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Abstract

A three-hidden-layer neural network with super approximation power is
introduced. This network is built with the floor function (⌊x⌋), the expo-
nential function (2x), the step function (1x≥0), or their compositions as the
activation function in each neuron and hence we call such networks as Floor-
Exponential-Step (FLES) networks. For any width hyper-parameter N ∈ N+,
it is shown that FLES networks with width max{d,N} and three hidden
layers can uniformly approximate a Hölder continuous function f on [0,1]d
with an exponential approximation rate 3λ(2

√
d)α2−αN , where α ∈ (0,1] and

λ > 0 are the Hölder order and constant, respectively. More generally for
an arbitrary continuous function f on [0,1]d with a modulus of continuity
ωf(⋅), the constructive approximation rate is 2ωf(2

√
d)2−N + ωf(2

√
d2−N).

Moreover, we extend such a result to general bounded continuous functions
on a bounded set E ⊆ Rd. As a consequence, this new class of networks over-
comes the curse of dimensionality in approximation power when the variation
of ωf(r) as r → 0 is moderate (e.g., ωf(r) ≲ rα for Hölder continuous func-
tions), since the major term to be concerned in our approximation rate is
essentially

√
d times a function of N independent of d within the modulus of

continuity. Finally, we extend our analysis to derive similar approximation
results in the Lp-norm for p ∈ [1,∞) via replacing Floor-Exponential-Step
activation functions by continuous activation functions.
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Floor-Exponential-Step Activation Function, Continuous Function.

1. Introduction1

This paper studies the approximation power of neural networks and2

shows that three hidden layers are enough for neural networks to achieve su-3

per approximation capacity. In particular, leveraging the power of advanced4

yet simple activation functions, we will introduce new theories and network5

architectures with only three hidden layers achieving exponential convergence6

and avoiding the curse of dimensionality simultaneously for (Hölder) continu-7

ous functions with an explicit approximation bound. The theories established8

in this paper would provide new insights to explain why deeper neural net-9

works are better than one-hidden-layer neural networks for large-scale and10

high-dimensional problems. The approximation theories here are construc-11

tive (i.e., with explicit formulas to specify network parameters) and quanti-12

tative (i.e., results valid for essentially arbitrary width and/or depth without13

lower bound constraints) with explicit error bounds working for three-hidden-14

layer networks with arbitrary width.15

Constructive approximation with quantitative results and explicit er-16

ror bounds would provide important guides for deciding the network sizes17

in deep learning. For example, the (nearly) optimal approximation rates18

of deep ReLU networks with width O(N) and depth O(L) for a Lipschitz19

continuous function and a Cs function f on [0,1]d are O(
√
dN−2/dL−2/d)20

and O(∥f∥Cs( N
lnN )−2s/d( L

lnL)−2s/d) Shen et al. (2020); Lu et al. (2020), re-21

spectively. For results in terms of the number of nonzero parameters, the22

reader is referred to Yarotsky (2017); Schmidt-Hieber (2020); Petersen and23

Voigtlaender (2018); Yarotsky (2018); Gühring et al. (2019); Yarotsky and24

Zhevnerchuk (2020) and the reference therein. Obviously, the curse of dimen-25

sionality exists in ReLU networks for these generic functions and, therefore,26

ReLU networks would need to be exponentially large in d to maintain a rea-27

sonably good approximation accuracy. The curse could be lessened when28

target function spaces are smaller. To name a few, Poggio et al. (2017);29

Barron and Klusowski (2018); E et al. (2019); Montanelli et al. (2020); Chen30

et al. (2019a); Hutzenthaler et al. (2020) and the reference therein for ReLU31

networks. The limitation of ReLU networks motivated the work in Shen32

et al. (2021) to introduce Floor-ReLU networks built with either a Floor33

(⌊x⌋) or ReLU (max{0, x}) activation function in each neuron. It was shown34
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by construction in Shen et al. (2021) that Floor-ReLU networks with width35

max{d, 5N + 13} and depth 64dL + 3 can uniformly approximate a Hölder36

continuous function f on [0,1]d with a root-exponential approximation rate37

3λdα/2N−α
√
L without the curse of dimensionality, where α ∈ (0,1] and λ > 038

are the Hölder order and constant, respectively.39

The most important message of Shen et al. (2021) (and probably also40

of Yarotsky and Zhevnerchuk (2020)) is that the combination of simple acti-41

vation functions can create super approximation power. In the Floor-ReLU42

networks mentioned above, the power of depth is fully reflected in the ap-43

proximation rate 3λdα/2N−α
√
L that is root-exponential in depth. However,44

the power of width is much weaker and the approximation rate is polynomial45

in width if depth is fixed. This seems to be inconsistent with recent devel-46

opment of network optimization theory Jacot et al. (2018); Du et al. (2019);47

Mei et al. (2018); Wu et al. (2018); Chen et al. (2019b); Lu et al. (2020);48

Luo and Yang (2020), where larger width instead of depth can ease the chal-49

lenge of highly noncovex optimization. The mystery of the power of width50

and depth remains and it motivates us to demonstrate that width can also51

enable super approximation power when armed with appropriate activation52

functions.53

In particular, we explore the floor function, the exponential function54

(2x), the step function (1x≥0), or their compositions as activation functions55

to build fully-connected feed-forward neural networks. These networks are56

called Floor-Exponential-Step (FLES) networks. As we shall prove by con-57

struction, Theorem 1.1 below shows that FLES networks with width max{d,N}58

and three hidden layers can uniformly approximate a continuous function f59

on [0,1]d with an exponential approximation rate 2ωf(2
√
d)2−N+ωf(2

√
d2−N),60

where ωf(⋅) is the modulus of continuity defined as61

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ ∥x − y∥2 ≤ r, x,y ∈ [0,1]d}, for any r ≥ 0.62

In particular, there are three kinds of activation functions denoted as σ1, σ2,63

and σ3 in FLES networks (see Figure 1 for an illustration):64

σ1(x) ∶= ⌊x⌋, σ2(x) ∶= 2x, and σ3(x) ∶= T (x − ⌊x⌋ − 1
2), for any x ∈ R,65

where66

T (x) ∶= 1x≥0 = {1, x ≥ 0,

0, x < 0,
for any x ∈ R.67
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Theorem 1.1. Given an arbitrary continuous function f defined on [0,1]d,68

for any N ∈ N+, there exist a1, a2,⋯, aN ∈ [0, 1
2) such that69

∣φ(x) − f(x)∣ ≤ 2ωf(2
√
d)2−N + ωf(2

√
d2−N),70

for any x = (x1, x2,⋯, xd) ∈ [0,1]d, where φ is defined by a formula in71

a1, a2,⋯, aN as follows.72

φ(x) = 2ωf(2
√
d)

N

∑
j=1

2−jσ3(aj ⋅ σ2(1 +
d

∑
i=1

2(i−1)Nσ1(2N−1xi) )) + f(0) − ωf(2
√
d).73

We remark that φ in Theorem 1.1 is essentially determined by N param-74

eters a1, a2,⋯, aN , which can be trained by a (σ1, σ2, σ3)-activated network75

with width max{d,N}, three hidden layers, and 2(d+N +1) nonzero param-76

eters. See Figure 1 for an illustration.77

x1

x2

...

xd

σ1(2
N−1 · x1)

σ1(2
N−1 · x2)
...

σ1(2
N−1 · xd)

σ2

(
1 +

d∑

i=1

2(i−1)Nσ1(2
N−1 · xi)

)
=: y

σ3(a1 · y)

σ3(a2 · y)
...

σ3(aN · y)

2ωf (2
√
d)

N∑

j=1

2−jσ3(aj · y) + f(0)− ωf (2
√
d) =: φ(x)

σ1 σ2 σ3

d d 1 N 1

Figure 1: An illustration of the desired three-hidden-layer network in Theorem 1.1 for any
x = (x1, x2,⋯, xd) ∈ R. Each of the red functions “σ1”, “σ2”, and “σ3” above the network
is the activation function of the corresponding hidden layer. The number of neurons in
each hidden layer is indicated by the red number below it.

The rate in ωf(2
√
d2−N) implicitly depends on N through the modulus78

of continuity of f , while the rate in 2ωf(2
√
d)2−N is explicit in N . Sim-79

plifying the implicit approximation rate to make it explicitly depend on N80

is challenging in general. However, if f is a Hölder continuous function on81

[0,1]d of order α ∈ (0,1] with a Hölder constant λ > 0, i.e., f(x) satisfying82

∣f(x) − f(y)∣ ≤ λ∥x − y∥α2 , for any x,y ∈ [0,1]d, (1)83

then ωf(r) ≤ λrα for any r ≥ 0. Therefore, in the case of Hölder continuous84

functions, the approximation rate is simplified to 3λ(2
√
d)α2−αN as shown in85

the following corollary. In the special case of Lipschitz continuous functions86

with a Lipschitz constant λ > 0, the approximation rate is simplified to87

6λ
√
d2−N .88
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Corollary 1.2. Given any Hölder continuous function f on [0,1]d of or-89

der α ∈ (0,1] with a Hölder constant λ > 0, for any N ∈ N+, there exists90

a1, a2,⋯, aN such that91

∣φ(x) − f(x)∣ ≤ 3λ(2
√
d)α2−αN , for any x = (x1, x2,⋯, xd) ∈ [0,1]d,92

where φ is defined by a formula in a1, a2,⋯, aN as follows.93

φ(x) = 2ωf(2
√
d)

N

∑
j=1

2−jσ3(aj ⋅ σ2(1 +
d

∑
i=1

2(i−1)Nσ1(2N−1xi) )) + f(0) − ωf(2
√
d).94

First, Theorem 1.1 and Corollary 1.2 show that the approximation ca-95

pacity of three-hidden-layer neural networks with simple activation functions96

for continuous functions can be exponentially improved by increasing the net-97

work width, and the approximation error can be explicitly characterized in98

terms of the width O(N). Second, this new class of networks overcomes the99

curse of dimensionality in the approximation power when the modulus of con-100

tinuity is moderate, since the approximation order is essentially
√
d times a101

function of N independent of d within the modulus of continuity. Therefore,102

three hidden layers are enough for neural networks to achieve exponential103

convergence and avoid the curse of dimensionality for generic functions. The104

width is also powerful in network approximation.105

The rest of this paper is organized as follows. In Section 2, we discuss106

the application scope of our theory, study the connection between the ap-107

proximation error and the Vapnik-Chervonenkis (VC) dimension, establish108

Corollary 2.3 to extend our analysis to general bounded continuous functions109

on a bounded set, and compare related works in the literature. We will prove110

Theorem 1.1 and Corollary 2.3 in Section 3. In Section 4, we explore alter-111

native continuous activation functions other than σ1, σ2, and σ3 for super112

approximation power. Finally, we conclude this paper in Section 5.113

2. Discussion114

In this section, we will further interpret our results and discuss related115

research in the field of neural network approximation.116

2.1. Application scope of our theory in machine learning117

Let φ(x;θ) denote a function computed by a (fully-connected) network118

with θ as the set of parameters. Given a target function f , consider the119
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expected error/risk of φ(x;θ)120

RD(θ) ∶= Ex∼U(X ) [`(φ(x;θ), f(x))]121

with a loss function typically taken as `(y, y′) = 1
2 ∣y − y′∣2, where U(X ) is an122

unknown data distribution over X . For example, when `(y, y′) = 1
2 ∣y − y′∣2123

and U is a uniform distribution over X = [0,1]d,124

RD(θ) = ∫
[0,1]d

1
2 ∣φ(x;θ) − f(x)∣2dx.125

The expected risk minimizer θD is defined as126

θD ∶= arg min
θ

RD(θ).127

It is unachievable in practice since f and U(X ) are not available. Instead,128

we only have samples of f .129

Given samples {(xi, f(xi))}ni=1, the empirical risk is defined as130

RS(θ) ∶=
1

n

n

∑
i=1

`(φ(xi;θ), f(xi)).131

And we usually use it to approximate/model the expected risk RD(θ). The132

goal of supervised learning is to identify the empirical risk minimizer133

θS = arg min
θ

RS(θ), (2)134

to obtain φ(x;θS) ≈ f(x). When a numerical optimization method is applied135

to solve (2), it may result in a numerical solution (denoted as θN ) that is136

not a global minimizer. Hence, the actually learned function generated by a137

neural network is φ(x;θN ). The discrepancy between the target function f138

and the actually learned function φ(x;θN ) is measured by an inference error139

RD(θN ) = Ex∼U(X ) [`(φ(x;θN ), f(x))] e.g.= ∫
[0,1]d

1
2 ∣φ(x;θN ) − f(x)∣2dx,140

where the second equality holds when `(y, y′) = 1
2 ∣y − y′∣2 and U is a uniform141

distribution over X = [0,1]d.142

6



Since RD(θN ) is the expected inference error over all possible data sam-143

ples, it can quantify how good the learned function φ(x;θN ) is. Note that144

RD(θN )= [RD(θN ) −RS(θN )]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

GE

+ [RS(θN ) −RS(θS)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

OE

+ [RS(θS) −RS(θD)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ 0 by Eq. (2)

+ [RS(θD) −RD(θD)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

GE

+RD(θD)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

AE

145

≤ RD(θD)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

Approximation error (AE)

+ [RS(θN ) −RS(θS)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Optimization error (OE)

+ [RD(θN ) −RS(θN )] + [RS(θD) −RD(θD)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Generalization error (GE)

, (3)146

147

where the inequality comes from the fact that [RS(θS) −RS(θD)] ≤ 0 since148

θS is a global minimizer of RS(θ). Constructive approximation provides149

an upper bound of RD(θD) in terms of the network size, e.g., in terms of150

the network width and depth, or in terms of the number of parameters.151

The second term of Equation (3) is bounded by the optimization error of the152

numerical algorithm applied to solve the empirical loss minimization problem153

in Equation (2). Note that one only needs to make RS(θN ) −RS(θS) small,154

but not θN − θS . The study of the bounds for the third and fourth terms155

is referred to as the generalization error analysis of neural networks. See156

Figure 2 for the intuitions of these three errors.157

One of the key targets in the area of deep learning is to develop algo-158

rithms to reduce RD(θN ). The constructive approximation established in159

this paper and in the literature provides upper bounds of the approxima-160

tion error RD(θD) for several function spaces, which is crucial to estimate161

an upper bound of RD(θN ). Instead of deriving an approximator to attain162

the approximation error bound, deep learning algorithms aim to identify163

a solution φ(x;θN ) reducing the generalization and optimization errors in164

Equation (3). Solutions minimizing both generalization and optimization er-165

rors will lead to a good solution only if we also have a good upper bound166

estimate of RD(θD) as shown in Equation (3). Independent of whether our167

analysis here leads to a good approximator, which is an interesting topic to168

pursue, the theory here does provide a key ingredient in the error analysis of169

deep learning algorithms.170

Theorem 1.1 and Corollary 1.2 provide an upper bound of RD(θD). This171

bound only depends on the given budget of neurons and layers of FLES net-172

works. Hence, this bound is independent of the empirical loss minimization173

in Equation (2) and the optimization algorithm used to compute the numer-174

ical solution of Equation (2). In other words, Theorem 1.1 and Corollary 1.2175

quantify the approximation power of FLES networks with a given size. De-176

signing efficient optimization algorithms and analyzing the generalization177
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H = {φ(x;θ)}θ
hypothesis space

target function f

φ(x;θD)

best solution

AE

initial guess

φ(x;θN )

numerical solution

training/optimization

φ(x;θS)

best empirical solution

OE

GE

φ(x;θC)

AE*

constructive solution

an upper bound of AE

RD(θN ) ≤
theoretical construction

RD(θD)︸ ︷︷ ︸
AE

+

DL models and algorithms

[RS(θN )−RS(θS)]︸ ︷︷ ︸
OE

+

DL models and algorithms

[RD(θN )−RS(θN )] + [RS(θD)−RD(θD)]︸ ︷︷ ︸
GE

Figure 2: The intuitions of the approximation error (AE), the optimization error (OE),
and the generalization error (GE). DL is short of deep learning. One needs to control
AE, OE, and GE in order to bound the discrepancy between the target function f and
the numerical solution φ(x;θN ) (what we can get in practice), measured by RD(θN ) =
Ex∼U(X) [`(φ(x;θN ), f(x))].

bounds for FLES networks are two other separate future directions.178

2.2. Connection between approximation error and VC-dimension179

The approximation error and the Vapnik-Chervonenkis (VC) dimension180

are two important measures of the capacity (complexity) of a set of functions.181

In this section, we discuss the connection between them.182

Let us first present the definitions of VC-dimension and related concepts.183

Assume H is a class of functions mapping from a general domain X to {0,1}.184

We say H shatters a set of points {x1,x2,⋯,xm} ⊆ X if185

∣{[h(x1), h(x2),⋯, h(xm)]T ∈ {0,1}m ∶ h ∈H}∣ = 2m,186

where ∣ ⋅ ∣ means the size of a set. The above equation means, given any187

θi ∈ {0,1} for i = 1,2,⋯,m, there exists h ∈ H such that h(xi) = θi for all i.188

For a general function set F with its elements mapping from X to R, we say189

F shatters {x1,x2,⋯,xm} ⊆ X if T ○F does, where190

T (t) ∶= {1, t ≥ 0,

0, t < 0
and T ○F ∶= {T ○ f ∶ f ∈ F}.191
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For any m ∈ N+, the growth function of H is defined as192

ΠH(m) ∶= max
x1,x2,⋯,xm∈X

∣{[h(x1), h(x2),⋯, h(xm)]T ∈ {0,1}m ∶ h ∈H}∣.193

Definition 2.1 (VC-dimension). Assume H is a class of functions from X194

to {0,1}. The VC-dimension of H, denoted by VCDim(H), is the size of the195

largest shattered set, namely,196

VCDim(H) ∶= sup{m ∈ N+ ∶ ΠH(m) = 2m}197

in the case that {m ∈ N+ ∶ ΠH(m) = 2m} is not empty. If {m ∈ N+ ∶ ΠH(m) =198

2m} = ∅, we may define VCDim(H) = 0.199

Let F be a class of functions from X to R. The VC-dimension of F ,200

denoted by VCDim(F ), is defined by VCDim(F ) ∶= VCDim(T ○F ),1 where201

T (t) ∶= {1, t ≥ 0,

0, t < 0
and T ○F ∶= {T ○ f ∶ f ∈ F}.202

In particular, the expression “the VC-dimension of a network (architecture)”203

means the VC-dimension of the function set that consists of all functions204

computed by this network (architecture).205

As shown in Yarotsky (2018, 2017); Shen et al. (2019, 2020); Lu et al.206

(2020); Shen et al. (2021); Zhang (2020); Shen et al. (to appear), VC-dimension207

essentially determines the lower bound of the approximation errors of net-208

works. For simplicity, we use Hölder([0,1]d, α, λ) as an example, where209

Hölder([0,1]d, α, λ) denotes the space of Hölder continuous functions of or-210

der α ∈ (0,1] and a Hölder constant λ > 0. Without loss of generality, we211

assume λ = 1. Theorem 2.2 below shows that the best possible approxima-212

tion error of functions in Hölder([0,1]d, α,1) approximated by functions in213

F is bounded by a formula characterized by VCDim(F ).214

Theorem 2.2 (Theorem 2.4 of Shen et al. (to appear) or Theorem 4.17 of215

Zhang (2020) ). Assume F is a function set with all elements defined on216

[0,1]d. Given any ε > 0, suppose VCDim(F ) ≥ 1 and217

inf
φ∈F

∥φ − f∥L∞([0,1]d) ≤ ε, for any f ∈ Hölder([0,1]d, α,1).218

Then VCDim(F ) ≥ (9ε)−d/α.219

1One may also define VCDim(F ) ∶= VCDim(T̂ ○F ), where T̂ (t) ∶= {1, t>0,
0, t≤0 .
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This theorem investigates the connection between VC-dimension of F220

and the approximation errors of functions in Hölder([0,1]d, α,1) approxi-221

mated by elements of F . Denote the best approximation error of functions222

in Hölder([0,1]d, α,1) approximated by the elements of F as223

Eα,d(F ) ∶= sup
f∈Hölder([0,1]d,α,1)

( inf
φ∈F

∥φ − f∥L∞([0,1]d)).224

Then, Theorem 2.2 implies that225

VCDim(F )−α/d/9 ≤ Eα,d(F ),226

which means that the best possible approximation error is controlled by227

VCDim(F )−α/d/9. A typical application of this theorem is to prove the op-228

timality of approximation errors when using ReLU networks to approximate229

functions in Hölder([0,1]d, α,1). It is shown in Harvey et al. (2017) that the230

VC-dimension of FN,L is bounded by231

VCDim(FN,L) ≤ O(N2L ⋅L ⋅ ln(N2L)) ≤ O(N2L2 ln(NL)),232

where FN,L is the space consisting of all functions implemented by ReLU233

networks with width N and depth L. It is shown in Section 4.4.1 of Zhang234

(2020) that235

C1(α, d) ⋅ (N2L2ln(NL))
−α/d

≤ Eα,d(FN,L) ≤ C2(α, d) ⋅ (N2L2)
−α/d

,236

where C1(α, d) and C2(α, d) are two positive constants determined by α and237

d.238

Finally, we would like to point out that a large VC-dimension of the239

hypothesis space F is a necessary condition of a good approximation error,240

but cannot guarantee a good approximation error, which also relies on other241

properties of the hypothesis space F . For example, it is easy to check by242

Proposition 4.2 that243

VCDim({φ ∶ φ(x) = cos(ax), a ∈ R}) =∞.244

However, {φ ∶ φ(x) = cos(ax), a ∈ R} cannot achieve a good approximation245

error when approximating Hölder continuous functions. Designing a hypothe-246

sis space with a large VC-dimension is the first step for a good approximation247
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toll, but to realize the desired approximation power requires refined design of248

the hypothesise space, which is also the philosophy we followed in this paper.249

Our initial goal is to design a network architecture with a fixed depth (e.g.,250

three hidden layers) to generate a hypothesis space with a sufficiently large251

VC-dimension (∞). As we shall see later, Proposition 3.2 implies that the252

VC-dimension of FLES networks is infinity, which is a necessary condition253

for our FLES networks to attain super approximation power.254

2.3. Further interpretation of our theory255

In the interpretation of our theory, three more aspects are important256

to discuss. The first one is whether it is possible to extend our theory to257

functions on a more general domain, e.g, E ⊆ [−R,R]d for any R > 0, because258

R > 1 may cause an implicit curse of dimensionality in some existing theory.259

The second one is how bad the modulus of continuity would be since it is260

related to a high-dimensional function f that may lead to an implicit curse261

of dimensionality in our approximation rate. The last one is the discussion262

of overcoming the zero derivative in training FLES networks.263

First, we can generalize Theorem 1.1 to the function space C(E) with264

E ⊆ [−R,R]d for any R > 0 in the following corollary with the modulus of265

continuity ωEf (⋅) defined as follows. For an arbitrary set E ⊆ Rd, ωEf (r) is266

defined via267

ωEf (r) ∶= sup{∣f(x) − f(y)∣ ∶ ∥x − y∥2 ≤ r, x,y ∈ E}, for any r ≥ 0.268

As defined earlier, in the case E = [0,1]d, ωEf (r) is abbreviated to ωf(r). The269

proof of this corollary will be presented in Section 3.2.270

Corollary 2.3. Given an arbitrary bounded continuous function f on E ⊆271

[−R,R]d where R is an arbitrary positive real number, for any N ∈ N+, there272

exist a1, a2,⋯, aN ∈ [0, 1
2) such that273

∣φ(x) − f(x)∣ ≤ 2ωEf (3R
√
d)2−N + ωEf (3R

√
d2−N),274

for any x = (x1, x2,⋯, xd) ∈ E, where φ is defined by a formula in a1, a2,⋯, aN275

as follows.276

φ(x) = 2ωEf (3R
√
d)

N

∑
j=1

2−jσ3(aj ⋅ σ2(1 +
d

∑
i=1

2(i−1)Nσ1(2N xi+R
3R ) )) +Cf ,277

where Cf is a constant determined by f .278
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Hence, the volume of the function domain E ⊆ [−R,R]d only has a mild279

influence on the approximation rate of our FLES networks. FLES networks280

can still avoid the curse of dimensionality and achieve exponential conver-281

gence for continuous functions on E ⊆ [−R,R]d when R > 1. For example,282

in the case of Hölder continuous functions of order α ∈ (0,1] with a constant283

λ > 0 on E ⊆ [−R,R]d, our approximation rate becomes 3λ(3R
√
d2−N)α.284

Second, most interesting continuous functions in practice have a good285

modulus of continuity such that there is no implicit curse of dimensionality286

hidden in ωf(⋅). For example, we have discussed the case of Hölder contin-287

uous functions previously. We would like to remark that the class of Hölder288

continuous functions implicitly depends on d through its definition in Equa-289

tion (1), but this dependence is moderate since the `2-norm in Equation (1)290

is the square root of a sum with d terms. Let us now discuss several cases of291

ωf(⋅) when we cannot achieve exponential convergence or cannot avoid the292

curse of dimensionality. The first example is ωf(r) = 1
ln(1/r) for small r > 0,293

which leads to an approximation rate294

3(N ln 2 − 1
2 lnd − ln 2)−1, for large N ∈ N+.295

Apparently, the above approximation rate still avoids the curse of dimen-296

sionality but there is no exponential convergence, which has been canceled297

out by “ln” in ωf(⋅). The second example is ωf(r) = 1

ln1/d(1/r)
for small r > 0,298

which leads to an approximation rate299

3(N ln 2 − 1
2 lnd − ln 2)−1/d, for large N ∈ N+.300

The power 1/d further weakens the approximation rate and hence the curse301

of dimensionality exists. The last example we would like to discuss is ωf(r) =302

rα/d for small r > 0, which results in the approximation rate303

3λ(2
√
d)α/d2−αN/d, for large N ∈ N+,304

which achieves the exponential convergence and avoids the curse of dimen-305

sionality when we use very wide networks. Though we have provided several306

examples of immoderate ωf(⋅), to the best of our knowledge, we are not aware307

of useful continuous functions with ωf(⋅) that is immoderate.308

Finally, we would like to point out that the training of FLES networks309

in practice may encounter two issues. First, network weights in our main310

theorems require high-precision computation that might not be available in311
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existing computer systems when the dimension d and the network size pa-312

rameter N are large. But there is no theoretical evidence to exclude the pos-313

sibility that similar approximation results can be achieved with reasonable314

weights in practical computation. Second, the vanishing gradient of piecewise315

constant activation functions makes standard SGD infeasible. There are two316

possible directions to solve the optimization problem for FLES networks: 1)317

gradient-free optimization methods, e.g., Nelder-Mead method Nelder and318

Mead (1965), genetic algorithm Holland (1992), simulated annealing Kirk-319

patrick et al. (1983), particle swarm optimization Kennedy and Eberhart320

(1995), and consensus-based optimization Pinnau et al. (2017); Carrillo et al.321

(2019); 2) applying optimization algorithms for quantized networks that also322

have piecewise constant activation functions Lin et al. (2019); Boo et al.323

(2020); Bengio et al. (2013); Wang et al. (2018); Hubara et al. (2017); Yin324

et al. (2019). For example, an empirical way is to use a straight-through325

estimator (STE) by setting the incoming gradients to the activation function326

(e.g., Floor) equal to its outgoing gradients, disregarding the derivative of327

the activation function itself. It would be interesting future work to explore328

efficient learning algorithms based on the FLES network.329

2.4. Kolmogorov-Arnold Superposition Theorem330

A closely related research topic is the Kolmogorov-Arnold representa-331

tion theorem (KST) Kolmogorov (1956); Arnold (1957); Kolmogorov (1957)332

and its approximation in a form of modern neural networks. Our FLES333

networks admit super approximation power with a fixed number of layers334

for continuous functions and the KST exactly represent continuous func-335

tions using two hidden layers and O(d) neurons. More specifically, given336

any f ∈ C([0,1]d), the KST shows that there exist continuous functions337

φq ∶ R→ R and ψq,p ∶ [0,1]→ R such that338

f(x) =
2d

∑
q=0

φq(
d

∑
p=1

ψq,p(xp)), for any x = (x1,⋯, xd) ∈ [0,1]d. (4)339

Note that the activation functions {φq} (also called outer functions) of the340

neural network in Equation (4) have to depend on the target function f ,341

though {ψq,p} (also called inner functions) can be independent of f . The342

modulus of continuity of {ψq,p} can be constructed such that they moderately343

depend on d, but the modulus of continuity of {φq} would be exponentially344

bad in d. In sum, the outer functions are too pathological such that there is345

13



no existing numerical algorithms to evaluate these activation functions, even346

though they are shown to exist by iterative construction Braun and Griebel347

(2009).348

There has been an active research line to develop more practical network349

approximation based on KST Kůrková (1991, 1992); Maiorov and Pinkus350

(1999); Guliyev and Ismailov (2018); Montanelli and Yang (2020); Igelnik and351

Parikh (2003); Schmidt-Hieber (2021) by relaxing the exact representation352

to network approximation with an ε-error. The key issue these KST-related353

networks attempting to address is the f -dependency of the activation func-354

tions and the main goal is to construct neural networks conquering the curse355

of dimensionality in a more practical way computationally. The main idea356

of these variants is to apply computable activation functions independent of357

f to construct neural networks to approximate the outer and inner functions358

of the KST, resulting in a larger network that can approximate a continu-359

ous function with the desired accuracy. Using this idea, the seminal work in360

Kůrková (1992) applied sigmoid activation functions and constructed two-361

hidden-layer networks to approximate f ∈ C([0,1]d). Though the activation362

functions are independent of f , the number of neurons scales exponentially in363

d and the curse of dimensionality exists. Cubic-splines and piecewise linear364

functions have also been used to approximate the outer and inner functions365

of KST in Igelnik and Parikh (2003); Montanelli and Yang (2020); Schmidt-366

Hieber (2021), resulting in cubic-spline networks or deep ReLU networks to367

approximate f ∈ C([0,1]d). But the approximation bounds in these works368

still suffer from the curse of dimensionality unless f has simple outer func-369

tions in the KST. It is still an open problem to characterize the class of370

functions with a moderate outer function in KST.371

To the best of our knowledge, the most successful construction of neural372

networks with f -independent activation functions conquering the curse of373

dimensionality is in Maiorov and Pinkus (1999); Guliyev and Ismailov (2018),374

where a two-hidden-layer network with O(d) neurons can approximate f ∈375

C([0,1]d) within an arbitrary error ε. Let us briefly summarize their main376

ideas to obtain such an exciting result here. 1) Identify a dense and countable377

subset {uk}∞k=1 of C([−1,1]), e.g., polynomials with rational coefficients. 2)378

Construct an activation function % to “store” all uk(x) for x ∈ [−1,1]. For379

example, divide the domain of %(x) into countable pieces and each piece380

is a connected interval of length 2 associated with a uk. In particular, let381

%(x + 4k + 1) = ak + bkx + ckuk(x) for any x ∈ [−1,1] with carefully chosen382

constants ak, bk, and ck such that %(x) can be a sigmoid function. 3) By383
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construction, there exists a one-hidden-layer network with width 3 and %(x)384

as the activation function to approximate any outer or inner function in KST385

with an arbitrary accuracy parameter δ. Only the parameters of the one-386

hidden-layer network depend on the target function and accuracy. 4) Replace387

the inner and outer functions in KST with these one-hidden-layer networks to388

achieve a two-hidden-layer network with %(x) as the activation function and389

width O(d) to approximate an arbitrary f ∈ C([0,1]d) within an arbitrary390

error ε. Unfortunately, the construction of the parameters of this magic391

network relies on the evaluation of the outer and inner functions of KST,392

which is not computationally feasible even if computation with arbitrary393

precision is allowed.394

We would like to remark that, though the approximation rate of FLES395

networks in this paper is relatively worse than the approximation rate in396

Maiorov and Pinkus (1999); Guliyev and Ismailov (2018), our activation397

functions are much simpler and there are explicit formulas to specify the398

parameters of FLES networks. If computation with an arbitrary precision is399

allowed and the target function f can be arbitrarily sampled, we can spec-400

ify all the weights in FLES networks. Besides, our approximation rate is401

sufficiently attractive since it is exponential and avoids the curse of dimen-402

sionality. For a large dimension d, the width parameter of our FLES network403

can be chosen as N = d, which leads to a FLES network of size O(d) with an404

approximation accuracy O(2−d) for Lipschitz continuous functions. O(2−d)405

is sufficiently attractive. In practice, when d is very large, N could be much406

smaller than d and our approximation rate is still attractive.407

Finally, we list several KST-related results in Table 1 for a quick compar-408

ison.2 As shown in Table 1, there exists a trade-off between the complexity409

of activation functions and the network size when the approximation error is410

fixed. A key advantage of our FLES networks is to use simple and explicit411

activation functions to attain an exponential convergence rate.412

2.5. Discussion on the literature413

In this section, we will discuss other recent development of neural net-414

work approximation. Our discussion will be divided into mainly three parts415

according to the analysis methodology in the references: 1) functions admit-416

ting integral representations; 2) linear approximation; 3) bit extraction.417

2The result in Shen et al. (2019) is for Hölder functions, but can be easily generalized
to general continuous functions.
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Table 1: A comparison of several KST-related results for approximating f ∈ C([0,1]d).

paper number of hidden layers width activation function(s) error remark

Kolmogorov (1956); Arnold (1957); Kolmogorov (1957) 2 2d + 1 f -dependent 0 original KST

Maiorov and Pinkus (1999); Guliyev and Ismailov (2018) 2 O(d) f -independent arbitrary error ε based on KST

Shen et al. (2019) 3 O(dN) ReLU O(ωf(N−2/d)) not based on KST

this paper 3 max{d,N} (σ1, σ2, σ3) 2ωf(
√
d)2−N + ωf(

√
d2−N) not based on KST

In the seminal work of Barron (1993), its variants or generalization Bar-418

ron and Klusowski (2018); E et al. (2019); Chen and Wu (2019); Montanelli419

et al. (2020), and related references therein, d-dimensional functions of the420

following form were considered:421

f(x) = ∫
Ω̃
a(w)K(w ⋅x)dµ(w),422

where Ω̃ ⊆ Rd, µ(w) is a Lebesgue measure in w, and x ∈ Ω ⊆ Rd. The above423

integral representation is equivalent to the expectation of a high-dimensional424

random function when w is treated as a random variable. By the law of425

large number theory, the average of N samples of the integrand leads to426

an approximation of f(x) with an approximation error bounded by
Cf

√
µ(Ω)√
N

427

measured in L2(Ω, µ) (Equation (6) of Barron (1993)), where O(N) is the428

total number of parameters in the network, Cf is a d-dimensional integral429

with an integrand related to f , and µ(Ω) is the Lebesgue measure of Ω.430

As discussed in Barron (1993), µ(Ω) and Cf would be exponential in d and431

standard smoothness properties of f alone are not enough to remove the432

exponential dependence of Cf on d. Therefore, the curse of dimensionality433

exists in the whole approximation error while the curse does not exist in the434

approximation rate in N .435

Linear approximation is an efficient approximation tool for smooth func-436

tions that computes the approximant of a target function via a linear projec-437

tion to a Hilbert space or a Banach space as the approximant space. Typical438

examples include approximation via orthogonal polynomials, Fourier series439

expansion, etc. Inspired by the seminal work in Yarotsky (2017), where440

deep ReLU networks were constructed to approximate polynomials with ex-441

ponential convergence, subsequent works in E and Wang (2018); Opschoor442

et al. (2019); Montanelli and Du (2019); Chen and Wu (2019); Montanelli443

et al. (2020); Yarotsky and Zhevnerchuk (2020); Lu et al. (2020); Montanelli444

and Yang (2020); Yang and Wang (2020) have constructed deep ReLU net-445

works to approximate various smooth function spaces. The main idea of446

these works is to approximate smooth functions via (piecewise) polynomial447
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approximation first and then construct deep ReLU networks to approximate448

the ensemble of polynomials. But the curse of dimensionality exists since449

polynomial approximation cannot avoid the curse. Finally, a different ap-450

proach is used in Li et al. (to appear). The authors of Li et al. (to appear)451

use a dynamic system based approach to obtain a universal approximation452

property of residual neural networks.453

The bit extraction proposed in Bartlett et al. (1998) has been a very454

important technique to develop nearly optimal approximation rates of deep455

ReLU neural networks Yarotsky (2018); Shen et al. (2020); Lu et al. (2020);456

Yang and Wang (2020); Zhang (2020); Shen et al. (to appear) and the opti-457

mality is based on the nearly optimal VC-dimension bound of ReLU networks458

in Harvey et al. (2017). The bit extraction was also applied in Shen et al.459

(2021); Schmidt-Hieber (2021) and this paper to develop network approxi-460

mation theories. In the first step, an efficient projection map in a form of a461

ReLU, or a Floor-ReLU, or a FLES network is constructed to project high-462

dimensional points to one-dimensional points such that the high-dimensional463

approximation problem is reduced to a one-dimensional approximation prob-464

lem. In the second step, the one-dimensional approximation problem is solved465

by constructing a ReLU, or a Floor-ReLU, or a FLES network, which can466

be efficiently compressed via the bit extraction. Although shallower neural467

networks can also carry out the above two steps, bit extraction can take full468

advantage of the power of depth and construct deep neural networks with469

a nearly optimal number of parameters or neurons to fulfill the above two470

steps.471

3. Theoretical Analysis472

In this section, we first introduce basic notations in this paper in Sec-473

tion 3.1. Then we prove Theorem 1.1 and Corollary 2.3 in Section 3.2 based474

on Theorem 3.1, which is proved in Section 3.3.475

3.1. Notations476

The main notations of this paper are listed as follows.477

• Vectors and matrices are denoted in a bold font. Standard vectorization478

is adopted in the matrix and vector computation. For example, adding479

a scalar and a vector means adding the scalar to each entry of the480

vector.481
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• Let R denote the set of real numbers.482

• Let Z, N, and N+ denote the set of integers, natural numbers, all483

positive integers, respectively, i.e., Z = {0,1,2,⋯} ∪ {−1,−2,−3,⋯},484

N = {0,1,2,⋯}, and N+ = {1,2,3,⋯}.485

• For any p ∈ [1,∞), the p-norm of a vector x = (x1, x2,⋯, xd) ∈ Rd is486

defined by487

∥x∥p ∶= (∣x1∣p + ∣x2∣p +⋯ + ∣xd∣p)
1/p
.488

• The floor function (Floor) is defined as ⌊x⌋ ∶= max{n ∶ n ≤ x, n ∈ Z} for489

any x ∈ R.490

• For θ ∈ [0,1), suppose its binary representation is θ = ∑∞
`=1 θ`2

−` with491

θ` ∈ {0,1}, we introduce a special notation bin0.θ1θ2⋯θL to denote the492

L-term binary representation of θ, i.e., bin0.θ1θ2⋯θL ∶=∑L
`=1 θ`2

−`.493

• The expression “a network with width N and depth L” means494

– The maximum width of this network for all hidden layers is no495

more than N .496

– The number of hidden layers of this network is no more than L.497

3.2. Proof of Theorem 1.1 and Corollary 2.3498

In this section, we will prove Theorem 1.1 and Corollary 2.3. To this499

end, we first introduce Theorem 3.1 that works only for [0,1)d, regraded as500

a weaker variant of Theorem 1.1.501

Theorem 3.1. Given an arbitrary continuous function f on [0,1]d, for any502

N ∈ N+, there exist a1, a2,⋯, aN ∈ [0, 1
2) such that503

∣φ(x) − f(x)∣ ≤ 2ωf(
√
d)2−N + ωf(

√
d2−N),504

for any x = (x1, x2,⋯, xd) ∈ [0,1)d, where φ is defined by a formula in505

a1, a2,⋯, aN as follows.506

φ(x) = 2ωf(
√
d)

N

∑
j=1

2−jσ3(aj ⋅ σ2(1 +
d

∑
i=1

2(i−1)Nσ1(2Nxi) )) + f(0) − ωf(
√
d).507
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We will prove Theorem 1.1 and Corollary 2.3 based on Theorem 3.1, the508

proof of which can be found in Section 3.3.509

First, let us prove Theorem 1.1 by assuming Theorem 3.1 is true.510

Proof of Theorem 1.1. Given any f ∈ C([0,1]d), by Lemma 4.2 of Shen et al.511

(2020) via setting E = [0,1]d and S = Rd, there exists g ∈ C(Rd) such that512

• g(x) = f(x) for any x ∈ E = [0,1]d;513

• ωSg (r) = ωEf (r) = ωf(r) for any r ≥ 0.514

Define g̃(x) ∶= g(2x) for any x ∈ Rd. By applying Theorem 3.1 to515

g̃ ∈ C(Rd), there exist a1, a2,⋯, aN ∈ [0, 1
2) such that516

∣φ̃(x) − g̃(x)∣ ≤ 2ωSg̃ (
√
d)2−N + ωSg̃ (

√
d2−N), for any x ∈ [0,1)d, (5)517

where518

φ̃(x) = 2ωSg̃ (
√
d)

N

∑
j=1

2−jσ3(aj ⋅ σ2(1 +
d

∑
i=1

2(i−1)Nσ1(2Nxi) )) + g̃(0) − ωSg̃ (
√
d).519

Note that f(x) = g(x) = g̃(x2 ) for any x ∈ E = [0,1]d and520

ωSg̃ (r) = ωSg (2r) = ωEf (2r) = ωf(2r), for any r ≥ 0.521

Define φ(x) ∶= φ̃(2x) for any x ∈ Rd. Then by Equation (5), for any x ∈522

[0,1]d = E, we have x
2 ∈ [0, 1

2]d ⊆ [0,1)d, implying523

∣φ(x) − f(x)∣ = ∣φ(x) − g(x)∣ = ∣φ̃(x2 ) − g̃(x2 )∣
≤ 2ωSg̃ (

√
d)2−N + ωSg̃ (

√
d2−N)

= 2ωf(2
√
d)2−N + ωf(2

√
d2−N),

524

where φ(x) ∶= φ̃(x2 ) can be represented by525

2ωf(2
√
d)

N

∑
j=1

2−jσ3(aj ⋅ σ2(1 +
d

∑
i=1

2(i−1)Nσ1(2N−1xi) )) + f(0) − ωf(2
√
d).526

With the discussion above, we have proved Theorem 1.1.527

Next, we present the proof of Corollary 2.3 below.528

19



Proof of Corollary 2.3. Given any bounded continuous function f ∈ C(E),529

by Lemma 4.2 of Shen et al. (2020) via setting S = Rd, there exists g ∈ C(Rd)530

such that531

• g(x) = f(x) for any x ∈ E ⊆ [−R,R]d;532

• ωSg (r) = ωEf (r) for any r ≥ 0.533

Define534

g̃(x) ∶= g(3Rx −R), for any x ∈ Rd.535

By applying Theorem 3.1 to g̃ ∈ C(Rd), there exist a1, a2,⋯, aN ∈ [0, 1
2) such536

that537

∣φ̃(x) − g̃(x)∣ ≤ 2ωSg̃ (
√
d)2−N + ωSg̃ (

√
d2−N), for any x ∈ [0,1)d, (6)538

where539

φ̃(x) = 2ωSg̃ (
√
d)

N

∑
j=1

2−jσ3(aj ⋅ σ2(1 +
d

∑
i=1

2(i−1)Nσ1(2Nxi) )) + g̃(0) − ωSg̃ (
√
d).540

Note that f(x) = g(x) = g̃(x+R3R ) for any x ∈ E ⊆ [−R,R]d and541

ωSg̃ (r) = ωSg (3Rr) = ωEf (3Rr), for any r ≥ 0.542

Define φ(x) ∶= φ̃(x+R3R ) for any x ∈ Rd. Then by Equation (6), for any x ∈ E ⊆543

[−R,R]d, we have x+R
3R ∈ [0, 2

3]d ⊆ [0,1)d, implying544

∣φ(x) − f(x)∣ = ∣φ(x) − g(x)∣ = ∣φ̃(x+R3R ) − g̃(x+R3R )∣
≤ 2ωSg̃ (

√
d)2−N + ωSg̃ (

√
d2−N)

= 2ωf(3R
√
d)2−N + ωf(3R

√
d2−N),

545

where φ(x) = φ̃(x+R3R ) can be represented by546

2ωf(3R
√
d)

N

∑
j=1

2−jσ3(aj ⋅ σ2(1 +
d

∑
i=1

2(i−1)Nσ1(2N xi+R
3R ) )) +Cf ,547

where Cf = g̃(0) − ωSg̃ (
√
d) is a constant essentially determined by f . With548

the discussion above, we have proved Corollary 2.3.549
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3.3. Proof of Theorem 3.1550

To prove Theorem 3.1, we first present the proof sketch. Shortly speak-551

ing, we construct piecewise constant functions to approximate continuous552

functions. There are five key steps in our construction.553

1. Normalize f as f̃ satisfying f̃(x) ∈ [0,1] for any x ∈ [0,1]d, divide554

[0,1)d into a set of non-overlapping cubes {Qβ}β∈{0,1,⋯,J−1}d , and denote555

xβ as the vertex of Qβ with minimum ∥ ⋅∥1 norm, where J is an integer556

determined later. See Figure 3 for the illustrations of Qβ and xβ.557

2. Construct a vector-valued function Φ1 ∶ Rd → Rd projecting the whole558

cube Qβ to the index β, i.e., Φ1(x) = β for all x ∈ Qβ and each559

β ∈ {0,1,⋯, J − 1}d.560

3. Construct a linear function φ2 ∶ Rd → R bijectively mapping β ∈561

{0,1,⋯, J − 1}d to φ2(β) ∈ {1,2,⋯, Jd}.562

4. Construct a function φ3 ∶ R→ R mapping φ2(β) ∈ {1,2,⋯, Jd} approx-563

imately to f̃(xβ), i.e., φ3(φ2(β)) ≈ f̃(xβ) for each β ∈ {0,1,⋯, J − 1}d.564

5. Define φ̃ ∶= φ3○φ2○Φ1. Then φ̃ is a piecewise constant function mapping565

x ∈ Qβ to φ3(φ2(β)) ≈ f̃(xβ) for each β ∈ {0,1,⋯, J − 1}d, implying566

φ̃ ≈ f̃ . Finally, re-scale and shift φ̃ to obtain the final function φ567

approximating f well.568

Recall that569

σ1(x) ∶= ⌊x⌋, σ2(x) ∶= 2x, and σ3(x) ∶= T (x − ⌊x⌋ − 1
2), for any x ∈ R,570

where571

T (x) ∶= 1x≥0 = {1, x ≥ 0,

0, x < 0,
for any x ∈ R.572

Step 1 and 5 are straightforward. To implement Step 2, we introduce σ1573

since it can help to significantly simplify the construction of the vector-valued574

projecting function Φ1. The implementation of Step 3 is based on the J-ary575

representation, namely, define φ2(x) ∶= 1 +∑d
i=1 J

i−1xi. The most technical576

step above is Step 4, which is essentially a point fitting problem. Solving577

such a problem eventually relies on the bit extraction technique in Shen et al.578

(2020); Lu et al. (2020); Shen et al. (2021); Harvey et al. (2017); Bartlett579

et al. (1998); Zhang (2020); Yarotsky (2018). To extract sufficient many bits580
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with a limited neuron budget, we introduce two powerful activation functions581

σ2 and σ3, as shown in the proposition below.582

Proposition 3.2. Given any K ∈ N+ and arbitrary θ1, θ2,⋯, θK ∈ {0,1}, it583

holds that584

σ3(a ⋅ σ2(k)) = σ3(2k ⋅ a) = θk, for any k ∈ {1,2,⋯,K},585

where586

a =
K

∑
j=1

2−j−1 ⋅ θj ∈ [0, 1
2).587

Proof. Since θj ∈ {0,1} for j ∈ {1,2,⋯,K}, we have588

0 ≤
K

∑
j=1

2−j−1 ⋅ θj ≤
K

∑
j=1

2−j−1 < 1
2 ,589

implying a ∈ [0, 1
2).590

Next, fix k ∈ {1,2,⋯,K} for the proof below. It holds that591

2k ⋅ a = 2k ⋅
K

∑
j=1

2−j−1 ⋅ θj =
k−1

∑
j=1

2k−j−1 ⋅ θj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
an integer

+

0 or 1
2

³·µ
1
2θk +

K

∑
j=k+1

2k−j−1 ⋅ θj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in [0, 1

2
)

.3 (7)592

Clearly, the first term in Equation (7) ∑k−1
j=1 2k−j−1 ⋅θj is a non-negative integer593

since θj ∈ {0,1} for any j ∈ {1,2,⋯,K}. As for the third term in Equation (7),594

we have595

0 ≤
K

∑
j=k+1

2k−j−1 ⋅ θj ≤
K

∑
j=k+1

2k−j−1 < 1
2596

Therefore, by Equation (7), we have597

2k ⋅ a ∈ ⋃
n∈N

[n,n + 1
2), if θk = 0 and 2k ⋅ a ∈ ⋃

n∈N
[n + 1

2 , n + 1), if θk = 1. (8)598

Recall that σ3(x) = T (x− ⌊x⌋− 1
2), where T (x) = { 1, x≥0,

0, x<0 . It is easy to verify599

that600

σ3(x) = 0 if x ∈ ⋃
n∈N

[n,n + 1
2) and σ3(x) = 1 if x ∈ ⋃

n∈N
[n + 1

2 , n + 1).601

3By convention, ∑m
j=n aj = 0 if n >m no matter what aj is for each j.
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If θk = 0, by Equation (8), we have602

2k ⋅ a ∈ ⋃
n∈N

[n,n + 1
2) Ô⇒ σ3(2k ⋅ a) = 0 = θk.603

Similarly, if θk = 1, by Equation (8), we have604

2k ⋅ a ∈ ⋃
n∈N

[n + 1
2 , n + 1) Ô⇒ σ3(2k ⋅ a) = 1 = θk.605

Since k ∈ {1,2,⋯,K} is arbitrary, we have σ3(a ⋅ σ2(k)) = σ3(2k ⋅ a) = θk606

for any k ∈ {1,2,⋯,K}. So we finish the proof.607

We would like to point out that Proposition 3.2 indicates that the VC-608

dimension of the function space609

{f ∶ f(x) = σ3(a ⋅ x), for a ∈ R}610

is infinity, which implies that the VC-dimension of FLES networks is also611

infinity. As discussed previously in Section 2.2, having an infinite VC-612

dimension is a necessary condition for our FLES networks to attain super613

approximation power.614

With Proposition 3.2 in hand, we are ready to prove Theorem 3.1.615

Proof of Theorem 3.1. The proof consists of five steps.616

Step 1∶ Set up.617

Assume f is not a constant function since it is a trivial case. Then618

ωf(r) > 0 for any r > 0. Clearly, ∣f(x) − f(0)∣ ≤ ωf(
√
d) for any x ∈ [0,1)d.619

Define620

f̃ ∶= f − f(0) + ωf(
√
d)

2ωf(
√
d)

. (9)621

It follows that f̃(x) ∈ [0,1] for any x ∈ [0,1)d.622

Set J = 2N and divide [0,1)d into Jd cubes {Qβ}β. To be exact, defined623

xβ ∶= β/J and624

Qβ ∶= {x = (x1, x2,⋯, xd) ∶ xi ∈ [βiJ ,
βi+1
J ) for i = 1,2,⋯, d},625

for each β = (β1, β2,⋯, βd) ∈ {0,1,⋯, J − 1}d. See Figure 3 for illustrations.626
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Figure 3: Illustrations of Qβ and xβ for any β ∈ {0,1,⋯, J − 1}d. (a) J = 4, d = 1. (b)
J = 4, d = 2.

Step 2∶ Construct Φ1 mapping x ∈ Qβ to β for each β ∈ {0,1,⋯, J − 1}d.627

Define628

Φ1(x) ∶= (σ1(Jx1), σ1(Jx2),⋯, σ1(Jxd)) = (⌊Jx1⌋, ⌊Jx2⌋,⋯, ⌊Jxd⌋),629

for any x = (x1, x2,⋯, xd) ∈ Rd. Then, for any x ∈ Qβ and each β ∈ {0,1,⋯, J−630

1}d, we have631

Φ1(x) = (⌊Jx1⌋, ⌊Jx2⌋,⋯, ⌊Jxd⌋) = (β1, β2,⋯, βd) = β. (10)632

Step 3∶ Construct φ2 bijectively mapping β ∈ {0,1,⋯, J − 1}d to φ2(β) ∈633

{1,2,⋯, Jd}.634

Inspired by the J-ary representation, we define a linear function635

φ2(x) ∶= 1 +
d

∑
i=1

J i−1xi, for each x = (x1, x2,⋯, xd) ∈ Rd.636

Then φ2 is a bijection from {0,1,⋯, J − 1}d to {1,2,⋯, Jd}.637

Step 4∶ Construct φ3 mapping φ2(β) ∈ {1,2,⋯, Jd} approximately to f̃(xβ).638

639
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For each k ∈ {1,2,⋯, Jd}, there exists a unique β ∈ {0,1,⋯, J − 1}d such640

that φ2(β) = k. Thus, define641

ξk ∶= f̃(xβ) ∈ [0,1], for any k ∈ {1,2,⋯, Jd} with k = φ2(β). (11)642

For each k ∈ {1,2,⋯, Jd}, there exist θk,1, θk,2,⋯, θk,N ∈ {0,1} such that643

∣ξk − bin0.θk,1θk,2⋯θk,N ∣ ≤ 2−N . (12)644

For each j ∈ {1,2,⋯,N}, by Proposition 3.2 (set K = Jd therein), there645

exists aj ∈ [0, 1
2) such that646

σ3(2k ⋅ aj) = θk,j, for any k ∈ {1,2,⋯, Jd}.647

Define648

φ3(x) ∶=
N

∑
j=1

2−jσ3(aj ⋅ σ2(x)) =
N

∑
j=1

2−jσ3(2x ⋅ aj), for any x ∈ R.649

Then, for any k ∈ {1,2,⋯, Jd}, we have650

φ3(k) =
N

∑
j=1

2−jσ3(2k ⋅ aj) =
N

∑
j=1

2−j ⋅ θk,j = bin0.θk,1θk,2⋯θk,N . (13)651

Step 5∶ Define φ̃ ∶= φ3 ○ φ2 ○ Φ1 approximating f̃ well, and re-scale and652

shift φ̃ to obtain φ approximating f well.653

Define φ̃ ∶= φ3 ○φ2 ○Φ1, by Equation (10), (11), (12), and (13), we have,654

for any x ∈ Qβ and each β ∈ {0,1,⋯, J − 1}d with k = φ2(β),655

∣φ̃(x) − f̃(x)∣ ≤ ∣φ3 ○ φ2 ○Φ1(x) − f̃(xβ)∣ + ∣f̃(xβ) − f̃(x)∣
≤ ∣φ3 ○ φ2(β) − f̃(xβ)∣ + ωf̃(

√
d
J ) ≤ ∣φ3(k) − ξk∣ + ωf̃(

√
d
J )

≤ ∣bin0.θk,1θk,2⋯θk,N − ξk∣ + ωf̃(
√
d
J ) ≤ 2−N + ωf̃(

√
d
J ).

656

Finally, define φ ∶= 2ωf(
√
d)φ̃ + f(0) − ωf(

√
d). Equation (9) implies657

ωf(r) = 2ωf(
√
d)ωf̃(r) for any r ≥ 0, deducing658

∣φ(x) − f(x)∣ = 2ωf(
√
d)∣φ̃(x) − f̃(x)∣ ≤ 2ωf(

√
d)(2−N + ωf̃(

√
d
J ))

= 2ωf(
√
d)2−N + ωf(

√
d
J )

= 2ωf(
√
d)2−N + ωf(

√
d2−N),

659
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for any x ∈ ⋃β∈{0,1,⋯,J−1}d Qβ = [0,1)d. It follows from J = 2N and the defini-660

tions of Φ1, φ2, and φ3 that661

φ(x) = 2ωf(
√
d)φ3 ○ φ2 ○Φ1(x) + f(0) − ωf(

√
d)

= 2ωf(
√
d)φ3(1 +

d

∑
i=1

J i−1σ1(Jxi) ) + f(0) − ωf(
√
d)

= 2ωf(
√
d)

N

∑
j=1

2−jσ3(aj ⋅ σ2(1 +
d

∑
i=1

2(i−1)Nσ1(2Nxi) )) + f(0) − ωf(
√
d).

662

So we finish the proof.663

4. Approximation with continuous activation functions664

As discussed previously, our FLES networks can attain super approx-665

imation power. However, two activation functions in FLES networks are666

piecewise constant functions that would lead to challenges in numerical al-667

gorithm design. It is interesting to explore continuous activation functions668

achieving similar results. To this end, we introduce three new activation669

functions as follows. First, for any δ ∈ (0,1), we define670

%1,δ(x) ∶= { n − 1, x ∈ [n − 1, n − δ],
(x − n + δ)/δ, x ∈ (n − δ, n], for any n ∈ Z.671

In fact, %1,δ can be regarded as a “continuous version” of the floor function.672

Next, we define673

%2(x) ∶= 3x, and %3(x) ∶= T̃ ( cos(2πx)), for any x ∈ R,674

where675

T̃ (x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, x ∈ (cos(4π
9 ),∞),

1 − x/ cos(4π
9 ), x ∈ [0, cos(4π

9 )],
1, x ∈ (−∞,0)

676

is a continuous piecewise linear function. %2 plays the same role of σ2(x) = 2x677

and %3 is essentially a “continuous version” of σ3 in FLES networks.678

With these three activation functions in hand, we have the following679

theorem.680
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Theorem 4.1. Let f be an arbitrary continuous function defined on [0,1]d.681

For any δ ∈ (0,1), N ∈ N+, and p ∈ [1,∞), there exist a1, a2,⋯, aN ∈ [0, 2
9)682

such that683

∥φ − f∥p
Lp([0,1]d) ≤ (2ωf(

√
d)2−N + ωf(

√
d2−N))

p

+ 2dδ(∣f(0)∣ + ωf(
√
d))p,684

where φ is defined by a formula in a1, a2,⋯, aN as follows685

φ(x) = 2ωf(
√
d)

N

∑
j=1

2−j%3(aj ⋅ %2(1 +
d

∑
i=1

2(i−1)N%1,δ(2Nxi) )) + f(0) − ωf(
√
d).686

The approximation error in Theorem 4.1 is characterized by Lp-norm687

for p ∈ [1,∞) instead of a pointwise error estimate in Theorem 1.1. By688

using ideas in Lu et al. (2020); Zhang (2020), we can extend this result to689

L∞-norm. However, this extension requires 2d + 3 hidden layers instead of 3690

hidden layers. Since our focus here is the approximation using three hidden691

layers, we will leave this extension as future work.692

To prove Theorem 4.1, we need the following proposition.693

Proposition 4.2. Given any K ∈ N+ and arbitrary θ1, θ2,⋯, θK ∈ {0,1}, it694

holds that695

%3(a ⋅ %2(k)) = %3(3k ⋅ a) = θk, for any k ∈ {1,2,⋯,K},696

where697

a =
K

∑
j=1

3−j−1 ⋅ θj ∈ [0, 2
9).698

Proof. Since θj ∈ {0,1} for j ∈ {1,2,⋯,K}, we have699

0 ≤
K

∑
j=1

3−j−1 ⋅ θj ≤
K

∑
j=1

3−j−1 < 2
9 ,700

implying a ∈ [0, 2
9).701

Next, fix k ∈ {1,2,⋯,K} for the proof below. It holds that702

3k ⋅ a = 3k ⋅
K

∑
j=1

3−j−1 ⋅ θj =
k−1

∑
j=1

3k−j−1 ⋅ θj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
an integer

+

0 or 1
3

³·µ
1
3θk +

K

∑
j=k+1

3k−j−1 ⋅ θj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in [0, 2

9
)

. (14)703
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Clearly, the first term ∑k−1
j=1 3k−j−1 ⋅ θj in Equation (14) is a non-negative704

integer since θj ∈ {0,1} for any j ∈ {1,2,⋯,K}. As for the third term in705

Equation (14), we have706

0 ≤
K

∑
j=k+1

3k−j−1 ⋅ θj ≤
K

∑
j=k+1

3k−j−1 < 2
9 .707

Recall that708

cos(2πx) ∈ (cos(4π
9 ),1], for any x ∈ ⋃

n∈N
[n,n + 2

9),709

and710

cos(2πx) ∈ [−1, cos(2π
3 )] ⊆ [−1,0], for any x ∈ ⋃

n∈N
[n + 1

3 , n + 5
9).711

Note that712

T̃ (x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, x ∈ (cos(4π
9 ),∞),

1 − x/ cos(4π
9 ), x ∈ [0, cos(4π

9 )],
1, x ∈ (−∞,0).

713

Therefore, if θk = 0, by Equation (14), we have714

3k ⋅ a ∈ ⋃
n∈N

[n,n + 2
9) Ô⇒ %3(3k ⋅ a) = T̃ (cos(2π ⋅ 3k ⋅ a)) = 0 = θk.715

Similarly, if θk = 1, by Equation (14), we have716

3k ⋅ a ∈ ⋃
n∈N

[n + 1
3 , n + 5

9) Ô⇒ %3(3k ⋅ a) = T̃ (cos(2π ⋅ 3k ⋅ a)) = 1 = θk.717

Since k ∈ {1,2,⋯,K} is arbitrary, we have %3(a ⋅ %2(k)) = %3(3k ⋅ a) = θk718

for any k ∈ {1,2,⋯,K}. So we finish the proof.719

Before proving Theorem 4.1, let us define a small region as follows to720

simplify the notation. Given any J ∈ N+ and δ ∈ (0,1), define a small region721

Λ([0,1]d, J, δ) as722

Λ([0,1]d, J, δ) ∶=
d

⋃
i=1

{x = (x1,⋯, xd) ∈ [0,1]d ∶ xi ∈
J−1

⋃
j=1

[ j−δJ ,
j
J ]}.723

In particular, Λ([0,1]d, J, δ) = ∅ if J = 1. See Figure 4 for two examples.724

With Proposition 4.2 in hand, we are ready to prove Theorem 4.1.725
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Figure 4: Illustrations of Λ([0,1]d, J, δ). (a) J = 4, d = 1. (b) J = 4, d = 2.

Proof of Theorem 4.1. The proof consists of five steps.726

Step 1∶ Set up.727

Assume f is not a constant function since it is a trivial case. Then728

ωf(r) > 0 for any r > 0. Clearly, ∣f(x) − f(0)∣ ≤ ωf(
√
d) for any x ∈ [0,1]d.729

Define730

f̃ ∶= f − f(0) + ωf(
√
d)

2ωf(
√
d)

. (15)731

It follows that f̃(x) ∈ [0,1] for any x ∈ [0,1]d.732

Set J = 2N and divide [0,1]d into Jd cubes {Qβ}β and a small region733

Λ([0,1]d, J, δ). To be exact, define xβ ∶= β/J and734

Qβ ∶= {x = (x1, x2,⋯, xd) ∶ xi ∈ [βiJ ,
βi+1−δ
J ] for i = 1,2,⋯, d},735

for each β = (β1, β2,⋯, βd) ∈ {0,1,⋯, J − 1}d. See Figure 5 for illustrations.736

Step 2∶ Construct Φ1 mapping x ∈ Qβ to β for each β ∈ {0,1,⋯, J − 1}d.737

Define738

Φ1(x) ∶= (%1,δ(Jx1), %1,δ(Jx2),⋯, %1,δ(Jxd)),739

for any x = (x1, x2,⋯, xd) ∈ Rd. Then, for any x ∈ Qβ and each β ∈ {0,1,⋯, J−740

1}d, we have741

Φ1(x) = (%1,δ(Jx1), %1,δ(Jx2),⋯, %1,δ(Jxd)) = (β1, β2,⋯, βd) = β. (16)742
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Figure 5: Illustrations of Λ([0,1]d, J, δ), Qβ, and xβ for any β ∈ {0,1,⋯, J − 1}d. (a)
J = 4, d = 1. (b) J = 4, d = 2.

Step 3∶ Construct φ2 bijectively mapping β ∈ {0,1,⋯, J − 1}d to φ2(β) ∈743

{1,2,⋯, Jd}.744

Inspired by the J-ary representation, we define an affine linear map745

φ2(x) ∶= 1 +
d

∑
i=1

J i−1xi, for each x = (x1, x2,⋯, xd) ∈ Rd.746

Then φ2 is a bijection from {0,1,⋯, J − 1}d to {1,2,⋯, Jd}.747

Step 4∶ Construct φ3 mapping φ2(β) ∈ {1,2,⋯, Jd} approximately to f̃(xβ).748

749

For each k ∈ {1,2,⋯, Jd}, there exists a unique β ∈ {0,1,⋯, J − 1}d such750

that φ2(β) = k. Thus, define751

ξk ∶= f̃(xβ) ∈ [0,1], for any k ∈ {1,2,⋯, Jd} with k = φ2(β). (17)752

For each k ∈ {1,2,⋯, Jd}, there exist θk,1, θk,2,⋯, θk,N ∈ {0,1} such that753

∣ξk − bin0.θk,1θk,2⋯θk,N ∣ ≤ 2−N . (18)754

For each j ∈ {1,2,⋯,N}, by Proposition 4.2 (set K = Jd therein), there755

exists aj ∈ [0, 2
9) such that756

%3(3k ⋅ aj) = θk,j, for any k ∈ {1,2,⋯, Jd}.757
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Define758

φ3(x) ∶=
N

∑
j=1

2−j%3(aj ⋅ %2(x)) =
N

∑
j=1

2−j%3(3x ⋅ aj), for any x ∈ R.759

Then we have760

%3(x) ∈ [0,1], for any x ∈ R Ô⇒ φ3(x) ∈ [0,1], for any x ∈ R, (19)761

and762

φ3(k) =
N

∑
j=1

2−j%3(3k ⋅ aj) =
N

∑
j=1

2−j ⋅ θk,j = bin0.θk,1θk,2⋯θk,N , (20)763

for any k ∈ {1,2,⋯, Jd}.764

Step 5∶ Define φ̃ ∶= φ3 ○ φ2 ○ Φ1 approximating f̃ well, and re-scale and765

shift φ̃ to obtain φ approximating f well.766

Define φ̃ ∶= φ3 ○φ2 ○Φ1, by Equation (16), (17), (18), and (20), we have,767

for any x ∈ Qβ and each β ∈ {0,1,⋯, J − 1}d with k = φ2(β),768

∣φ̃(x) − f̃(x)∣ ≤ ∣φ3 ○ φ2 ○Φ1(x) − f̃(xβ)∣ + ∣f̃(xβ) − f̃(x)∣
≤ ∣φ3 ○ φ2(β) − f̃(xβ)∣ + ωf̃(

√
d
J ) ≤ ∣φ3(k) − ξk∣ + ωf̃(

√
d
J )

≤ ∣bin0.θk,1θk,2⋯θk,N − ξk∣ + ωf̃(
√
d
J ) ≤ 2−N + ωf̃(

√
d
J ).

769

Finally, define φ ∶= 2ωf(
√
d)φ̃ + f(0) − ωf(

√
d). Equation (15) implies770

ωf(r) = 2ωf(
√
d)ωf̃(r) for any r ≥ 0, deducing771

∣φ(x) − f(x)∣ = 2ωf(
√
d)∣φ̃(x) − f̃(x)∣ ≤ 2ωf(

√
d)(2−N + ωf̃(

√
d
J ))

= 2ωf(
√
d)2−N + ωf(

√
d
J ),

772

for any x ∈ ⋃β∈{0,1,⋯,J−1}d Qβ. By Equation (19) and the definition of773

φ = 2ωf(
√
d)φ3 ○ φ2 ○Φ1 + f(0) − ωf(

√
d),774

we have ∥φ∥L∞(Rd) ≤ ∣f(0)∣+ωf(
√
d). Let µ(⋅) denote the Lebesgue measure.775

Note that ∥f∥L∞([0,1]d) ≤ ∣f(0)∣+ωf(
√
d). If follows from µ(Λ([0,1]d, J, δ)) ≤776
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Jd δJ = dδ that777

∥φ − f∥p
Lp([0,1]d) = ∫[0,1]d

∣φ(x) − f(x)∣pdx

= ∑
β∈{0,1,⋯,J−1}d

∫
Qβ

∣φ(x) − f(x)∣pdx + ∫
Λ([0,1]d,J,δ)

∣φ(x) − f(x)∣pdx

≤ ∑
β∈{0,1,⋯,J−1}d

µ(Qβ)(2ωf(
√
d)2−N + ωf(

√
d
J ))

p

+ (2∣f(0)∣ + 2ωf(
√
d))pdδ

≤ (2ωf(
√
d)2−N + ωf(

√
d2−N))

p

+ 2pdδ(∣f(0)∣ + ωf(
√
d))p.

778

By the definitions of Φ1, φ2, and φ3, we have779

φ(x) = 2ωf(
√
d)φ3 ○ φ2 ○Φ1(x) + f(0) − ωf(

√
d)

= 2ωf(
√
d)φ3(1 +

d

∑
i=1

J i−1%1,δ(Jxi) ) + f(0) − ωf(
√
d)

= 2ωf(
√
d)

N

∑
j=1

2−j%3(aj ⋅ %2(1 +
d

∑
i=1

2(i−1)N%1,δ(2Nxi) )) + f(0) − ωf(
√
d).

780

So we finish the proof.781

5. Conclusion782

This paper has introduced a theoretical framework to show that three783

hidden layers are enough for neural network approximation to achieve expo-784

nential convergence and avoid the curse of dimensionality for approximat-785

ing functions as general as (Hölder) continuous functions. The key idea786

is to leverage the power of multiple simple activation functions: the floor787

function (⌊x⌋), the exponential function (2x), the step function (1x≥0), or788

their compositions. This new class of networks is called the FLES network.789

Given a Lipschitz continuous function f on [0,1]d, it was shown by con-790

struction that FLES networks with width max{d, N} and three hidden lay-791

ers admit a uniform approximation rate 6λ
√
d2−N , where λ is the Lipschitz792

constant of f . More generally for an arbitrary continuous function f on793

[0,1]d with a modulus of continuity ωf(⋅), the constructive approximation794

rate is 2ωf(2
√
d)2−N + ωf(2

√
d2−N). We also extend such a result to gen-795

eral bounded continuous functions on a bounded set E ⊆ Rd. The results796
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in this paper provide a theoretical lower bound of the power of FLES net-797

works. Whether or not this bound is achievable in actual computation relies798

on advanced algorithm design as a separate line of research. Finally, we have799

also derived similar approximation results in the Lp-norm for p ∈ [1,∞) using800

continuous activation functions.801
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et Appliquées .954

Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y., Cheng, J., 2018. Two-step955

quantization for low-bit neural networks, in: 2018 IEEE/CVF Conference956

on Computer Vision and Pattern Recognition, pp. 4376–4384. doi:10.957

1109/CVPR.2018.00460.958

Wu, L., Ma, C., E, W., 2018. How sgd selects the global minima in over-959

parameterized learning: A dynamical stability perspective, in: Bengio, S.,960

Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R.961

(Eds.), Advances in Neural Information Processing Systems 31. Curran962

Associates, Inc., pp. 8279–8288. URL: https://papers.nips.cc/paper/963

2018/hash/6651526b6fb8f29a00507de6a49ce30f-Abstract.html.964

Yang, Y., Wang, Y., 2020. Approximation in shift-invariant spaces with deep965

ReLU neural networks. arXiv e-prints arXiv:2005.11949.966

Yarotsky, D., 2017. Error bounds for approximations with deep ReLU net-967

works. Neural Networks 94, 103–114. doi:10.1016/j.neunet.2017.07.968

002.969

Yarotsky, D., 2018. Optimal approximation of continuous functions by very970

deep ReLU networks, in: Bubeck, S., Perchet, V., Rigollet, P. (Eds.),971

Proceedings of the 31st Conference On Learning Theory, PMLR. pp. 639–972

649. URL: http://proceedings.mlr.press/v75/yarotsky18a.html.973

Yarotsky, D., Zhevnerchuk, A., 2020. The phase diagram of974

approximation rates for deep neural networks 33, 13005–13015.975

URL: https://proceedings.neurips.cc//paper_files/paper/2020/976

hash/979a3f14bae523dc5101c52120c535e9-Abstract.html.977

Yin, P., Lyu, J., Zhang, S., Osher, S.J., Qi, Y., Xin, J., 2019. Understand-978

ing straight-through estimator in training activation quantized neural nets979

URL: https://openreview.net/forum?id=Skh4jRcKQ.980

Zhang, S., 2020. Deep neural network approximation via function com-981

positions. PhD Thesis, National University of Singapore URL: https:982

//scholarbank.nus.edu.sg/handle/10635/186064.983

38

http://dx.doi.org/10.1109/CVPR.2018.00460
http://dx.doi.org/10.1109/CVPR.2018.00460
http://dx.doi.org/10.1109/CVPR.2018.00460
https://papers.nips.cc/paper/2018/hash/6651526b6fb8f29a00507de6a49ce30f-Abstract.html
https://papers.nips.cc/paper/2018/hash/6651526b6fb8f29a00507de6a49ce30f-Abstract.html
https://papers.nips.cc/paper/2018/hash/6651526b6fb8f29a00507de6a49ce30f-Abstract.html
http://arxiv.org/abs/2005.11949
http://dx.doi.org/10.1016/j.neunet.2017.07.002
http://dx.doi.org/10.1016/j.neunet.2017.07.002
http://dx.doi.org/10.1016/j.neunet.2017.07.002
http://proceedings.mlr.press/v75/yarotsky18a.html
https://proceedings.neurips.cc//paper_files/paper/2020/hash/979a3f14bae523dc5101c52120c535e9-Abstract.html
https://proceedings.neurips.cc//paper_files/paper/2020/hash/979a3f14bae523dc5101c52120c535e9-Abstract.html
https://proceedings.neurips.cc//paper_files/paper/2020/hash/979a3f14bae523dc5101c52120c535e9-Abstract.html
https://openreview.net/forum?id=Skh4jRcKQ
https://scholarbank.nus.edu.sg/handle/10635/186064
https://scholarbank.nus.edu.sg/handle/10635/186064
https://scholarbank.nus.edu.sg/handle/10635/186064

	Introduction
	Discussion
	Application scope of our theory in machine learning
	Connection between approximation error and VC-dimension
	Further interpretation of our theory
	Kolmogorov-Arnold Superposition Theorem
	Discussion on the literature

	Theoretical Analysis
	Notations
	Proof of Theorem 1.1 and Corollary 2.3
	Proof of Theorem 3.1

	Approximation with continuous activation functions
	Conclusion

