Qβ =
{
x = (x1, x2, · · · , xd) : xi ∈ [βi

K
, βi+1

K
− δ · 1{βi≤K−2}] for i = 1, 2, · · · , d

}
.

Clearly, [0, 1]d = Ω([0, 1]d, K, δ)
⋃(∪β∈{0,1,···,K−1}d Qβ

)
and xβ is the vertex of Qβ

with minimum ‖ · ‖1 norm. See Figure 4.11 for the illustrations of Ω([0, 1]d, K, δ),

4.3 Approximation of smooth functions 95

Qβ, and xβ for any β ∈ {0, 1, · · · , K − 1}d.

0.0 0.2 0.4 0.6 0.8 1.0

δ

Q0

δ

Q1

δ

Q2

δ

Q3 Q4

Ω([0, 1]d, K, δ) for K = 5, d = 1

Qβ for β ∈ {0, 1, 2, 3, 4}
xβ for β ∈ {0, 1, 2, 3, 4}

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q0,1 Q0,2 Q0,3

Q1,0 Q1,1 Q1,2 Q1,3

Q2,0 Q2,1 Q2,2 Q2,3

Q3,0 Q3,1 Q3,2 Q3,3

Ω([0, 1]d, K, δ) for K = 4, d = 2

Qβ for β ∈ {0, 1, 2, 3}2

xβ for β ∈ {0, 1, 2, 3}2

(b)

Figure 4.11: Illustrations of Ω([0, 1]d, K, δ), Qβ, and xβ for any β ∈ {0, 1, · · · , K −
1}d. (a) K = 5 and d = 1. (b) K = 4 and d = 2.

For any x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d, there exists ξx ∈ (0, 1) such

that

f(x) =
∑

‖α‖1≤s−1

∂αf(xβ)

α!
hα

︸ ︷︷ ︸
T1

+
∑

‖α‖1=s

∂αf(xβ+ξxh)

α!
hα

︸ ︷︷ ︸
T2

=: T1 + T2, 2○

where h = x− xβ = x− β/K. It is clear that the magnitude of T2 is bounded by

O(K−s) = O(N−2s/dL−2s/d). So we only need to construct a function inNN
(
width ≤

O(N lnN); depth ≤ O(L lnL)
)

to approximate

T1 =
∑

‖α‖1≤s−1

∂αf(xβ)

α!
hα

within an error O(N−2s/dL−2s/d). To approximate T1 well by ReLU networks, we

need three key steps as follows.

• Construct a ReLU network to implement a vector-valued function Ψ : Rd →
Rd projecting the whole cube Qβ to the point xβ = β

K
, i.e., Ψ(x) = xβ for

any x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d.

• Construct a ReLU network to implement a function Pα : Rd → R approxi-

mating the polynomial hα for each α ∈ Nd with ‖α‖1 ≤ s− 1.

2○∑
‖α‖1=s is short for

∑
‖α‖1=s,α∈Nd . The same notation is used throughout this dissertation.

96 Chapter 4. Approximation by ReLU networks

• Construct a ReLU network to implement a function φα : Rd → R approximat-

ing ∂αf via solving a point fitting problem, i.e., φα should fit ∂αf well at all

points in
{
xβ : β ∈ {0, 1, · · · , K − 1}d

}
for each α ∈ Nd with ‖α‖1 ≤ s − 1.

That is, for each α ∈ Nd with ‖α‖1 ≤ s − 1, we need to design φα to make

the following equation true.

∣∣φα(xβ)− ∂αf(xβ)
∣∣ ≤ O(N−2s/dL−2s/d), for any β ∈ {0, 1, · · · , K − 1}d.

Note that the first and second steps are done by Theorem 3.12 and 4.1, respec-

tively. We will establish a proposition for the last step, which will be applied to

support the construction of the desired ReLU networks. Its proof will be avail-

able later in Section 4.3.4. In fact, we can construct ReLU networks with width

O(sN lnN) and depthO(L lnL) to fitO(N2L2) points with an errorO(N−2sL−2s) ≤
O(N−2s/dL−2s/d) as shown in Proposition 4.14 below.

Proposition 4.14. Given any N,L, s ∈ N+ and ξi ∈ [0, 1] for i = 0, 1, · · · , N2L2−1,

there exists φ ∈ NN (#input = 1; width ≤ 16s(N + 1) log2(8N); depth ≤ 5(L +

2) log2(4L); #output = 1) such that

(i) |φ(i)− ξi| ≤ N−2sL−2s for i = 0, 1, · · · , N2L2 − 1.

(ii) 0 ≤ φ(x) ≤ 1 for any x ∈ R.

The proof of Proposition 4.14 can be found in Section 4.3.4. Finally, let us

summarize the main ideas of proving Theorem 4.13 in Table 4.1. See the detailed

proof in Section 4.3.3.

4.3.3 Proof of auxiliary theorem

According to the key ideas of proving Theorem 4.13 we summarized in Sec-

tion 4.3.2, we are ready to present the detailed proof.

Proof of Theorem 4.13. The detailed proof can be divided into three steps as follows.

4.3 Approximation of smooth functions 97

Table 4.1: Key ideas of approximating a smooth function. Note that h = x−Ψ(x) =

x− xβ for any x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d.

target function function implemented by network width depth approximation error

step function Ψ(x) O(N) O(L) no error outside Ω([0, 1]d, K, δ)

x1x2 ϕ(x1, x2) O(N) O(L) E1 = 216(N + 1)−2s(L+1)

hα Pα(h) O(N) O(L) E2 = 9s(N + 1)−7sL

∂αf(Ψ(x)) φα(Ψ(x)) O(N lnN) O(L lnL) E3 = 2N−2sL−2s

∑
‖α‖≤s−1

∂αf(Ψ(x))
α!

hα
∑

‖α‖≤s−1

ϕ
(
φα(Ψ(x))

α!
, Pα(h)

)
O(N lnN) O(L lnL) O(E1 + E2 + E3)

f(x) φ(x) :=
∑

‖α‖≤s−1

ϕ
(
φα(Ψ(x))

α!
, Pα

(
x−Ψ(x)

))
O(N lnN) O(L lnL)

O(‖h‖−s2 + E1 + E2 + E3)

≤ O(K−s) = O(N−2s/dL−2s/d)

Step 1: Set up.

Set K = bN1/dc2bL2/dc and let Ω([0, 1]d, K, δ) partition [0, 1]d into Kd cubes

Qβ for each β ∈ {0, 1, · · · , K − 1}d. In particular, for each β = (β1, β2, · · · , βd) ∈
{0, 1, · · · , K − 1}d, we define xβ := β/K and

Qβ :=
{
x = (x1, x2, · · · , xd) : xi ∈ [βi

K
, βi+1

K
− δ · 1{βi≤K−2}] for i = 1, 2, · · · , d

}
.

Clearly, [0, 1]d = Ω([0, 1]d, K, δ)
⋃(∪β∈{0,1,···,K−1}d Qβ

)
and xβ is the vertex of Qβ

with minimum ‖ · ‖1 norm. See Figure 4.11 for the illustrations of Ω([0, 1]d, K, δ),

Qβ, and xβ for any β ∈ {0, 1, · · · , K − 1}d.
By Theorem 3.12, there exists ψ ∈ NN (width ≤ 4N + 3; depth ≤ 4L+ 5) such

that

ψ(x) = k, if x ∈ [k
K
, k+1
K
− δ · 1{k≤K−2}], for k = 0, 1, · · · , K − 1.

Then, for each β ∈ {0, 1, · · · , K − 1}d, ψ(xi) = βi for all x ∈ Qβ for i = 1, 2, · · · , d.

Define

Ψ(x) :=
(
ψ(x1), ψ(x2), · · · , ψ(xd)

)
/K, for any x ∈ Rd,

98 Chapter 4. Approximation by ReLU networks

then

Ψ(x) = β/K = xβ, if x ∈ Qβ, for any β ∈ {0, 1, · · · , K − 1}d.

For any x ∈ Qβ and each β ∈ {0, 1, · · · , K− 1}d, by the Taylor expansion, there

exists ξx ∈ (0, 1) such that

f(x) =
∑

‖α‖1≤s−1

∂αf(Ψ(x))
α!

hα +
∑

‖α‖1=s

∂αf(Ψ(x)+ξxh)
α!

hα, where h = x−Ψ(x).

Step 2: Construct the desired function φ.

By Lemma 4.4, there exists ϕ ∈ NN
(
width ≤ 9(N + 1) + 1; depth ≤ 2s(L+ 1)

)

such that

|ϕ(x1, x2)− x1x2| ≤ 216(N + 1)−2s(L+1) =: E1, for any x1, x2 ∈ [−3, 3]. (4.20)

For each α ∈ Nd with ‖α‖1 ≤ s, by Theorem 4.1, there exists Pα in

NN
(
width ≤ 9(N + 1) + s− 1; depth ≤ 7s2L

)

such that

|Pα(x)− xα| ≤ 9s(N + 1)−7sL =: E2, for any x ∈ [0, 1]d. (4.21)

For each i = 0, 1, · · · , Kd − 1, define

η(i) = (η1, η2, · · · , ηd) ∈ {0, 1, · · · , K − 1}d

such that
d∑
j=1

ηjK
j−1 = i. Such a map η is a bijection from {0, 1, · · · , Kd − 1} to

4.3 Approximation of smooth functions 99

{0, 1, · · · , K − 1}d. For each α ∈ Nd with ‖α‖1 ≤ s− 1, define

ξα,i =
(
∂αf(η(i)

K
) + 1

)
/2, for any i ∈ {0, 1, · · · , Kd − 1}.

Note that Kd =
(
bN1/dc2bL2/dc

)d ≤ N2L2 and ξα,i =
(
∂αf(η(i)

K
) + 1

)
/2 ∈ [0, 1] for

i = 0, 1, · · · , Kd − 1. By Proposition 4.14, there exists

φ̃α ∈ NN
(
width ≤ 16s(N + 1) log2(8N); depth ≤ 5(L+ 2) log2(4L)

)

such that, for each α ∈ Nd with ‖α‖1 ≤ s− 1, we have

|φ̃α(i)− ξα,i| ≤ N−2sL−2s, for i = 0, 1, · · · , Kd − 1.

For each α ∈ Nd with ‖α‖1 ≤ s− 1, define

φα(x) := 2φ̃α
(d∑

j=1

xjK
j−1
)
− 1, for any x = (x1, x2, · · · , xd) ∈ Rd,

which implies by Lemma 2.1 that

φα ∈ NN
(
width ≤ 16s(N + 1) log2(8N); depth ≤ 5(L+ 2) log2(4L)

)
.

Then, for each η = η(i) = (η1, η2, · · · , ηd) ∈ {0, 1, · · · , K − 1}d corresponding to

i =
∑d

j=1 ηjK
j−1 ∈ {0, 1, · · · , Kd − 1} and each α ∈ Nd with ‖α‖1 ≤ s− 1, we have

∣∣φα(η
K

)− ∂αf(η
K

)
∣∣ =

∣∣∣2φ̃α
(d∑

j=1

ηjK
j−1
)
− 1− (2ξα,i − 1)

∣∣∣

= 2|φ̃α(i)− ξα,i| ≤ 2N−2sL−2s.

Thus, for each β ∈ {0, 1, · · · , K − 1}d, we have

∣∣φα(xβ)− ∂αf(xβ)
∣∣ =

∣∣φα(β
K

)− ∂αf(β
K

)
∣∣ ≤ 2N−2sL−2s =: E3. (4.22)

100 Chapter 4. Approximation by ReLU networks

Now we can construct the target function φ as

φ(x) :=
∑

‖α‖1≤s−1

ϕ
(
φα(Ψ(x))

α!
, Pα

(
x−Ψ(x)

))
, for any x ∈ Rd. (4.23)

Step 3: Estimate approximation error.

Fix β ∈ {0, 1, · · · , K − 1}d, let us estimate the approximation error for a fixed

x ∈ Qβ. Recall that Ψ(x) = xβ and h = x −Ψ(x) = x− xβ. Then, it is easy to

verify that |f(x)− φ(x)| is bounded by

∣∣∣∣∣∣
∑

‖α‖1≤s−1

∂αf(Ψ(x))
α!

hα +
∑

‖α‖1=s

∂αf(Ψ(x)+ξxh)
α!

hα −
∑

‖α‖1≤s−1

ϕ
(
φα(Ψ(x))

α!
, Pα

(
x−Ψ(x)

))
∣∣∣∣∣∣

≤
∑

‖α‖1=s

∣∣∣∂
αf(xβ+ξxh)

α!
hα
∣∣∣

︸ ︷︷ ︸
I1

+
∑

‖α‖1≤s−1

∣∣∣∂
αf(xβ)

α!
hα − ϕ

(φα(xβ)

α!
, Pα(h)

)∣∣∣
︸ ︷︷ ︸

I2

=: I1 + I2.

Recall that
∑

‖α‖1=s

1 =
∣∣{α ∈ Nd : ‖α‖1 = s

}∣∣ ≤ (s+ 1)d−1 3○

and

∑

‖α‖1≤s−1

1 =
s−1∑

i=0

(∑

‖α‖1=i

1

)
≤

s−1∑

i=0

(i+ 1)d−1 ≤ s · (s− 1 + 1)d−1 = sd.

For the first part I1, we have

I1 =
∑

‖α‖1=s

∣∣∣∂
αf(xβ+ξxh)

α!
hα
∣∣∣ ≤

∑

‖α‖1=s

∣∣∣ 1
α!
hα
∣∣∣ ≤ (s+ 1)d−1K−s.

3○In fact, we have
∣∣{α ∈ Nd : ‖α‖1 = s

}∣∣ =
(
s+d−1
d−1

)
, implying (s/d + 1)d−1 ≤ ∑‖α‖1=s 1 ≤

(s+ 1)d−1. Thus, the lower bound of the estimate is still exponentially large in d. To the best of
our knowledge, we cannot avoid a constant prefactor that is exponentially large in d when Taylor
expansion is used in the analysis.

4.3 Approximation of smooth functions 101

Now let us estimate the second part I2 as follows.

I2 =
∑

‖α‖1≤s−1

∣∣∣∂
αf(xβ)

α!
hα − ϕ

(φα(xβ)

α!
, Pα(h)

)∣∣∣

≤
∑

‖α‖1≤s−1

∣∣∣∂
αf(xβ)

α!
hα − ϕ

(∂αf(xβ)

α!
, Pα(h)

)∣∣∣
︸ ︷︷ ︸

I2,1

+
∑

‖α‖1≤s−1

∣∣∣ϕ
(∂αf(xβ)

α!
, Pα(h)

)
− ϕ

(φα(xβ)

α!
, Pα(h)

)∣∣∣
︸ ︷︷ ︸

I2,2

=: I2,1 + I2,2.

Note that E2 = 9s(N + 1)−7sL ≤ 9s(2)−7s ≤ 2. By Equation (4.21), it easy to

verify that Pα(h) ∈ [−2, 3] ⊆ [−3, 3] for each α ∈ Nd with ‖α‖1 ≤ s − 1. Clearly,

h ∈ [0, 1]d and
∂αf(xβ)

α!
∈ [−1, 1] ⊆ [−3, 3] for each α . Then, by Equation (4.20)

and (4.21), we have

I2,1 =
∑

‖α‖1≤s−1

∣∣∣∂
αf(xβ)

α!
hα − ϕ

(∂αf(xβ)

α!
, Pα(h)

)∣∣∣

≤
∑

‖α‖1≤s−1

(∣∣∣∂
αf(xβ)

α!
hα − ∂αf(xβ)

α!
Pα(h)

∣∣∣ +
∣∣∣∂
αf(xβ)

α!
Pα(h)− ϕ

(∂αf(xβ)

α!
, Pα(h)

)∣∣∣
︸ ︷︷ ︸

≤ E1 by Eq. (4.20)

)

≤
∑

‖α‖1≤s−1

(
1
α!

∣∣hα − Pα(h)
∣∣

︸ ︷︷ ︸
≤ E2 by Eq. (4.21)

+E1

)
≤

∑

‖α‖1≤s−1

(E2 + E1) ≤ sd(E1 + E2).

To estimate I2,2, we need the following fact derived from Equation (4.20):

|ϕ(x1, x2)− ϕ(x̃1, x2)|≤ |ϕ(x1, x2)− x1x2|︸ ︷︷ ︸
≤ E1 by Eq. (4.20)

+ |ϕ(x̃1, x2)− x̃1x2|︸ ︷︷ ︸
≤ E1 by Eq. (4.20)

+|x1x2 − x̃1x2|

≤ 2E1 + 3|x1 − x̃1|,
(4.24)

for any x1, x̃1, x2 ∈ [−3, 3].

Since E3 = 2N−2sL−2s ≤ 2 and
∂αf(xβ)

α!
∈ [−1, 1] for each α ∈ Nd with ‖α‖1 ≤

s − 1, we have
φα(xβ)

α!
∈ [−3, 3] by Equation (4.22). Recall that Pα(h) ∈ [−3, 3].

102 Chapter 4. Approximation by ReLU networks

Then, by Equation (4.22) and (4.24), we have

I2,2 =
∑

‖α‖1≤s−1

∣∣∣ϕ
(∂αf(xβ)

α!
, Pα(h)

)
− ϕ

(φα(xβ)

α!
, Pα(h)

)∣∣∣
︸ ︷︷ ︸
≤ 2E1 + 3

α!
|∂αf(xβ)− φα(xβ)| by Eq. (4.24)

≤
∑

‖α‖1≤s−1

(
2E1 + 3

α!

∣∣∂αf(xβ)− φα(xβ)
∣∣

︸ ︷︷ ︸
≤ E3 by Eq. (4.22)

)
≤

∑

‖α‖1≤s−1

(2E1 + 3E3) ≤ sd(2E1 + 3E3).

Therefore, we have

|f(x)− φ(x)| ≤ I1 + I2 ≤ I1 + I2,1 + I2,2

≤ (s+ 1)d−1K−s + sd(E1 + E2) + sd(2E1 + 3E3)

≤ (s+ 1)d(K−s + 3E1 + E2 + 3E3).

Recall the fact [0, 1]d\Ω([0, 1]d, K, δ) = ∪β∈{0,1,···,K−1}dQβ. Since β ∈ {0, 1, · · · , K−
1}d and x ∈ Qβ are arbitrary, we have,

|f(x)− φ(x)| ≤ (s+ 1)d(K−s + 3E1 + E2 + 3E3),

for any x ∈ [0, 1]d\Ω([0, 1]d, K, δ). Note that K = bN1/dc2bL2/dc ≥ N2/dL2/d

8
and

(N + 1)−7sL ≤ (N + 1)−2s(L+1) ≤ (N + 1)−2s2−2sL ≤ N−2sL−2s.

Then we have

(s+ 1)d(K−s + 3E1 + E2 + 3E3)

= (s+ 1)d
(
K−s + 648(N + 1)−2s(L+1) + 9s(N + 1)−7sL + 6N−2sL−2s

)

≤ (s+ 1)d
(

8sN−2s/dL−2s/d + (654 + 9s)N−2sL−2s
)

≤ (s+ 1)d(8s + 654 + 9s)N−2s/dL−2s/d ≤ 84(s+ 1)d8sN−2s/dL−2s/d.

It remains to estimate the width and depth of the network implementing φ.

4.3 Approximation of smooth functions 103

Recall that, for each α ∈ Nd with ‖α‖1 ≤ s− 1,





Ψ ∈ NN
(
width ≤ d(4N + 3); depth ≤ 4L+ 5

)
,

φα ∈ NN
(
width ≤ 16s(N + 1) log2(8N); depth ≤ 5(L+ 2) log2(4L)

)
,

Pα ∈ NN
(
width ≤ 9(N + 1) + s− 1; depth ≤ 7s2L

)
,

ϕ ∈ NN
(
width ≤ 9N + 10; depth ≤ 2s(L+ 1)

)
.

x

Ψ(x)

x

φα(Ψ(x))

x−Ψ(x)

φα(Ψ(x))
α!

Pα
(
x−Ψ(x)

)
ϕ

(
φα

(
Ψ(x)

)

α!
, Pα

(
x−Ψ(x)

))Ψ

Pα

φα

ϕ

Figure 4.12: An illustration of the sub-network architecture implementing

ϕ
(
φα(Ψ(x))

α!
, Pα

(
x − Ψ(x)

))
for each α ∈ Nd with ‖α‖ ≤ s − 1 when x ∈ Qβ

for each β ∈ {0, 1, · · · , K − 1}d.

By Equation (4.23) and Figure 4.12, it easy to verify φ can be implemented by

a ReLU network with width

∑

‖α‖1≤s−1

16sd(N + 2) log2(8N) ≤ sd · 16sd(N + 2) log2(8N)

= 16sd+1d(N + 2) log2(8N)

and depth

(4L+ 5) + 5(L+ 2) log2(4L) + 7s2L + 2s(L+ 1) + 3 ≤ 18s2(L+ 2) log2(4L).

So we finish the proof.

4.3.4 Proof of key proposition for auxiliary theorem

Let us discuss the construction of ReLU networks to fit a collection of points

in R2. It is trivial to fit n points via one-hidden-layer ReLU networks with O(n)

parameters. However, to prove Proposition 4.14, we need to fit n points with much

104 Chapter 4. Approximation by ReLU networks

fewer parameters, which is the main difficulty of our proof. Our proof below is mainly

based on the “bit extraction” technique and the idea of function compositions.

Proof of Proposition 4.14. Set J = d2s log2(NL+ 1)e ∈ N+. For each ξi ∈ [0, 1],

there exist ξi,1, ξi,2, · · · , ξi,J ∈ {0, 1} such that

∣∣ξi − bin0.ξi,1ξi,2 · · · ξi,J
∣∣ ≤ 2−J , for i = 0, 1, · · · , N2L2 − 1.

By Theorem 3.4, there exist

φ1, φ2, · · · , φJ ∈ NN (width ≤ 8N + 6; depth ≤ 5L+ 7)

such that

φj(i) = ξi,j, for i = 0, 1, · · · , N2L2 − 1 and j = 1, 2, · · · , J .

It follows that, for i = 0, 1, · · · , N2L2 − 1,

∣∣∣
J∑

j=1

2−jφj(i)− ξi
∣∣∣ =

∣∣∣
J∑

j=1

2−jξi,j − ξi
∣∣∣

=
∣∣bin0.ξi,1ξi,2 · · · ξi,J − ξi

∣∣ ≤ 2−J ≤ N−2sL−2s,

(4.25)

where the last inequality comes from

2−J = 2−d2s log2(NL+1)e ≤ 2−2s log2(NL+1) = (NL+ 1)−2s ≤ N−2sL−2s.

Recall that

J = d2s log2(NL+ 1)e ≤ 2s
(
1 + log2(NL+ 1)

)
≤ 2s

(
1 + log2(2N) + log2 L

)

≤ 2s
(
1 + log2(2N)

)(
1 + log2 L

)
≤ 2sdlog2(4N)edlog2(2L)e,

and φj ∈ NN (width ≤ 8N + 6; depth ≤ 5L+ 7) for each j. Then one could use the

4.3 Approximation of smooth functions 105

network architecture in Figure 4.13 to implement a function φ̃ such that

φ̃(i) =
J∑

j=1

2−jφj(i), for i = 0, 1, · · · , N2L2 − 1.

i i

φ1(i)

φm(i)

i

φm+1(i)

φm+m(i)

∑m
j=1 2

−jφj(i)

i

φ2m+1(i)

φ2m+m(i)

∑2m
j=1 2

−jφj(i)

i

φ(n−1)m+1(i)

φ(n−1)m+m(i)

∑(n−1)m
j=1 2−jφj(i)

∑nm
j=1 2

−jφj(i) =: φ̃(i)

...· · ·

φ1

φm

φm+1

φm+m

φ2m+1

φ2m+m

Figure 4.13: An illustration of the network architecture implementing φ̃(i) =∑J
j=1 2−jφj(i) for any i ∈ {0, 1, · · · , N2L2 − 1}. We assume J = mn, where

m = 2sdlog2(4N)e and n = dlog2(2L)e, since we can set φJ+1 = · · · = φnm = 0 if

J < nm.

Clearly, the network architecture in Figure 4.13 is with width

(8N + 6)m+ (1 +m+ 1) = (8N + 6)2sdlog2(4N)e+
(
2sdlog2(4N)e+ 2

)

≤ 16s(N + 1) log2(8N)

and depth

(
(5L+ 7) + 1

)
n =

(
(5L+ 7) + 1

)
dlog2(2L)e ≤ (5N + 8) log2(4L).

Finally, we define

φ(x) := min
{
σ
(
φ̃(x)), 1

}
= min

{
max{0, φ̃(x)}, 1

}
, for any x ∈ R.

See Figure 4.14 for the network architecture implementing φ. Then 0 ≤ φ(x) ≤ 1

for any x ∈ R and φ can be implemented by a ReLU network with width 16s(N +

1) log2(8N) and depth (5L+ 8) log2(4L) + 3 ≤ 5(L+ 2) log2(4L).

106 Chapter 4. Approximation by ReLU networks

i φ̃(i) σ
(
φ̃(i)

)

σ
(
σ(φ̃(i)) + 1

)

σ
(
− σ(φ̃(i))− 1

)

σ
(
σ(φ̃(i))− 1

)

σ
(
− σ(φ̃(i)) + 1

)

min
{
σ(φ̃(i)), 1

}
= φ(i)φ̃

Figure 4.14: An illustration of the network architecture implementing the desired

function φ for i = 0, 1, · · · , N2L2−1, based on the fact min{x1, x2} = x1+x2−|x1−x2|
2

=
σ(x1+x2)−σ(−x1−x2)−σ(x1−x2)−σ(−x1+x2)

2
.

Note that

φ̃(i) =
J∑

j=1

2−jφj(i) =
J∑

j=1

2−jξi,j = bin0.ξi,1ξi,2 · · · ξi,J ∈ [0, 1],

for i = 0, 1, · · · , N2L2 − 1, implying

|φ(i)− ξi| =
∣∣∣min

{
σ
(
φ̃(i)

)
, 1
}
− ξi

∣∣∣ = |φ̃(i)− ξi| =
∣∣∣

J∑

j=1

2−jξi,j − ξi
∣∣∣ ≤ N−2sL−2s,

where the last inequality comes from Equation (4.25). So the proof is complete.

4.4 Optimality of approximation by networks

In this section, we will study the best possible approximation errors for several

function spaces approximated by ReLU networks. To this end, we adopt the method

in [38,52,53,58,59,60] via studying the connection between the approximation error

and VC-dimension. Thus, let us first present the definitions of VC-dimension and

related concepts.

Definition 4.15 (Growth function, VC-dimension, Shattering). Let H be a class of

functions mapping from a general domain X to {0, 1}. For any m ∈ N+, we define

4.4 Optimality of approximation by networks 107

the growth function of H as

ΠH(m) := max
x1,x2,···,xm∈X

∣∣∣
{[
h(x1), h(x2), · · · , h(xm)

]
∈ {0, 1}m : h ∈ H

}∣∣∣,

where |S| denotes the size of a set S.

We say H shatters the set {x1,x2, · · · ,xm} ⊆ X if

∣∣∣
{[
h(x1), h(x2), · · · , h(xm)

]
∈ {0, 1}m : h ∈ H

}∣∣∣ = 2m.

The Vapnik-Chervonenkis (VC) dimension of H, denoted by VCDim(H), is the size

of the largest shattered set, namely, the largest m such that ΠH(m) = 2m. By

convention, VCDim(H) =∞ if ΠH(m) = 2m for all m ∈ N+.

Let F be a class of functions from X to R. The VC-dimension of F , denoted

by VCDim(F), is defined by VCDim(F) := VCDim(T ◦F), where

T (t) :=

{
1, t ≥ 0,

0, t < 0
and T ◦F := {T ◦ f : f ∈ F}.

In particular, the expression “VC-dimension of a network (architecture)” means the

VC-dimension of the function set that consists of all functions implemented by this

network (architecture).

Definition 4.16. Let Q(x0, η) ⊆ Rd denote the closed cube with center x0 and

sidelength η. For any cube Q = Q(x0, η), rQ denote the closed cube satisfying two

conditions: 1) rQ has the same center as Q; 2) the sidelength of rQ is equal to the

multiplication of r and that of Q.

4.4.1 Hölder continuous functions

Let us first consider the Hölder continuous function space Hölder([0, 1]d, α, λ).

Without loss of generality, we assume λ = 1. Theorem 4.17 below shows that the

best possible approximation error of functions in Hölder([0, 1]d, α, 1) approximated

by functions in F is bounded by a formula characterized by VCDim(F).

108 Chapter 4. Approximation by ReLU networks

Theorem 4.17. Given any ε ∈ (0, 2/9) and a function set F with all elements

defined on [0, 1]d, if

inf
φ∈F
‖φ− f‖L∞([0,1]d) ≤ ε, for any f ∈ Hölder([0, 1]d, α, 1), (4.26)

then VCDim(F) ≥ (9ε)−d/α.

This theorem investigates the connection between VC-dimension of F and the

approximation errors of functions in Hölder([0, 1]d, α, 1) approximated by elements

of F . In other words, the best possible approximation error is controlled by

VCDim(F)−α/d/9. A typical application of this theorem is to prove the opti-

mality of approximation errors when using ReLU networks to approximate func-

tions in Hölder([0, 1]d, α, 1). It is shown in [4] that VC-dimension of ReLU net-

works with a fixed architecture with W parameters and L layers has an upper

bound O(WL lnW). It follows that VC-dimension of ReLU networks with width

N and depth L is bounded by O(N2L · L · ln(N2L)) ≤ O(N2L2 ln(NL)). That is,

VCDim(F) ≤ O(N2L2 ln(NL)), where

F = NN (#input = d; width ≤ N ; depth ≤ L; #output = 1).

We denote the best approximation error of functions in Hölder([0, 1]d, α, 1) ap-

proximated by ReLU networks with width N and depth L as

Eα,d(N,L) := sup
f∈Hölder([0,1]d,α,1)

(
inf

φ∈NN (width≤N ; depth≤L)
‖φ− f‖L∞([0,1]d)

)
,

for any N,L ∈ N+. Then, by Theorem 4.17 and Corollary 4.7, we have

C1(α, d) ·
(
N2L2ln(NL)

)−α/d
≤

︸ ︷︷ ︸
implied by Theorem 4.17

Eα,d(N,L) ≤ C2(α, d) ·
(
N2L2

)−α/d

︸ ︷︷ ︸
shown in Corollary 4.7

,

where C1(α, d) and C2(α, d) are two positive constants determined by α and d,

and C2(α, d) can be explicitly represented. Therefore, the approximation error in

4.4 Optimality of approximation by networks 109

Corollary 4.7 is nearly optimal.

Now let us present the detailed proof of Theorem 4.17.

Proof of Theorem 4.17. Recall that the VC-dimension of a function set is defined

as the size of the largest set of points that this class of functions can shatter. So

our goal is to find a subset of F to shatter O(ε−d/α) points in [0, 1]d, which can be

divided into two steps.

• Construct {fχ : χ ∈ B} ⊆ Hölder([0, 1]d, α, 1) that scatters O(ε−d/α) points,

where B is a set defined later.

• Design φχ ∈ F , for each χ ∈ B, based on fχ and Equation (4.26) such that

{φχ : χ ∈ F} ⊆ F also shatters O(ε−d/α) points.

The details of these two steps can be found below.

Step 1: Construct {fχ : χ ∈ B} ⊆ Hölder([0, 1]d, α, 1) that scatters O(ε−d/α)

points.

Let K = b(9ε/2)−1/αc ∈ N+ and divide [0, 1]d into Kd sub-cubes {Qβ}β as

follows.

Qβ :=
{
x = (x1, x2, · · · , xd) ∈ [0, 1]d : xi ∈ [βi

K
, βi+1

K
] for i = 1, 2, · · · , d

}
,

for any index vector β = (β1, β2, · · · , βd) ∈ {0, 1, · · · , K − 1}d.
Define a function ζQ on [0, 1]d corresponding to Q = Q(x0, η) ⊆ [0, 1]d such that

• ζQ(x0) = (η/2)α/2.

• ζQ(x) = 0 for any x /∈ Q\∂Q, where ∂Q is the boundary of Q.

• ζQ is linear on the line that connects x0 and x for any x ∈ ∂Q.

Define

B :=
{
χ : χ is a map from {0, 1, · · · , K − 1}d to {−1, 1}

}
.

110 Chapter 4. Approximation by ReLU networks

For each χ ∈ B, we define

fχ(x) :=
∑

β∈{0,1,···,K−1}d
χ(β)ζQβ(x),

where ζQβ(x) is the associated function introduced just above. It is easy to check

that {fχ : χ ∈ B} ⊆ Hölder([0, 1]d, α, 1) can shatter Kd = O(ε−d/α) points in [0, 1]d.

Step 2: Construct {φχ : χ ∈ B} that also scatters O(ε−d/α) points.

By Equation (4.26), for each χ ∈ B, there exists φχ ∈ F such that

‖φχ − fχ‖L∞([0,1]d) ≤ ε+ ε/81.

Let µ(·) denote the Lebesgue measure of a measurable set. Then, for each χ ∈ B,

there exists Hχ ⊆ [0, 1]d with µ(Hχ) = 0 such that

|φχ(x)− fχ(x)| ≤ 82
81
ε, for any x ∈ [0, 1]d\Hχ.

Set H = ∪χ∈BHχ, then we have µ(H) = 0 and

|φχ(x)− fχ(x)| ≤ 82
81
ε, for any χ ∈ B and x ∈ [0, 1]d\H. (4.27)

Since Qβ has a sidelength 1
K

= 1
b(9ε/2)−1/αc , we have, for each β ∈ {0, 1, · · · , K −

1}d and any x ∈ 1
10
Qβ,

|fχ(x)| = ζQβ(x) ≥ 9
10
ζQβ(xQβ) = 9

10

(
1

2b(9ε/2)−1/αc
)α
/2 ≥ 81

80
ε, (4.28)

where xQβ is the center of Qβ.

If follows from µ
(
(1

10
Qβ)\H

)
> 0 that (1

10
Qβ)\H is not empty for each β ∈

{0, 1, · · · , K−1}d. Thus, by Equation (4.27) and (4.28), for each β ∈ {0, 1, · · · , K−

4.4 Optimality of approximation by networks 111

1}d and each χ ∈ B, there exists xβ ∈ (1
10
Qβ)\H such that

|fχ(xβ)| ≥ 81
80
ε > 82

81
ε ≥ |fχ(xβ)− φχ(xβ)|.

Therefore, fχ(xβ) and φχ(xβ) have the same sign for each χ ∈ B and each

β ∈ {0, 1, · · · , K − 1}d. Then {φχ : χ ∈ B} shatters
{
xβ : β ∈ {0, 1, · · · , K − 1}d

}

since {fχ : χ ∈ B} shatters
{
xβ : β ∈ {0, 1, · · · , K − 1}d

}
. Hence,

VCDim(F) ≥ VCDim
(
{φχ : χ ∈ B}

)
≥ Kd = b(9ε/2)−1/αcd ≥ (9ε)−d/α, (4.29)

where the last inequality comes from the fact bxc ≥ x/2 ≥ x/(21/α) for any x ∈
[1,∞) and α ∈ (0, 1]. So we finish the proof.

4.4.2 Smooth functions

Next, let us consider another function space Cs
u([0, 1]d), which is the closed unit

ball of the smooth function space Cs([0, 1]d). Theorem 4.18 below shows that the

best possible approximation error of functions in Cs
u([0, 1]d) approximated by func-

tions in F is bounded by a formula characterized by VCDim(F).

Theorem 4.18. Given any s, d ∈ N+, there exists a small positive constant Cs,d

determined by s and d such that: For any ε ∈
(

0, (2dCs,d)
s/d
]

and a function set

F with all elements defined on [0, 1]d, if

inf
φ∈F
‖φ− f‖L∞([0,1]d) ≤ ε, for any f ∈ Cs

u([0, 1]d), (4.30)

then VCDim(F) ≥ Cs,d ε
−d/s. 4○

This theorem demonstrates the connection between VC-dimension of F and the

approximation error using elements of F to approximate functions in Cs
u([0, 1]d). To

be precise, the best possible approximation error is controlled byO
(
VCDim(F)−s/d

)
.

4○In fact, Cs,d can be expressed by s and d with a explicitly formula as we remark in the proof
of this theorem. However, the formula may be very complicated.

112 Chapter 4. Approximation by ReLU networks

A typical application of this theorem is to prove the optimality of approxima-

tion errors when using ReLU networks to approximate functions in Cs
u([0, 1]d). It

is shown in [4] that VC-dimension of ReLU networks with a fixed architecture

with W parameters and L layers has an upper bound O(WL lnW). It follows

that VC-dimension of ReLU networks with width N and depth L is bounded by

O(N2L ·L · ln(N2L)) ≤ O(N2L2 ln(NL)). That is, VCDim(F) ≤ O(N2L2 ln(NL)),

where

F = NN (#input = d; width ≤ N ; depth ≤ L; #output = 1).

We denote the best approximation error of functions in Cs
u([0, 1]d) approximated

by ReLU networks with width N and depth L as

Es,d(N,L) := sup
f∈Csu([0,1]d)

(
inf

φ∈NN (width≤N ; depth≤L)
‖φ− f‖L∞([0,1]d)

)
,

for any N,L ∈ N+, where Cs
u([0, 1]d) is the closed unit ball of Cs([0, 1]d). Then, by

Theorem 4.18 and Corollary 4.12, we have

C1(s, d) ·
(
N2L2ln(NL)

)−s/d
≤

︸ ︷︷ ︸
implied by Theorem 4.18

Es,d(N,L) ≤ C2(s, d) ·
(

N2L2

(lnN lnL)2

)−s/d

︸ ︷︷ ︸
shown in Corollary 4.12

,

where C1(s, d) and C2(s, d) are two positive constants in s and d, and C2(s, d) can

be explicitly expressed. Therefore, the approximation errors in Theorem 4.11 and

Corollary 4.12 are nearly optimal.

Now let us present the detailed proof of Theorem 4.18.

Proof of Theorem 4.18. To find a subset of F shattering O(ε−d/s) points in [0, 1]d,

we divide the proof into two steps.

• Construct {fχ : χ ∈ B} ⊆ Cs
u([0, 1]d) that scatters O(ε−d/s) points, where B

is a set defined later.

4.4 Optimality of approximation by networks 113

• Design φχ ∈ F , for each χ ∈ B, based on fχ and Equation (4.30) such that

{φχ : χ ∈ B} ⊆ F also shatters O(ε−d/s) points.

The details of these two steps can be found below.

Step 1: Construct {fχ : χ ∈ B} ⊆ Cs
u([0, 1]d) that scatters O(ε−d/s) points.

Let K = O(ε−1/s) be a positive integer determined later and divide [0, 1]d into

Kd sub-cubes {Qβ}β as follows.

Qβ :=
{
x = (x1, x2, · · · , xd) ∈ [0, 1]d : xi ∈ [βi

K
, βi+1

K
] for i = 1, 2, · · · , d

}
,

for any index vector β = (β1, β2, · · · , βd) ∈ {0, 1, · · · , K − 1}d.
There exists a “bump function” g̃ ∈ C∞(Rd) such that g̃(0) = 1 and g̃(x) = 0

for ‖x‖2 ≥ 1/3. For example, we can define g̃ as

g̃(x) :=

{
exp

(
1

‖3x‖22−1
+ 1
)
, if ‖x‖2 < 1/3,

0, otherwise,

where exp(x) = ex for any x ∈ R and e ≈ 2.7 is the natural logarithmic base. Then,

we have g := g̃/C̃s,d ∈ Cs
u([0, 1]d) by setting C̃s,d := ‖g̃‖Cs([0,1]d).

Define

B :=
{
χ : χ is a map from {0, 1, · · · , K − 1}d to {−1, 1}

}

and

gβ := K−sg
(
K(x− xQβ)

)
, for each β ∈ {0, 1, · · · , K − 1}d,

where xQβ is the center of Qβ. Then, we have

{x : gβ(x) 6= 0} ⊆ B
(
xQβ ,

1
3K

)
⊆ 2

3
Qβ, for each β ∈ {0, 1, · · · , K − 1}d.

114 Chapter 4. Approximation by ReLU networks

Next, for each χ ∈ B, we can define fχ via

fχ(x) :=
∑

β∈{0,1,···,K−1}d
χ(β)gβ(x).

Then fχ ∈ Cs
u([0, 1]d) for each χ ∈ B, since it satisfies the following two conditions.

• By the definition of gβ and χ, we have

{x : χ(β)gβ(x) 6= 0} ⊆ 2
3
Qβ, for each β ∈ {0, 1, · · · , K − 1}d.

• For any x ∈ Qβ, β ∈ {0, 1, · · · , K − 1}d, and α ∈ Nd with ‖α‖1 ≤ s,

∂αfχ(x) = χ(β)∂αgβ(x) = χ(β)K−sK‖α‖1∂αg
(
K(x− xβ)

)
,

implying |∂αfχ(x)| =
∣∣K−(s−‖α‖1)∂αg

(
K(x− xβ)

)∣∣ ≤ 1.

It is easy to check that {fχ : χ ∈ B} ⊆ Cs
u([0, 1]d) can shatter Kd = O(ε−d/α) points

in [0, 1]d.

Step 2: Construct {φχ : χ ∈ B} that also scatters O(ε−d/s) points.

By Equation (4.30), for each χ ∈ B, there exists φχ ∈ F such that

‖φχ − fχ‖L∞([0,1]d) ≤ ε+ ε/2.

Let µ(·) denote the Lebesgue measure of a measurable set. Then, for each χ ∈ B,

there exists Hχ ⊆ [0, 1]d with µ(Hχ) = 0 such that

|φχ(x)− fχ(x)| ≤ 3
2
ε, for any x ∈ [0, 1]d\Hχ.

Set H = ∪χ∈BHχ, then we have µ(H) = 0 and

|φχ(x)− fχ(x)| ≤ 3
2
ε, for any χ ∈ B and x ∈ [0, 1]d\H. (4.31)

4.4 Optimality of approximation by networks 115

Clearly, there exists r ∈ (0, 1) such that

gβ(x) ≥ 1
2
gβ(xQβ), for any x ∈ rQβ,

where xQβ is the center of Qβ.

Note that (rQβ)\H is not empty, since µ
(
(rQβ)\H

)
> 0 for each β. Then, for

each χ ∈ B and each β ∈ {0, 1, · · · , K − 1}d, there exists xβ ∈ (rQβ)\H such that

|fχ(xβ)| = gβ(xβ) ≥ 1
2
gβ(xQβ) = 1

2
K−sg(0) = 1

2
K−s/C̃s,d ≥ 2ε, (4.32)

where the last inequality is attained by setting K = b(4εC̃s,d)−1/sc. Since our proof

is invalid when K = 0, it is necessary to guarantee K = b(4εC̃s,d)−1/sc ≥ 1, which

will be verified later.

By Equation (4.31) and (4.32), we have, for each β ∈ {0, 1, · · · , K−1}d and each

χ ∈ B,

|fχ(xβ)| ≥ 2ε > 3
2
ε ≥ |fχ(xβ)− φχ(xβ)|.

So, fχ(xβ) and φχ(xβ) have the same sign for each χ ∈ B and each β ∈ {0, 1, · · · , K−
1}d. Then {φχ : χ ∈ B} shatters

{
xβ : β ∈ {0, 1, · · · , K − 1}d

}
since {fχ : χ ∈ B}

shatters
{
xβ : β ∈ {0, 1, · · · , K − 1}d

}
. Hence,

VCDim(F) ≥ VCDim
(
{φχ : χ ∈ B}

)
≥ Kd = b(4εC̃s,d)−1/scd ≥ 2−d(4εC̃s,d)

−d/s,

where the last inequality comes from the fact bxc ≥ x/2 for any x ∈ [1,∞).

Finally, set

Cs,d = 2−d(4C̃s,d)
−d/s = 2−d

(
4‖g̃‖Cs([0,1]d)

)−d/s
.

This means Cs,d can be computed by an explicit mathematical formula based on the

116 Chapter 4. Approximation by ReLU networks

function g̃ defined previously. Moreover, we have

VCDim(F) ≥ 2−d(4εC̃s,d)
−d/s = Cs,d ε

−d/s

and

K = b(4εC̃s,d)−1/sc = bε−1/s(2dCs,d)
1/dc ≥ 1,

where the last inequality comes from ε ∈ (0, (2dCs,d)
s/d]. So we finish the proof.

Chapter 5
Approximation by Floor-ReLU networks

As shown in Section 4.1, an exponential approximation error O(N−L) can be

achieved when using ReLU networks with width O(N) and depth O(L) to approx-

imate polynomials on [0, 1]d. But such an exponential error is not true for general

function spaces as discussed in Section 4.4. The limitation of ReLU networks moti-

vates us to explore other types of network architectures to admit (nearly) exponential

approximation errors.

In particular, we introduce new networks built with either Floor (bxc) or ReLU

(max{0, x}) as the activation function 1○ in each neuron. We call such networks

Floor-ReLU networks. See Figure 5.1 for an example. We will prove in this chapter

that Floor-ReLU networks with fixed architectures can attain nearly exponential

approximation errors for approximating (Hölder) continuous functions on [0, 1]d.

5.1 Main theorem and its proof

In Theorem 5.1 below, we show by construction that Floor-ReLU networks, with

fixed architectures, with width max{d, 5N + 13} and depth 64dL+ 3 can uniformly

approximate an arbitrary continuous function f on [0, 1]d with a nearly exponential

1○Our results can be easily generalized to Ceiling-ReLU networks, namely, feed-forward fully
connected neural networks with either Ceiling (dxe) or ReLU (max{0, x}) as the activation function
in each neuron.

117

118 Chapter 5. Approximation by Floor-ReLU networks

(x1, x2)

x1

x2

h

h1

h2

h3

h4

h̃

h̃1

h̃2

h̃3

h̃4

g

g1

g2

g3

g4

g5

g̃

g̃1

g̃2

g̃3

g̃4

g̃5

φ(x1, x2)

φ(x1, x2)

W0, b0 W1, b1 W2, b2σ or b·c σ or b·c

b·c

σ

σ

σ

b·c

b·c

σ

σ

σ

Figure 5.1: An example of a Floor-ReLU network with width 5 and depth 2.

approximation error ωf (
√
dN−

√
L) + 2ωf (

√
d)N−

√
L.

Theorem 5.1. Given any N,L, d ∈ N+, there exists a fixed Floor-ReLU network

architecture with width max{d, 5N + 13} and depth 64dL + 3 such that: For any

continuous function f ∈ C([0, 1]d), there exists a function φ, implemented by this

Floor-ReLU network architecture with proper parameters, satisfying

|φ(x)− f(x)| ≤ ωf (
√
dN−

√
L) + 2ωf (

√
d)N−

√
L, for any x ∈ [0, 1]d.

With Theorem 5.1, we have an immediate corollary.

Corollary 5.2. Given any N̄ , L̄, d ∈ N+, there exists a fixed Floor-ReLU network

architecture with width N̄ and depth L̄ such that: For any continuous function

f ∈ C([0, 1]d), there exists a function φ, implemented by this Floor-ReLU network

architecture with proper parameters, satisfying

|φ(x)− f(x)| ≤ ωf

(√
d
⌊
N̄−13

5

⌋−
√⌊

L̄−3
64d

⌋)
+ 2ωf (

√
d)
⌊
N̄−13

5

⌋−
√⌊

L̄−3
64d

⌋
,

for any x ∈ [0, 1]d and N̄ , L̄ ∈ N+ with N̄ ≥ max{d, 18} and L̄ ≥ 64d+ 3.

We would like to remark that the Floor-ReLU network architectures in Theo-

rem 5.1 and Corollary 5.2 are independent of the target function f . That is, only

the values of the parameters rely on the target function f . In particular, the choice

5.1 Main theorem and its proof 119

of activation functions (Floor or ReLU) in each neuron is independent of the target

function f .

In Theorem 5.1, the error in ωf (
√
dN−

√
L) implicitly depends on N and L

through the modulus of continuity of f , while the error in 2ωf (
√
d)N−

√
L is ex-

plicit in N and L. Simplifying the implicit approximation error to make it explicitly

depending on N and L is challenging in general. However, if f is a Hölder continuous

function on [0, 1]d of order α ∈ (0, 1] with a constant λ, i.e., f ∈ Hölder([0, 1]d, α, λ),

then we have

|f(x)− f(y)| ≤ λ‖x− y‖α2 , for any x,y ∈ [0, 1]d, (5.1)

implying ωf (r) ≤ λrα for any r ≥ 0. Therefore, in the case of Hölder continuous

functions, the approximation error is simplified to 3λdα/2N−α
√
L as shown in the

following corollary. In the special case of Lipschitz continuous functions with a

Lipschitz constant λ, the approximation error is simplified to 3λ
√
dN−

√
L.

Corollary 5.3. Given any N,L, d ∈ N+, there exist a fixed Floor-ReLU network

architecture with width max{d, 5N + 13} and depth 64dL + 3 such that: For any

function f ∈ Hölder([0, 1]d, α, λ), there exists a function φ, implemented by this

Floor-ReLU network architecture with proper parameters, satisfying

|φ(x)− f(x)| ≤ 3λdα/2N−α
√
L, for any x ∈ [0, 1]d.

First, Theorem 5.1 and Corollary 5.3 show that the approximation capacity

of deep networks for continuous functions can be nearly exponentially improved

by increasing the network depth, and the approximation error can be explicitly

characterized in terms of the width O(N) and depth O(L). Second, this new class

of networks overcomes the curse of dimensionality in the approximation power when

the modulus of continuity is moderate, since the approximation order is essentially

ωf (
√
dN−

√
L). Finally, applying piecewise constant and integer-valued functions as

activation functions and integer numbers as parameters has been explored in the

120 Chapter 5. Approximation by Floor-ReLU networks

study of quantized neural networks [6, 26, 61] with efficient training algorithms for

low computational complexity [56]. The floor function (bxc) is a piecewise constant

function and can be easily implemented numerically at very little cost. Hence, the

evaluation of the proposed network could be efficiently implemented in practical

computation. Though there might not be an existing optimization algorithm to

identify an approximant with an approximation error, Theorem 5.1 and Corollary 5.3

can provide an expected accuracy before a learning task and how much the current

optimization algorithms could be improved. Designing an efficient optimization

algorithm for Floor-ReLU networks will be left as future work with several possible

directions discussed later.

In particular, we let N = 2 and L = W in Theorem 5.1, then the width is

max{d, 23}, the depth is 64dW+3, and the total number of parameters is bounded by

O (max{d2, 232}(64dW + 3)) = O(W). Therefore, we can prove Corollary 5.4 below

stating that Floor-ReLU networks can provide a nearly exponential approximation

error in terms of the number of parameters.

Corollary 5.4. Given any W,d ∈ N+, there exists a fixed Floor-ReLU network ar-

chitecture with O(W) parameters, width max{d, 23}, and depth 64dW+3, such that:

For any continuous function f ∈ C([0, 1]d), there exists a function φ, implemented

by this Floor-ReLU network architecture with proper parameters, satisfying

|φ(x)− f(x)| ≤ ωf (
√
d 2−

√
W) + 2ωf (

√
d)2−

√
W , for any x ∈ [0, 1]d.

We would like to point out that the derivative of Floor is zero almost everywhere,

which may lead to the failure of the backpropagation algorithm. To overcome this,

we propose three possible methods as follows.

• First, we can consider gradient-free optimization methods, e.g., particle swarm

optimization [30], consensus-based optimization [11,50].

• The second method is to apply optimization algorithms for quantized networks

that also have piecewise constant activation functions [6, 9, 26, 36, 56, 61]. For

5.1 Main theorem and its proof 121

example, an empirical method is to use a straight through estimator (STE) by

setting the incoming gradients to the activation function equal to its outgoing

gradients, disregarding the derivative of the activation function itself.

• The final method is to use the linear combination of ReLU and Floor, i.e.,

pσ(x)+(1−p)bxc for p ∈ (0, 1), to replace Floor (bxc) to avoid zero derivative.

Similar to Theorem 5.1 and Corollary 5.3, the nearly exponential errors can

be attained with the new activation functions (σ and pσ(x) + (1− p)bxc).

The proof of Theorem 5.1 is an immediate result of Theorem 5.5 below.

Theorem 5.5. Given a continuous function f ∈ C([0, 1]d), for any N,L ∈ N+, there

exists a function φ implemented by a Floor-ReLU network, with a fixed architecture

independent of f , with width max{d, 2N2 + 5N} and depth 7dL2 + 3 such that

|φ(x)− f(x)| ≤ ωf (
√
dN−L) + 2ωf (

√
d)2−NL, for any x ∈ [0, 1]d.

Theorem 5.5 will be proved later in this section. Now let us prove Theorem 5.1

based on Theorem 5.5.

Proof of Theorem 5.1. Given any N,L ∈ N+, there exist Ñ , L̃ ∈ N+ with Ñ ≥ 2

and L̃ ≥ 3 such that

(Ñ − 1)2 ≤ N < Ñ2 and (L̃− 1)2 ≤ 4L < L̃2.

By Theorem 5.5, there exists a function φ implemented by a Floor-ReLU network,

with a fixed architecture independent of f , with width max{d, 2Ñ2+5Ñ} and depth

7dL̃2 + 3 such that

|φ(x)− f(x)| ≤ ωf (
√
d Ñ−L̃) + 2ωf (

√
d)2−ÑL̃, for any x ∈ [0, 1]d.

Note that

2−ÑL̃ ≤ Ñ−L̃ = (Ñ2)−
1
2

√
L̃2 ≤ N−

1
2

√
4L ≤ N−

√
L.

122 Chapter 5. Approximation by Floor-ReLU networks

Then we have

|φ(x)− f(x)| ≤ ωf (
√
dN−

√
L) + 2ωf (

√
d)N−

√
L, for any x ∈ [0, 1]d.

For Ñ , L̃ ∈ N+ with Ñ ≥ 2 and L̃ ≥ 3, we have

2Ñ2 + 5Ñ ≤ 5(Ñ − 1)2 + 13 ≤ 5N + 13 and 7L̃2 ≤ 16(L̃− 1)2 ≤ 64L.

Therefore, φ can be implemented by a Floor-ReLU network, with a fixed architecture

independent of f , with width max{d, 2Ñ2 + 5Ñ} ≤ max{d, 5N + 13} and depth

7dL̃2 + 3 ≤ 64dL+ 3, as desired. So we finish the proof.

5.2 Proof of auxiliary theorem

To prove Theorem 5.5, we first present the general ideas of the proof. Shortly

speaking, we construct piecewise constant functions implemented by Floor-ReLU

networks to approximate continuous functions on [0, 1]d. There are four key steps

in our construction.

1. Normalize f as f̃ satisfying f̃(x) ∈ [0, 1] for any x ∈ [0, 1]d, divide [0, 1]d into a

set of non-overlapping cubes {Qβ}β∈{0,1,···,K−1}d , and denote xβ as the vertex

of Qβ with minimum ‖ · ‖1 norm, where K is an integer determined later. See

Figure 5.2 for the illustrations of Qβ and xβ for any β ∈ {0, 1, · · · , K − 1}d.

2. Construct a Floor-ReLU sub-network to implement a vector-valued function

Φ1 : Rd → Rd projecting the whole cube Qβ to the index β for each β, i.e.,

Φ1(x) = β for all x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d.

3. Construct a Floor-ReLU sub-network to implement a function φ2 : Rd → R

mapping β ∈ {0, 1, · · · , K − 1}d approximately to f̃(xβ) for each β, i.e.,

φ2(β) ≈ f̃(xβ). Then φ2 ◦Φ1(x) = φ2(β) ≈ f̃(xβ) for any x ∈ Qβ and each

5.2 Proof of auxiliary theorem 123

β ∈ {0, 1, · · · , K − 1}d, implying φ̃ := φ2 ◦Φ1 approximates f̃ within an error

O(ωf (1/K)) on [0, 1]d.

4. Re-scale and shift φ̃ to obtain the desired function φ approximating f well and

determine the final Floor-ReLU network to implement φ.

It is not difficult to construct Floor-ReLU networks with the desired width and

depth to implement Φ1. The most technical part is the construction of a Floor-

ReLU network with the desired width and depth implementing φ2, which needs the

following proposition based on the “bit extraction” technique introduced in [5].

Proposition 5.6. Given any N,L ∈ N+ and arbitrary θm ∈ {0, 1} for m =

1, 2, · · · , NL, there exists a function φ implemented by a Floor-ReLU network, with

a fixed architecture independent of θm ∈ {0, 1} for m = 1, 2, · · · , NL, with width

2N + 2 and depth 7L− 2 such that

φ(m) = θm, for m = 1, 2, · · · , NL.

The proof of this proposition is presented in Section 5.3. It is easy to prove that

the VC-dimension of Floor-ReLU networks with a constant width and depth O(L)

has a lower bound 2L. Such a lower bound is much larger than O(L2), which is a

VC-dimension upper bound of ReLU networks with the same width and depth due

to Theorem 8 of [4]. This means Floor-ReLU networks are much more powerful

than ReLU networks from the perspective of VC-dimension.

Now let us give the detailed proof of Theorem 5.5 as follows.

Proof of Theorem 5.5. The proof consists of four steps.

Step 1: Set up.

Assume f is not a constant function since it is a trivial case. Then ωf (r) > 0 for

any r > 0. Clearly, |f(x)− f(0)| ≤ ωf (
√
d) for any x ∈ [0, 1]d. Define

f̃ :=
f − f(0) + ωf (

√
d)

2ωf (
√
d)

. (5.2)

124 Chapter 5. Approximation by Floor-ReLU networks

It follows that f̃(x) ∈ [0, 1] for any x ∈ [0, 1]d.

Set K = NL, EK−1 = [K−1
K
, 1], and Ek = [k

K
, k+1
K

) for k = 0, 1, · · · , K−2. Define

Qβ :=
{
x = (x1, x2, · · · , xd) ∈ Rd : xj ∈ Eβj for j = 1, 2, · · · , d

}
,

for any β = (β1, β2 · · · , βd) ∈ {0, 1, · · · , K − 1}d. See Figure 5.2 for the examples of

Qβ and xβ for any β ∈ {0, 1, · · · , K − 1}d with for K = 4 and d = 1, 2.

0 1/4 2/4 3/4 1

Q0 Q1 Q2 Q3

[0, 1/4) [1/4, 2/4) [2/4, 3/4) [3/4, 1]

xβ for β ∈ {0, 1, · · · , K − 1}d

(a)

0 1/4 2/4 3/4 1

0

1/4

2/4

3/4

1

Q0,0 Q1,0 Q2,0 Q3,0

Q0,1 Q1,1 Q2,1 Q3,1

Q0,2 Q1,2 Q2,2 Q3,2

Q0,3 Q1,3 Q2,3 Q3,3

xβ for β ∈ {0, 1, · · · , K − 1}d

(b)

Figure 5.2: Illustrations of Qβ and xβ for any β ∈ {0, 1, · · · , K − 1}d. (a) K =

4, d = 1. (b) K = 4, d = 2.

Step 2: Construct Φ1 mapping x ∈ Qβ to β.

Define a step function φ1 as

φ1(x) :=
⌊
− σ(−Kx+K − 1) +K − 1

⌋
, for any x ∈ R. 2○

See Figure 5.3 for an illustration of φ1 when K = 4. It follows from the definition

of φ1 that

φ1(x) = k, if x ∈ Ek, for k = 0, 1, · · · , K − 1.

Define

Φ1(x) :=
(
φ1(x1), φ1(x2), · · · , φ1(xd)

)
, for any x = (x1, x2, · · · , xd) ∈ Rd.

2○If we just define φ1(x) = bKxc, then φ1(1) = K 6= K − 1 even though 1 ∈ EK−1.

5.2 Proof of auxiliary theorem 125

0 1/4 2/4 3/4 1
0

1

2

3

E0

E1

E2

E3

φ1

Figure 5.3: An illustration of φ1 on [0, 1] for the case K = 4.

Clearly, we have, for all x ∈ Qβ and each β ∈ {0, 1, · · · , K − 1}d,

Φ1(x) =
(
φ1(x1), φ1(x2), · · · , φ1(xd)

)
= (β1, β2, · · · , βd) = β.

Step 3: Construct φ2 mapping β ∈ {0, 1, · · · , K − 1}d approximately to f̃(xβ).

Using the idea of K-ary representation, we define

ψ1(x) := 1 +
d∑

j=1

xjK
j−1, for any x = (x1, x2, · · · , xd) ∈ Rd.

It follows that ψ1 is a bijection from {0, 1, · · · , K − 1}d to {1, 2, · · · , Kd}.
Given any i ∈ {1, 2, · · · , Kd}, there exists a unique β ∈ {0, 1, · · · , K − 1}d such

that i = ψ1(β). Then define

ξi := f̃(xβ) ∈ [0, 1], for i = ψ1(β) and β ∈ {0, 1, · · · , K − 1}d,

where f̃ is the normalization of f defined in Equation (5.2). It follows that there

exists ξi,j ∈ {0, 1} for j = 1, 2, · · · , NL such that

|ξi − bin0.ξi,1ξi,2 · · · , ξi,NL| ≤ 2−NL, for i = 1, 2, · · · , Kd.

By Kd = (NL)d = NdL and Proposition 5.6, there exists a function ψ2,j imple-

mented by a Floor-ReLU network, with a fixed architecture independent of ξi,j for

126 Chapter 5. Approximation by Floor-ReLU networks

all i, with width 2N + 2 and depth 7dL− 2, for each j = 1, 2, · · · , NL, such that

ψ2,j(i) = ξi,j, for i = 1, 2, · · · , Kd.

Define

ψ2 :=
NL∑

j=1

2−jψ2,j and φ2 := ψ2 ◦ ψ1.

Then we have, for i = ψ1(β) and β ∈ {0, 1, · · · , K − 1}d,

|f̃(xβ)− φ2(β)| = |f̃(xβ)− ψ2(ψ1(β))| = |ξi − ψ2(i)| = |ξi −
NL∑

j=1

2−jψ2,j(i)|

= |ξi − bin0.ξi,1ξi,2 · · · ξi,NL| ≤ 2−NL.

(5.3)

Step 4: Determine the final network to implement the desired function φ.

Define φ̃ := φ2 ◦Φ1, i.e., for any x = (x1, x2, · · · , xd) ∈ Rd,

φ̃(x) = φ2 ◦Φ1(x) = φ2

(
φ1(x1), φ1(x2), · · · , φ1(xd)

)
.

Note that |x − xβ| ≤
√
d
K

for any x ∈ Qβ and β ∈ {0, 1, · · · , K − 1}d. Then we

have, for any x ∈ Qβ and β ∈ {0, 1, · · · , K − 1}d,

|f̃(x)− φ̃(x)| ≤ |f̃(x)− f̃(xβ)|+ |f̃(xβ)− φ̃(x)|

≤ ωf̃ (
√
d
K

) + |f̃(xβ)− φ2(Φ1(x))|

≤ ωf̃ (
√
d
K

) + |f̃(xβ)− φ2(β)| ≤ ωf̃ (
√
d
K

) + 2−NL,

where the last inequality comes from Equation (5.3).

Note that [0, 1]d = ∪β∈{0,1,···,K−1}dQβ. Since x ∈ Qβ and β ∈ {0, 1, · · · , K − 1}d

are arbitrary, we have

|f̃(x)− φ̃(x)| ≤ ωf̃ (
√
d
K

) + 2−NL, for any x ∈ [0, 1]d.

5.2 Proof of auxiliary theorem 127

Define

φ := 2ωf (
√
d)φ̃+ f(0)− ωf (

√
d).

By K = NL and ωf (r) = 2ωf (
√
d) ·ωf̃ (r) for any r ≥ 0, we have, for any x ∈ [0, 1]d,

|f(x)− φ(x)| = 2ωf (
√
d)
∣∣f̃(x)− φ̃(x)

∣∣ ≤ 2ωf (
√
d)
(
ωf̃ (

√
d
K

) + 2−NL
)

≤ ωf (
√
d
K

) + 2ωf (
√
d)2−NL

≤ ωf (
√
dN−L) + 2ωf (

√
d)2−NL.

It remains to determine the width and depth of the Floor-ReLU network im-

plementing φ. Clearly, φ2 can be implemented by the architecture in Figure 5.4.

β1

β1

βd

ψ1 ψ1(β) = i

i

ψ2,1(i)

ψ2,1

i

ψ2,2(i)

1∑
j=1

2−jψ2,j(i)

ψ2,2

i

ψ2,3(i)

2∑
j=1

2−jψ2,j(i)

ψ2,3

i

ψ2,L(i)

L−1∑
j=1

2−jψ2,j(i)

· · · L∑
j=1

2−jψ2,j(i)

i

ψ2,(N−1)L+1(i)

ψ2,(N−1)L+1
i

ψ2,(N−1)L+2(i)

(N−1)L+1∑
j=(N−1)L+1

2−jψ2,j(i)

ψ2,(N−1)L+2

i

ψ2,(N−1)L+3(i)

(N−1)L+2∑
j=(N−1)L+1

2−jψ2,j(i)

ψ2,(N−1)L+3

i

ψ2,NL(i)

(N−1)L+L−1∑
j=(N−1)L+1

2−jψ2,j(i)

...

· · · NL∑
j=(N−1)L+1

2−jψ2,j(i)

NL∑
j=1

2−jψ2,j(i) = ψ2(i) = ψ2 ◦ ψ1(β) = φ2(β)

Figure 5.4: An illustration of the desired network architecture implementing φ2 =

ψ2 ◦ ψ1 for any input β ∈ {0, 1, · · · , K − 1}d, where i = ψ1(β).

As we can see from Figure 5.4, φ2 can be implemented by a Floor-ReLU network

with width

N
(

(2N + 2) + 3
)

= 2N2 + 5N

and depth

1 + L
(

(7dL− 2) + 1
)

+ 1 = L(7dL− 1) + 2.

Note that, for each j, ψ2,j is implemented by a Floor-ReLU network, with a fixed

architecture independent of ξi,j that is essentially determined by the target function

f for all i. Thus, the Floor-ReLU network implementing φ2 has a fixed architecture

128 Chapter 5. Approximation by Floor-ReLU networks

independent of f , as shown in Figure 5.4.

x1

x2

xd

σ(−Kx1 +K − 1)

σ(−Kx2 +K − 1)

σ(−Kxd +K − 1)

b−σ(−Kx1 +K − 1) +K − 1c = φ1(x1)

b−σ(−Kx2 +K − 1) +K − 1c = φ1(x2)

b−σ(−Kxd +K − 1) +K − 1c = φ1(xd)

φ2 ◦Φ1(x) = φ̃(x)
...

...
...

φ2

Figure 5.5: An illustration of the network architecture implementing φ̃ = φ2 ◦ Φ1

for any x = (x1, x2, · · · , xd) ∈ [0, 1]d.

Note that φ is defined via re-scaling and shifting φ̃. As shown in Figure 5.5,

φ and φ̃ can be implemented by a Floor-ReLU network, with a fixed architecture

independent of f , with width max{d, 2N2 + 5N} and depth 2 + L(7dL− 1) + 2 ≤
7dL2 + 3. So we finish the proof.

5.3 Proof of key proposition for auxiliary theorem

The proof of Proposition 5.6 mainly relies on the “bit extraction” technique. As

we shall see later, our key idea is to apply the Floor activation function to make

“bit extraction” more powerful to reduce network sizes. In particular, Floor-ReLU

networks can extract much more bits than ReLU networks with the same network

size.

Let us first establish a basic lemma to extract 1/N of total bits stored in a new

binary number from an input binary number.

Lemma 5.7. Given any J,N ∈ N+, there exists a function φ : R2 → R implemented

by a Floor-ReLU network with width 2N and depth 4 such that, for any θj ∈ {0, 1},
j = 1, 2, · · · , NJ , we have

φ(bin0.θ1θ2 · · · θNJ , n) = bin0.θ(n−1)J+1θ(n−1)J+2 · · · θnJ , for n = 1, 2, · · · , N.

Proof. Given any θj ∈ {0, 1} for j = 1, 2, · · · , NJ , denote

s = bin0.θ1θ2 · · · θNJ and sn = bin0.θ(n−1)J+1θ(n−1)J+2 · · · θnJ ,

5.3 Proof of key proposition for auxiliary theorem 129

for n = 1, 2, · · · , N .

Then our goal is to construct a function φ : R2 → R implemented by a Floor-

ReLU network with the desired width and depth that satisfies

φ(s, n) = sn, for n = 1, 2, · · · , N .

Based on the properties of the binary representation, it is easy to check that

sn =
⌊
2nJs

⌋/
2J −

⌊
2(n−1)Js

⌋
, for n = 1, 2, · · · , N. (5.4)

With formulas to return s1, s2, · · · , sN , it is still technical to construct a network

outputting sn for a given index n ∈ {1, 2, · · · , N}.
Set δ = 2−J and define g (see Figure 5.6) as

g(x) := σ
(
σ(x)− σ(x+δ−1

δ
)
)
, for any x ∈ R.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0

1
(1− δ, 1− δ)g

Figure 5.6: An illustration of g(x) = σ
(
σ(x)− σ(x+δ−1

δ
)
)
.

Since sn ∈ [0, 1− δ] for n = 1, 2, · · · , N , we have

sn =
N∑

k=1

g(sk + k − n), for n = 1, 2, · · · , N . (5.5)

As shown in Figure 5.7, the desired function φ can be implemented by a Floor-

ReLU network with width 2N and depth 4. Moreover, it holds that

φ(s, n) = sn, for n = 1, 2, · · · , N .

130 Chapter 5. Approximation by Floor-ReLU networks

Input 1 2 3 4 Output

s

n

b2Jsc

b22Jsc

b23Jsc

...

b2(N−1)Jsc

b2NJsc

n

s1

s2

s3

...
sN

n

σ(s1 + 1− n)

σ(s1+1−n+δ−1
δ

)

σ(s2 + 2− n)

σ(s2+2−n+δ−1
δ

)

...

σ(sN +N − n)

σ(sN+N−n+δ−1
δ

)

g(s1 + 1− n)

g(s2 + 2− n)

...

g(sN +N − n)

sn =: φ(s, n)

Figure 5.7: An illustration of the Floor-ReLU network implementing the desired

function φ based on Equation (5.4) and (5.5). All parameters in this network are

essentially determined by Equation (5.4) and (5.5), which are valid no matter what

θ1, · · · , θNJ ∈ {0, 1} are. Thus, the desired function φ implemented by this network

is independent of θ1, · · · , θNJ ∈ {0, 1}.

So we finish the proof.

The next lemma constructs a Floor-ReLU network that can extract any bit from

a binary number according to a specific index.

Lemma 5.8. Given any N,L ∈ N+, there exists a function φ : R2 → R implemented

by a Floor-ReLU network with width 2N + 2 and depth 7L − 3 such that, for any

θm ∈ {0, 1}, m = 1, 2, · · · , NL, we have

φ(bin0.θ1θ2 · · · θNL , m) = θm, for m = 1, 2, · · · , NL.

Proof. The proof is based on repeated applications of Lemma 5.7. To be exact, we

construct a sequence of functions φ1, φ2, · · · , φL implemented by Floor-ReLU net-

works by induction to satisfy the following two conditions for each ` ∈ {1, 2, · · · , L}.

(i) φ` : R2 → R can be implemented by a Floor-ReLU network with width 2N + 2

and depth 7`− 3.

5.3 Proof of key proposition for auxiliary theorem 131

(ii) For any θm ∈ {0, 1}, m = 1, 2, · · · , N `, we have

φ`(bin0.θ1θ2 · · · θN` , m) = bin0.θm, for m = 1, 2, · · · , N `.

First, consider the case ` = 1. By Lemma 5.7 (set J = 1 therein), there exists a

function φ1 implemented by a Floor-ReLU network with width 2N ≤ 2N + 2 and

depth 4 = 7− 3 such that, for any θm ∈ {0, 1}, m = 1, 2, · · · , N , we have

φ1(bin0.θ1θ2 · · · θN , m) = bin0.θm, for m = 1, 2, · · · , N .

It follows that Condition (i) and (ii) hold for ` = 1.

Next, assume Condition (i) and (ii) hold for ` = k. We would like to construct

φk+1 to make Condition (i) and (ii) true for ` = k + 1. By Lemma 5.7 (set J = Nk

therein), there exists a function ψ implemented by a Floor-ReLU network with width

2N and depth 4 such that, for any θm ∈ {0, 1}, m = 1, 2, · · · , Nk+1, we have

ψ(bin0.θ1θ2 · · · θNk+1 , n) = bin0.θ(n−1)Nk+1θ(n−1)Nk+2 · · · θ(n−1)Nk+Nk , (5.6)

for n = 1, 2, · · · , N . By the induction hypothesis, we have

• φk : R2 → R can be implemented by a Floor-ReLU network with width 2N+2

and depth 7k − 3.

• For any θj ∈ {0, 1}, j = 1, 2, · · · , Nk, we have

φk(bin0.θ1θ2 · · · θNk , j) = bin0.θj, for j = 1, 2, · · · , Nk. (5.7)

Given anym ∈ {1, 2, · · · , Nk+1}, there exist n ∈ {1, 2, · · · , N} and j ∈ {1, 2, · · · , Nk}
such that m = (n− 1)Nk + j, and such n, j can be obtained by

n = b(m− 1)/Nkc+ 1 and j = m− (n− 1)Nk. (5.8)

132 Chapter 5. Approximation by Floor-ReLU networks

Then the desired architecture of the Floor-ReLU network implementing φk+1 is

shown in Figure 5.8.

bin0.θ1 · · · θNk+1

m

bin0.θ1 · · · θNk+1

b(m− 1)/Nkc

m

bin0.θ1 · · · θNk+1

n

m

bin0.θ(n−1)Nk+1 · · · θ(n−1)Nk+Nk

j = m− (n− 1)Nk

bin0.θ(n−1)Nk+j = bin0.θm =: φk+1(binθ1 · · · θNk+1 , m)φk
ψ

Figure 5.8: An illustration of the Floor-ReLU network architecture implement-

ing φk+1, based on Equation (5.6), (5.7), and (5.8) for any θm ∈ {0, 1} and

m ∈ {1, 2, · · · , Nk+1}.

Note that ψ can be implemented by a Floor-ReLU network with width 2N and

depth 4. Then the desired network implementing φk+1 is shown in Figure 5.8.

Moreover, we have

• φk+1 : R2 → R can be implemented by a Floor-ReLU network with width

2N + 2 and depth 2 + 4 + 1 + (7k− 3) = 7(k+ 1)− 3, which implies Condition

(i) for ` = k + 1.

• For any θm ∈ {0, 1}, m = 1, 2, · · · , Nk+1, we have

φk+1(bin0.θ1θ2 · · · θNk+1 , m) = bin0.θm, for m = 1, 2, · · · , Nk+1.

That is, Condition (ii) holds for ` = k + 1.

So we finish the process of induction.

By the principle of induction, there exists a function φL : R2 → R such that

• φL can be implemented by a Floor-ReLU network with width 2N + 2 and

depth 7L− 3.

• For any θm ∈ {0, 1}, m = 1, 2, · · · , NL, we have

φL(bin0.θ1θ2 · · · θNL , m) = bin0.θm, for m = 1, 2, · · · , NL.

5.3 Proof of key proposition for auxiliary theorem 133

Finally, define φ := 2φL. Then φ can also be implemented by a Floor-ReLU network

with width 2N+2 and depth 7L−3. Moreover, for any θm ∈ {0, 1}, m = 1, 2, · · · , NL,

we have

φ(bin0.θ1θ2 · · · θNL , m) = 2 · φL(bin0.θ1θ2 · · · θNL , m) = 2 · bin0.θm = θm,

for m = 1, 2, · · · , NL. So we finish the proof.

With Lemma 5.8 in hand, we are ready to prove Proposition 5.6.

Proof of Proposition 5.6. By Lemma 5.8, there exists a function φ̃ : R2 → R imple-

mented by a Floor-ReLU network with width 2N + 2 and depth 7L− 3 such that,

for any zm ∈ {0, 1}, m = 1, 2, · · · , NL, we have

φ̃(bin0.z1z2 · · · zNL , m) = zm, for m = 1, 2, · · · , NL.

Based on θm ∈ {0, 1} for m = 1, 2, · · · , NL given in Proposition 5.6, we define the

final function φ as

φ(x) := φ̃
(
σ(x · 0 + bin0.θ1θ2 · · · θNL), σ(x)

)
, where σ(x) = max{0, x}.

Clearly, φ can be implemented by a Floor-ReLU network, with a fixed architecture

independent of θm ∈ {0, 1} for m = 1, 2, · · · , NL, with width 2N + 2 and depth

1+(7L−3) = 7L−2. In fact, only one parameter (bin0.θ1θ2 · · · θNL) of the network

implementing φ relies on θm ∈ {0, 1} for m = 1, 2, · · · , NL. Moreover, we have, for

any m ∈ {1, 2, · · · , NL},

φ(m) = φ̃
(
σ(m · 0 + bin0.θ1θ2 · · · θNL), σ(m)

)
= φ̃(bin0.θ1θ2 · · · θNL ,m) = θm.

So we finish the proof.

We shall point out that only the properties of Floor on [0,∞) are used in our

134 Chapter 5. Approximation by Floor-ReLU networks

proof. Thus, the Floor can be replaced by the truncation function that can be easily

implemented by truncating the decimal part.

Finally, we would like to remark that the key reason Floor-ReLU networks can

attain much better approximation errors than ReLU networks is that Floor has in-

finite (constant) pieces, while ReLU has only two (linear) pieces. Thus, roughly

speaking, one Floor activation function can do what many ReLU activation func-

tions do in our construction. For this reason, compared to ReLU networks, Floor-

ReLU networks attain significantly better approximation errors. In fact, one may

replace Floor by other activation functions with “many pieces”. For example, it is

shown in [60] that ReLU/Sin-activated networks can also attain nearly exponential

approximation errors.

Chapter 6
Conclusion

This dissertation aims to study the approximation power of ReLU networks and

Floor-ReLU networks. Based on the idea of function compositions, we construct

ReLU networks to uniformly approximate polynomials, Hölder continuous functions,

general continuous functions, and smooth functions on a d-dimensional hypercube

[0, 1]d with (nearly optimal) approximation errors. All the approximation error

estimates are characterized by the width and depth simultaneously and have explicit

formulas for the prefactors. Meanwhile, the optimality of the approximation by

ReLU networks is discussed via studying the connection between the approximation

error and VC-dimension.

To overcome the limitation of ReLU networks that (nearly) exponential approx-

imation errors can only be attained for polynomials among all function spaces con-

sidered, we introduce Floor-ReLU networks. It is proved by construction that nearly

exponential approximation errors can be attained when using Floor-ReLU networks

with fixed architectures to uniformly approximate (Hölder) continuous functions on

[0, 1]d. In other words, approximation errors are improved from polynomial ones to

nearly exponential ones via adding a simple activation function (Floor) to ReLU

networks. The optimality of the approximation by Floor-ReLU networks is not dis-

cussed due to the nearly exponential approximation errors. All these results stated

above completely solve the three problems (Problem 1, 2, and 3) listed in Chapter 1

135

136 Chapter 6. Conclusion

for certain function spaces.

Finally, we would like to remark that our analysis is only for the feed-forward fully

connected neural networks with two types of activation functions: ReLU and Floor.

It would be an interesting direction to generalize our results to neural networks with

other architectures (e.g., convolutional neural networks and residual networks) and

activation functions (e.g., tanh and sigmoid functions). These will be left as future

work.

Bibliography

[1] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu. Con-

volutional neural networks for speech recognition. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 22(10):1533–1545, Oct 2014.

[2] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foun-

dations. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[3] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal

function. IEEE Transactions on Information Theory, 39(3):930–945, May 1993.

[4] P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight VC-

dimension and pseudodimension bounds for piecewise linear neural networks.

Journal of Machine Learning Research, 20(63):1–17, 2019.

[5] P. L. Bartlett, V. Maiorov, and R. Meir. Almost linear VC-dimension bounds for

piecewise polynomial networks. Neural Computation, 10(8):2159–2173, 1998.

[6] Y. Bengio, N. Léonard, and A. C. Courville. Estimating or propagating

gradients through stochastic neurons for conditional computation. CoRR,

abs/1308.3432, 2013.

137

138 Bibliography

[7] M. Bianchini and F. Scarselli. On the complexity of neural network classifiers:

A comparison between shallow and deep architectures. IEEE Transactions on

Neural Networks and Learning Systems, 25(8):1553–1565, Aug 2014.

[8] E. K. Blum and L. K. Li. Approximation theory and feedforward networks.

Neural Networks, 4(4):511–515, 1991.

[9] Y. Boo, S. Shin, and W. Sung. Quantized neural networks: Characterization

and holistic optimization. In 2020 IEEE Workshop on Signal Processing Sys-

tems (SiPS), pages 1–6, 2020.

[10] D. S. Broomhead and D. Lowe. Multivariable functional interpolation and

adaptive networks. Complex Systems 2, pages 321–355, 1988.

[11] J. A. Carrillo, S. Jin, L. Li, and Y. Zhu. A consensus-based global optimization

method for high dimensional machine learning problems. arXiv e-prints, page

arXiv:1909.09249, Sep 2019.

[12] S. Chen and D. Donoho. Basis pursuit. In Proceedings of 1994 28th Asilomar

Conference on Signals, Systems and Computers, volume 1, pages 41–44, Oct

1994.

[13] D. Costarelli and A. R. Sambucini. Saturation classes for max-product neural

network operators activated by sigmoidal functions. Results in Mathematics,

72(3):1555–1569, 2017.

[14] D. Costarelli and A. R. Sambucini. Approximation results in Orlicz spaces for

sequences of Kantorovich max-product neural network operators. Results in

Mathematics, 73(1):1–15, 2018.

[15] D. Costarelli and G. Vinti. Convergence for a family of neural network operators

in Orlicz spaces. Mathematische Nachrichten, 290(2-3):226–235, 2017.

[16] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math-

ematics of Control, Signals and Systems, 2:303–314, 1989.

Bibliography 139

[17] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova. Nonlinear ap-

proximation and (deep) ReLU networks. arXiv e-prints, page arXiv:1905.02199,

May 2019.

[18] R. DEVORE and A. RON. Approximation using scattered shifts of a

multivariate function. Transactions of the American Mathematical Society,

362(12):6205–6229, 2010.

[19] R. A. DeVore. Nonlinear approximation. Acta Numerica, 7:51–150, 1998.

[20] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-

dimensional parabolic partial differential equations and backward stochastic dif-

ferential equations. Communications in Mathematics and Statistics, 5(4):349–

380, Dec 2017.

[21] W. E and Q. Wang. Exponential convergence of the deep neural network ap-

proximation for analytic functions. Science China Mathematics, 61:1733–1740,

2018.

[22] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential

equations using deep learning. Proceedings of the National Academy of Sciences,

115(34):8505–8510, 2018.

[23] T. Hangelbroek and A. Ron. Nonlinear approximation using gaussian kernels.

Journal of Functional Analysis, 259(1):203–219, 2010.

[24] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neu-

ral Networks, 4(2):251–257, 1991.

[25] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks

are universal approximators. Neural Networks, 2(5):359–366, 1989.

[26] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized

neural networks: Training neural networks with low precision weights and ac-

tivations. Journal of Machine Learning Research, 18(1):6869–6898, Jan 2017.

140 Bibliography

[27] K. Kawaguchi. Deep learning without poor local minima. In D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in

Neural Information Processing Systems 29, pages 586–594. Curran Associates,

Inc., 2016.

[28] K. Kawaguchi and Y. Bengio. Depth with nonlinearity creates no bad local

minima in resnets. Neural Networks, 118:167–174, 2019.

[29] M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of prob-

abilistic concepts. Journal of Computer and System Sciences, 48(3):464–497,

Jun 1994.

[30] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings

of ICNN’95 - International Conference on Neural Networks, volume 4, pages

1942–1948, 1995.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

[32] V. Kůrková. Kolmogorov’s theorem and multilayer neural networks. Neural

Networks, 5(3):501–506, 1992.

[33] G. Lewicki and G. Marino. Approximation of functions of finite variation by su-

perpositions of a sigmoidal function. Applied Mathematics Letters, 17(10):1147–

1152, 2004.

[34] S. Liang and R. Srikant. Why deep neural networks for function approximation?

arXiv e-prints, page arXiv:1610.04161, Oct 2016.

[35] S. Lin, X. Liu, Y. Rong, and Z. Xu. Almost optimal estimates for approximation

and learning by radial basis function networks. Machine Learning, 95(2):147–

164, May 2014.

Bibliography 141

[36] Y. Lin, M. Lei, and L. Niu. Optimization strategies in quantized neural net-

works: A review. In 2019 International Conference on Data Mining Workshops

(ICDMW), pages 385–390, 2019.

[37] B. Llanas and F. Sainz. Constructive approximate interpolation by neural

networks. Journal of Computational and Applied Mathematics, 188(2):283–308,

2006.

[38] J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep network approximation for smooth

functions. arXiv e-prints, page arXiv:2001.03040, Jan 2020.

[39] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural

networks: A view from the width. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 30, pages 6231–6239. Curran

Associates, Inc., 2017.

[40] V. Maiorov and A. Pinkus. Lower bounds for approximation by MLP neural

networks. Neurocomputing, 25(1):81–91, 1999.

[41] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.

IEEE Transactions on Signal Processing, 41(12):3397–3415, Dec 1993.

[42] H. Montanelli and Q. Du. New error bounds for deep ReLU networks using

sparse grids. SIAM Journal on Mathematics of Data Science, 1(1):78–92, 2019.

[43] H. Montanelli, H. Yang, and Q. Du. Deep ReLU networks overcome the

curse of dimensionality for bandlimited functions. arXiv e-prints, page

arXiv:1903.00735, Mar 2019.

[44] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear

regions of deep neural networks. In Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems 27, pages 2924–2932. Curran Associates, Inc., 2014.

142 Bibliography

[45] Q. Nguyen and M. Hein. The loss surface of deep and wide neural networks. In

D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Confer-

ence on Machine Learning, volume 70 of Proceedings of Machine Learning Re-

search, pages 2603–2612, International Convention Centre, Sydney, Australia,

06–11 Aug 2017. PMLR.

[46] J. A. A. Opschoor, C. Schwab, and J. Zech. Exponential ReLU DNN expression

of holomorphic maps in high dimension. Technical Report 2019-35, Seminar for

Applied Mathematics, ETH Zürich, Switzerland., 2019.

[47] J. Park and I. W. Sandberg. Universal approximation using radial-basis-

function networks. Neural Computation, 3(2):246–257, Jun 1991.

[48] P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth

functions using deep ReLU neural networks. Neural Networks, 108:296 – 330,

2018.

[49] P. Petrushev. Multivariate n-term rational and piecewise polynomial approxi-

mation. Journal of Approximation Theory, 121(1):158–197, 2003.

[50] R. Pinnau, C. Totzeck, O. Tse, and S. Martin. A consensus-based model for

global optimization and its mean-field limit. Mathematical Models and Methods

in Applied Sciences, 27(01):183–204, 2017.

[51] A. Sakurai. Tight bounds for the VC-dimension of piecewise polynomial net-

works. In Advances in Neural Information Processing Systems, pages 323–329.

Neural information processing systems foundation, 1999.

[52] Z. Shen, H. Yang, and S. Zhang. Nonlinear approximation via compositions.

Neural Networks, 119:74–84, 2019.

[53] Z. Shen, H. Yang, and S. Zhang. Deep network approximation characterized by

number of neurons. Communications in Computational Physics, 28(5):1768–

1811, 2020.

Bibliography 143

[54] Z. Shen, H. Yang, and S. Zhang. Deep network with approximation error being

reciprocal of width to power of square root of depth. arXiv e-prints, page

arXiv:2006.12231, Jun 2020.

[55] T. Suzuki. Adaptivity of deep ReLU network for learning in Besov and mixed

smooth Besov spaces: optimal rate and curse of dimensionality. In International

Conference on Learning Representations, 2019.

[56] P. Wang, Q. Hu, Y. Zhang, C. Zhang, Y. Liu, and J. Cheng. Two-step quantiza-

tion for low-bit neural networks. In 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4376–4384, 2018.

[57] T. F. Xie and F. L. Cao. The rate of approximation of gaussian radial basis

neural networks in continuous function space. Acta Mathematica Sinica, English

Series, 29(2):295–302, Feb 2013.

[58] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neu-

ral Networks, 94:103–114, 2017.

[59] D. Yarotsky. Optimal approximation of continuous functions by very deep ReLU

networks. In S. Bubeck, V. Perchet, and P. Rigollet, editors, Proceedings of the

31st Conference On Learning Theory, volume 75 of Proceedings of Machine

Learning Research, pages 639–649. PMLR, Jul 2018.

[60] D. Yarotsky and A. Zhevnerchuk. The phase diagram of approximation rates

for deep neural networks. arXiv e-prints, page arXiv:1906.09477, Jun 2019.

[61] P. Yin, J. Lyu, S. Zhang, S. Osher, Y. Qi, and J. Xin. Understanding straight-

through estimator in training activation quantized neural nets. arXiv e-prints,

page arXiv:1903.05662, Mar 2019.

	Acknowledgments
	Summary
	1 Introduction
	1.1 Contributions
	1.2 Related work

	2 Preliminaries
	2.1 Notations
	2.1.1 Basic notations
	2.1.2 Set notations
	2.1.3 Neural network notations

	2.2 Architecture of neural networks
	2.2.1 Descriptions
	2.2.2 Compositions and combinations

	2.3 General ideas of approximation by networks
	2.3.1 ReLU networks
	2.3.2 Floor-ReLU networks

	3 Basic results of ReLU networks
	3.1 Wide networks to deep ones
	3.2 Power of networks to fit points
	3.2.1 Width power of networks to fit points
	3.2.2 Depth power of networks to fit points

	3.3 Approximation in the trifling region
	3.4 Approximation of step functions

	4 Approximation by ReLU networks
	4.1 Approximation of polynomials
	4.1.1 Main theorem
	4.1.2 Approximation of x^2
	4.1.3 Approximation of x_1 x_2 ⋯ x_k
	4.1.4 Proof of main theorem

	4.2 Approximation of continuous functions
	4.2.1 Main theorem and its proof
	4.2.2 Proof of auxiliary theorem
	4.2.3 Proof of key proposition for auxiliary theorem

	4.3 Approximation of smooth functions
	4.3.1 Main theorem and its proof
	4.3.2 Ideas of proving auxiliary theorem
	4.3.3 Proof of auxiliary theorem
	4.3.4 Proof of key proposition for auxiliary theorem

	4.4 Optimality of approximation by networks
	4.4.1 Hölder continuous functions
	4.4.2 Smooth functions

	5 Approximation by Floor-ReLU networks
	5.1 Main theorem and its proof
	5.2 Proof of auxiliary theorem
	5.3 Proof of key proposition for auxiliary theorem

	6 Conclusion
	Bibliography

