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Abstract

This paper develops simple feed-forward neural networks that achieve the universal1

approximation property for all continuous functions with a fixed finite number of neurons.2

These neural networks are simple because they are designed with a simple, computable,3

and continuous activation function σ leveraging a triangular-wave function and the softsign4

function. We first prove that σ-activated networks with width 36d(2d + 1) and depth 115

can approximate any continuous function on a d-dimensional hypercube within an arbi-6

trarily small error. Hence, for supervised learning and its related regression problems, the7

hypothesis space generated by these networks with a size not smaller than 36d(2d+ 1)×118

is dense in the continuous function space C([a, b]d) and therefore dense in the Lebesgue9

spaces Lp([a, b]d) for p ∈ [1,∞). Furthermore, we show that classification functions arising10

from image and signal classification are in the hypothesis space generated by σ-activated11

networks with width 36d(2d+ 1) and depth 12 when there exist pairwise disjoint bounded12

closed subsets of Rd such that the samples of the same class are located in the same subset.13

Finally, we use numerical experimentation to show that replacing the rectified linear unit14

(ReLU) activation function by ours would improve the experiment results.15

Keywords: universal approximation property, fixed-size neural network, classification16

function, periodic function, nonlinear approximation17

1. Introduction18

Deep neural networks have been widely used in data science and artificial intelligence. Their19

tremendous successes in various applications have motivated extensive research to establish20

the theoretical foundation of deep learning. Understanding the approximation capacity21

of deep neural networks is one of the keys to revealing the power of deep learning. The22

most basic layers of deep neural networks are nonlinear functions as the composition of23

an affine linear transform and a nonlinear activation function. The composition of these24

simple nonlinear functions can generate a complicated deep neural network with powerful25

approximation capacity, which is the key difference from classic approximation tools. In26

this paper, we show that the hypothesis space of deep neural networks generated from27
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the composition of 11 such simple nonlinear functions is dense in the continuous function28

space C([a, b]d) when the affine linear transforms are parameterized with O(d2) non-zero29

parameters in total and the nonlinear activation function is constructed from a simple30

triangular-wave function and the softsign function.31

1.1 Main Results32

One of the key elements of a neural network is its activation functions. Searching for simple33

activation functions enabling powerful approximation capacity of neural networks is an34

important mathematical problem that probably originated in the Kolmogorov superposition35

theorem (KST) (Kolmogorov, 1957) for Hilbert’s 13-th problem, where a two-hidden-layer36

neural network with O(d) neurons and complicated activation functions depending on the37

target functions are constructed to represent an arbitrary function in C([0, 1]d). Since then,38

whether simple and computable activation functions independent of the target function39

exist to make the space of neural networks with O(d) neurons dense in C([0, 1]d) or even40

equal to C([0, 1]d) has been an open problem. A function % : R→ R is said to be a universal41

activation function (UAF) if the function space generated by %-activated networks with C%,d42

neurons is dense in C([0, 1]d), where C%,d is a constant determined by % and d. That is, if43

% is a UAF, then %-activated networks with C%,d neurons can approximate any continuous44

function within an arbitrary error on [0, 1]d by only adjusting the parameters.45

In this paper, we first construct a simple and computable example of UAFs. As a typical46

and simple UAF, this activation function is called elementary universal activation function47

(EUAF), and the corresponding networks are called EUAF networks. Then, we prove that48

the function space generated by EUAF networks with O(d2) neurons is dense in C([a, b]d).49

Furthermore, it is shown that EUAF networks with O(d2) neurons can exactly represent50

d-dimensional classification functions.51

While a good activation function should be simple and numerically implementable, the52

neural network activated by it should be able to approximate continuous functions well53

with a manageable size. Considering these requirements and motivated by previous works54

(Yarotsky and Zhevnerchuk, 2020; Shen et al., 2021a,b), the activation function to be cho-55

sen should have appropriate nonlinearity, periodicity, and the capacity to reproduce step56

functions. It is challenging to find a single activation function with all these properties.57

Here, we propose an activation function with all required properties by using two simple58

functions σ1 and σ2 defined below.59

Let σ1 be the continuous triangular-wave function with period 2, i.e.,60

σ1(x) := |x| for any x ∈ [−1, 1]61

and σ1(x+ 2) = σ1(x) for any x ∈ R. Alternatively, σ1 can also be written as:62

σ1(x) =
∣∣x− 2bx+1

2 c
∣∣ for any x ∈ R, where b·c is the floor function.63

Clearly, σ1 is periodic and x−σ1(x) is a continuous variant of the floor function as desired.64

To introduce high nonlinearity, let σ2 be the softsign activation function commonly used65

in machine learning (Turian et al., 2009; Le and Zuidema, 2015):66

σ2(x) :=
x

|x|+ 1
for any x ∈ R.67
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Then the activation function σ is defined as:68

σ(x) :=

{
σ1(x) for x ∈ [0,∞),

σ2(x) for x ∈ (−∞, 0).
(1)69

See an illustration of σ in Figure 1. This activation function σ is used to construct powerful70

neural networks in this paper.71
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Figure 1: An illustration of σ on [−10, 10].

As we shall see later, the periodicity of the triangular-wave function σ1 and the (high)72

nonlinearity of the softsign function σ2 play crucial roles in the proofs of our main results.73

One may find more details Section 2.2, which provides the ideas of proving our main results.74

Observe that σ1 is an even function and σ2 is an odd function, i.e., σ(x) = σ1(x) = σ1(−x)75

for any x ≥ 0 and −σ(−x) = −σ2(−x) = σ2(x) for any x ≥ 0. This implies that σ(x)76

and −σ(−x) with x ≥ 0 have both required periodicity and nonlinearity features and play77

the same roles as σ1(x) and σ2(x), respectively. These requirements lead to our choice78

of σ as the activation function. If allowed to be more complicated, one can design many79

other UAFs satisfying stronger requirements for various applications. For example, the80

idea of designing a Cs UAF is given in Section 4.1 and a sigmoidal UAF (see Figure 8) is81

constructed in Section 4.2.82

With the activation function σ in hand, let us introduce the network (architecture)83

using σ as the activation function, called σ-activated network (architecture). To be precise,84

a σ-activated network with a (vector) input x ∈ Rd, an output Φ(x,θ) ∈ R, and L ∈ N+85

hidden layers can be briefly described as follows:86

x = h̃0
A0, b0
L0

h1
σ h̃1 · · · AL−1, bL−1

LL−1
hL

σ h̃L
AL, bL

LL
hL+1 = Φ(x,θ), (2)87

where N0 = d ∈ N+, N1, N2, · · ·, NL ∈ N+, NL+1 = 1, Ai ∈ RNi+1×Ni and bi ∈ RNi+1 are88

the weight matrix and the bias vector in the i-th affine linear transform Li, respectively,89

i.e.,90

hi+1 = Ai · h̃i + bi =: Li(h̃i) for i = 0, 1, · · ·, L91

and92

h̃i,j = σ(hi,j) for j = 1, 2, · · ·, Ni and i = 1, 2, · · ·, L.93

Here, h̃i,j and hi,j are the j-th entries of h̃i and hi, respectively, for j = 1, 2, · · ·, Ni and i =94

1, 2, · · ·, L. θ is a fattened vector consisting of all parameters in A0, b0,A1, b1, · · ·,AL, bL.95

With a slight abuse of notation, σ can be applied to a vector elementwisely, i.e., given96

any k ∈ N+,97

σ(y) =
[
σ(y1), σ(y2), · · ·, σ(yk)

]T
for any y = [y1, y2, · · ·, yk]T ∈ Rk.98

3



Then Φ can be represented in a form of function compositions as follows:99

Φ(x,θ) = LL ◦ σ ◦LL−1 ◦ · · · ◦ σ ◦L1 ◦ σ ◦L0(x) for any x ∈ Rd.100

Given N,L ∈ N+, let ΦN,L(x,θ) denote the σ-activated network architecture Φ(x,θ) in101

Equation (2) with N1 = N2 = · · · = NL = N . Let102

W = Wd,N,L = d×N +N + (N ×N +N)× (L− 1) + N × 1 + 1 = O(dN +N2L)103

be the total number of parameters in ΦN,L(x,θ), i.e., θ ∈ RW .104

Define the hypothesis space Hd(N,L) as the function space generated by d-input EUAF105

networks with width N and depth L, i.e.,106

Hd(N,L) :=
{
φ : φ(x) = ΦN,L(x,θ) for any x ∈ Rd, θ ∈ RW

}
. (3)107

Let C([a, b]d) be the space of all continuous functions f : [a, b]d → R with the maximum108

norm. Our first main result, Theorem 1 below, shows that EUAF networks with a fixed109

size O(d2) enjoy the universal approximation property by only adjusting their parameters.110

Theorem 1. Let f ∈ C([a, b]d) be a continuous function and Hd(N,L) be the hypothesis111

space defined in Equation (3) with N = 36d(2d + 1) and L = 11. Then, for an arbitrary112

ε > 0, there exists φ ∈Hd(N,L) such that113

|φ(x)− f(x)| < ε for any x ∈ [a, b]d.114

To prove Theorem 1, we first summarize key proof ideas in Section 2.2 and then present115

the detailed proof later in Section 5.1.116

Remark. The network realizing φ in Theorem 1 has117

d×N +N + (N ×N +N)× (L− 1) + N × 1 + 1 ∼ d4118

parameters, where N = 36d(2d + 1) and L = 11. However, as shown in our constructive119

proof of Theorem 1, it is enough to adjust 5437(d + 1)(2d + 1) = O(d2) � d4 parameters120

and set all the others to 0.121

Since for an arbitrary M > 0, 2Mσ(x+M2M ) − M = x for all x ∈ [−M,M ], we can122

manually add hidden layers to EUAF networks without changing the output. This leads to123

the following immediate corollary of Theorem 1.124

Corollary 2. Assume N ≥ 36d(2d+ 1) and L ≥ 11. Then the hypothesis space Hd(N,L)125

defined in Equation (3) is dense in C([a, b]d).126

The stable and accurate approximation of discontinuities has many real-world applica-127

tions and has been widely studied (Bernholdt et al., 2019; Beck et al., 2020; Gupta et al.,128

2020; Gedeon et al., 2021; Hu et al., 2021). Most of common discontinuous functions are in129

the Lebesgue spaces Lp([a, b]d) for p ∈ [1,∞). Let us consider the denseness of our hypoth-130

esis space in these function spaces. Since C([a, b]d) is dense in Lp([a, b]d) for p ∈ [1,∞),131

the hypothesis space in Corollary 2 is also dense in Lp([a, b]d) as shown in the following132

corollary.133
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Corollary 3. Assume N ≥ 36d(2d+1), L ≥ 11, and p ∈ [1,∞). Then the hypothesis space134

Hd(N,L) defined in Equation (3) is dense in Lp([a, b]d).135

This corollary implies that, for f ∈ Lp([a, b]d) and an arbitrary ε > 0, there exists136

φ ∈Hd(N,L) such that ‖φ− f‖Lp([a,b]d) < ε.137

One can ask whether the arbitrary error ε > 0 in Theorem 1 can be further reduced to138

0. This is not true in general, but it is true for a class of interesting functions widely used in139

image classification. Given any pairwise disjoint bounded closed subsets E1, E2, · · ·, EJ ⊆140

Rd, define “the classification function space” of these subsets as141

Cd(E1, E2, · · ·, EJ) :=

{
f : f =

J∑

j=1

rj · 1Ej for any r1, r2, · · ·, rJ ∈ Q
}
,142

where 1En is the indicator function of Ej for each j. Our second main result, Theorem 4143

below, shows that each element of Cd(E1, E2, · · ·, EJ) can be exactly represented by a σ-144

activated network with O(d2) neurons in
⋃J
j=1Ej .145

Theorem 4. Let E1, E2, · · ·, EJ ⊆ Rd be pairwise disjoint bounded closed subsets and146

Hd(N,L) be the hypothesis space defined in Equation (3) with N = 36d(2d+1) and L = 12.147

Then, for an arbitrary f ∈ Cd(E1, E2, · · ·, EJ), there exists φ ∈Hd(N,L) such that148

φ(x) = f(x) for any x ∈
J⋃

j=1

Ej .149

Remark. The network realizing φ in Theorem 4 has150

d×N +N + (N ×N +N)× (L− 1) + N × 1 + 1 ∼ d4151

parameters, where N = 36d(2d + 1) and L = 12. However, as shown in our constructive152

proof of Theorem 4 in Section 5.2, it is enough to adjust 5509(d+ 1)(2d+ 1) = O(d2)� d4153

parameters and set all the others to 0.154

For a general function space F , define F |E :=
{
f |E : f ∈ F

}
, where f |E is the function155

achieved via limiting f on E. Then, we have a corollary of Theorem 4 as follows.156

Corollary 5. Let E1, E2, · · ·, EJ ⊆ Rd be pairwise disjoint bounded closed subsets and157

Hd(N,L) be the hypothesis space defined in Equation (3). If N ≥ 36d(2d+ 1) and L ≥ 12,158

then159

Cd(E1, E2, · · ·, EJ)
∣∣
E
⊆Hd(N,L)

∣∣
E

with E =

J⋃

j=1

Ej .160

One of the most successful applications of deep learning is image and signal classifica-161

tion. In supervised classification problems, given a few samples and their labels (usually162

integers), the goal of the task is to learn how to assign a label to a new sample. For exam-163

ple, in binary classification via deep learning, a neural network is trained based on given164

samples (and labels) to approximate a classification function mapping one class of samples165
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to 0 and the other class of samples to 1. Theorem 4 (or Corollary 5) implies that the clas-166

sification function can be exactly realized by an EUAF network with a size depending only167

on the dimension of the problem domain via adjusting its parameters. This means that the168

best approximation error of EUAF networks to classification functions in the classification169

problem is 0.170

We remark that, in the worst scenario, there might exist complicated high-dimensional171

functions such that, the parameters of the EUAF network in Theorem 1 (or 4) require172

high computer precision for storage, and the precision might be exponentially high in the173

problem dimension. We refer to this as the curse of memory, which may make Theorem 1174

and 4 less interesting in real-world applications, though the number of parameters can be175

very small. The key question to be addressed is how rare the curse of memory would happen176

in real-world applications. If the target functions in real-world applications typically have177

no curse of memory with a high probability, then EUAF networks would be very useful in178

real-world applications. In future work, we will explore the statistical characterization of179

high-dimensional functions for the curse of memory of EUAF networks. Another approach180

to reducing the memory requirement is to increase the network size. Our main result has181

provided a network size O(d2) to achieve an arbitrary error. If a larger network size is used,182

the curse of memory can be lessened as we shall discuss in Section 1.4.183

1.2 Related Work184

In recent years, there has been an increasing amount of literature on the approximation185

power of neural networks as a special case of nonlinear approximation (DeVore, 1998; Cohen186

et al., 2022; Daubechies et al., 2022). In the early works of approximation theory for neural187

networks, the universal approximation theorem (Cybenko, 1989; Hornik, 1991; Hornik et al.,188

1989) without approximation errors showed that there exists a sufficiently large neural189

network approximating a target function in a certain function space within any given error190

ε > 0. There are also other versions of the universal approximation theorem. For example,191

it was shown in (Lin and Jegelka, 2018) that the residual neural networks activated the192

rectified linear unit (ReLU) with one neuron per hidden layer and a sufficiently large depth193

are a universal approximator. The universal approximation property for general residual194

neural networks was proved in (Li et al., to appear) via a dynamical system approach. In195

all papers discussed above, the network size goes to infinity when the target approximation196

error approaches 0. However, our result in Theorem 1 implies that EUAF networks with a197

fixed size (O(d2) neurons in total) can achieve an arbitrary small error for approximating198

f ∈ C([a, b]d).199

The approximation errors in terms of the total number of parameters of ReLU networks200

are well studied for basic function spaces with (nearly) optimal approximation errors, e.g.,201

(nearly) optimal asymptotic errors for continuous functions (Yarotsky, 2018), Cs functions202

(Yarotsky and Zhevnerchuk, 2020), piecewise smooth functions (Petersen and Voigtlaender,203

2018), solutions of special PDEs (Elbrächter et al., 2022; Beck et al., 2020), functions that204

can be optimally approximated by affine systems (Bölcskei et al., 2019), and Sobolev spaces205

(Yang et al., 2022; Hon and Yang, 2021). Approximation errors in terms of width and206

depth would be more useful than those in terms of the total number of nonzero parameters207

in practice, because width and depth are two essential hyper-parameters in every numerical208
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algorithm instead of the number of nonzero parameters. This motivated the works on the209

(nearly) optimal non-asymptotic errors in terms of width and depth with explicit pre-factors210

for approximating continuous functions in (Shen et al., 2020, 2022; Zhang, 2020) and for211

Cs functions in (Lu et al., 2021; Zhang, 2020). As the errors are (nearly) optimal, there are212

two possible directions to improve the approximation error in order to reduce the effect of213

the curse of dimensionality. The first one is to consider smaller target function spaces, e.g.,214

analytic functions (E and Wang, 2018; Bonito et al., 2021), Barron spaces (Barron, 1993; E215

et al., 2019b; E and Wojtowytsch, 2022; Siegel and Xu, 2021), and band-limited functions216

(Chen and Wu, 2019; Montanelli et al., 2021).217

Another direction is to design advanced activation functions, where one can use mul-218

tiple activation functions, to enhance the power of neural networks, especially to conquer219

the curse of dimensionality in network approximation. There have been several papers de-220

signing activation functions to achieve good approximation errors. The results in (Yarotsky221

and Zhevnerchuk, 2020) imply that (sin,ReLU)-activated neural networks (i.e., the acti-222

vation function of a neuron can be chosen from either sin or ReLU) with W parameters223

can approximate Lipschitz continuous functions with an asymptotic approximation error224

O(e−cd
√
W ), where cd is a constant depending on d. In (Shen et al., 2021a), it was shown225

that (Floor,ReLU)-activated neural networks with width O(N) and depth O(L) admit an226

quantitative approximation error O(
√
dN−

√
L) for Lipschitz continuous functions, conquer-227

ing the curse of dimensionality in approximation with a root-exponentially small error in228

depth L.1 In (Shen et al., 2021b), it was shown that, even if the depth is as small as 3, neu-229

ral networks with width N and O(d + N) nonzero parameters can approximate Lipschitz230

continuous functions with an exponentially small error O(
√
d 2−N ), if the floor function231

bxc, the exponential function 2x, and the step function 1{x≥0} are used as activation func-232

tions. Recently in (Jiao et al., 2021), the results in (Yarotsky and Zhevnerchuk, 2020; Shen233

et al., 2021b) were combined to avoid the curse of dimensionality using ReLU, sin, and 2x234

activation functions. Corollary 2 implies that the hypothesis space of EUAF networks acti-235

vated by a single activation function with O(d2) neurons is dense in C([a, b]d). Particularly,236

all continuous functions can be arbitrarily approximated by fixed-size EUAF networks with237

width N and depth L on a d-dimensional hypercube whenever N ≥ 36d(2d+1) and L ≥ 11.238

There is another research line for the approximation error of neural networks: applying239

KST (Kolmogorov, 1957) or its variants to explore new activation functions for a fixed-240

size network to achieve an arbitrary error. The original KST shows that any multivariate241

function f ∈ C([0, 1]d) can be represented as f(x) =
∑2d

i=0 gi
(∑d

j=1 hi,j(xj)
)

for any x =242

[x1, x2, · · ·, xd]T ∈ [0, 1]d, where gi and hi,j are univariate continuous functions. In fact,243

the composition architecture of KST can be regarded as a special neural network with244

(complicated) activation functions depending on the target function, which results in the245

failure of KST in practice. To alleviate this issue, a single activation function independent246

of the target function is designed in (Maiorov and Pinkus, 1999) to construct networks247

with a fixed size (O(d) neurons) to achieve an arbitrary error for approximating functions248

in C([−1, 1]d). However, the activation function in (Maiorov and Pinkus, 1999) has no249

1. Although there is no curse of dimensionality in network approximation, the construction requires ex-
ponentially many data samples of the target function and computer memory. Hence, there would be
a curse of dimensionality in inferring a target function from its finite samples when standard learning
techniques are applied to a computer.
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closed form and is hardly computable. See Section 2.2 for a detailed discussion of the250

construction in (Maiorov and Pinkus, 1999). The computability issue of activation functions251

was addressed recently in (Yarotsky, 2021). It was shown in (Yarotsky, 2021) that, for an252

arbitrary ε > 0 and any function f in C([0, 1]d), there exists a network of size only depending253

on d constructed with multiple activation functions either (sin & arcsin) or (b·c & a non-254

polynomial analytic function) to approximate f within an error ε. To the best of our255

knowledge, there is no explicit characterization of the size dependence on d in (Yarotsky,256

2021). For example, a very important question is whether the dependence can be mild,257

e.g., only a polynomial of d, or has to be severe, e.g., exponentially in d. The results of258

the current paper provide positive answers to all the issues discussed above: We show that259

EUAF networks with a simple and computable activation function, width 36d(2d+ 1), and260

depth 11 can approximate functions in C([a, b]d) within an arbitrary pre-specified error261

ε > 0.262

In summary, this paper aims to design a simple and computable activation function263

σ to construct fixed-size neural networks with the universal approximation property. The264

network width and depth are explicitly characterized, depending only on the dimension265

d. The fixed-size neural network is designed to approximate any continuous functions on a266

hypercube within an arbitrary error by only adjustingO(d2) network parameters. Moreover,267

we prove that an arbitrary classification function can be exactly represented by such a268

fixed-size network architecture via only adjusting O(d2) network parameters. The main269

contribution of this paper is to develop a rigorous mathematical analysis for the universal270

approximation property of fixed-size neural networks. The mathematical analysis developed271

here would provide a deeper understanding for other neural networks and the approximation272

results discussed here can be applied to the full error analysis of deep learning in the next273

subsection.274

1.3 Error Analysis275

We will briefly discuss the full error analysis of deep neural networks. Let Φ(x,θ) denote a276

function of x ∈ X generated by a network architecture parameterized with θ ∈ RW . Given277

a target function f defined on X , the final goal is to find the expected risk minimizer278

θD ∈ arg min
θ∈RW

RD(θ), where RD(θ) := Ex∼U(X )

[
`
(
Φ(x,θ), f(x)

)]
279

with an unknown data distribution U(X ) over X and a loss function `(·, ·) typically taken280

as `(y1, y2) = 1
2 |y1−y2|2. Note that θD may not be always achievable. For any pre-specified281

η > 0, one can always identify θD,η ∈ RW instead of θD such that282

RD
(
θD,η

)
≤ inf
θ∈RW

RD
(
θ
)

+ η/2. (4)283

Since the expected risk RD(θ) is not available in practice, we use the empirical risk RS(θ)284

to approximate RD(θ) for given samples
{(
xi, f(xi)

)}n
i=1

and our goal is to identify the285

empirical risk minimizer286

θS ∈ arg min
θ∈RW

RS(θ), where RS(θ) :=
1

n

n∑

i=1

`
(
Φ(xi,θ), f(xi)

)
.287
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Similarly, θS is not always achievable. For any pre-specified η > 0, one can always identify288

θS,η ∈ RW instead of θS such that289

RS
(
θS,η

)
≤ inf
θ∈RW

RS
(
θ
)

+ η/2. (5)290

In practical implementation, only a numerical minimizer θN ofRS(θ) can be achieved via291

a numerical optimization method. The discrepancy between the learned function Φ(x,θN )292

and the target function f is measured by RD(θN ), which is bounded by293

RD(θN ) = [RD(θN )−RS(θN )]︸ ︷︷ ︸
GE

+ [RS(θN )−RS(θS,η)]︸ ︷︷ ︸
OE

+ [RS(θS,η)−RS(θD,η)]︸ ︷︷ ︸
≤η/2 by (5)

+ [RS(θD,η)−RD(θD,η)]︸ ︷︷ ︸
GE

+ RD(θD,η)︸ ︷︷ ︸
≤ inf

θ∈RW
RD(θ)+η/2 by (4)

≤ η︸︷︷︸
perturbation

+ inf
θ∈RW

RD(θ)

︸ ︷︷ ︸
approximation error

+ [RS(θN )− inf
θ∈RW

RS(θ)]

︸ ︷︷ ︸
optimization error (OE)

+ [RD(θN )−RS(θN )] + [RS(θD,η)−RD(θD,η)]︸ ︷︷ ︸
generalization error (GE)

.
294

If Φ(x,θ) is realized by EUAF networks, then Theorem 1 implies295

inf
θ∈RW

‖Φ(·,θ)− f(·)‖L∞(X ) = 0 for all f ∈ C(X ) with X = [a, b]d.296

It follows that297

inf
θ∈RW

RD(θ) = inf
θ∈RW

Ex∼U(X )

[
`
(
Φ(x,θ), f(x)

)]
= 0.298

Since the pre-specified hyper-parameter η can be arbitrarily small, the full error analysis299

can be reduced to the analysis of the optimization and generalization errors, which de-300

pends on data samples, optimization algorithms, etc. One could refer to (Neyshabur et al.,301

2019; E et al., 2019a,b; E and Wojtowytsch, 2020; Kawaguchi, 2016; Nguyen and Hein,302

2017; Kawaguchi and Bengio, 2019; He et al., 2020; Li et al., 2019) for the analysis of the303

generalization and optimization errors.304

1.4 Computability305

The EUAF network is simple and computable in the sense that the output and subgradient306

of EUAF networks can be efficiently evaluated. The computability of EUAF implies that307

we can numerically implement the optimization algorithm to find a numerical minimizer308

of the empirical risk. Therefore, EUAF can be directly applied to existing deep learning309

software in the same way as other popular activation functions (such as ReLU or Sigmoid).310

For further discussion on the computability of EUAF, one may refer to Section 3, which311

provides experiments to explore the numerical properties of EUAF. As opposed to the312

computability of EUAF, the activation function proposed in (Maiorov and Pinkus, 1999)313

is not computable in the sense that there is no numerical algorithm to evaluate the output314

and subgradient of the corresponding network.315

As we shall see later in the proof of Theorem 1, our EUAF network may require suffi-316

ciently large parameters to achieve an arbitrarily small error. The magnitude of network317

parameters in Theorem 1 can be dramatically reduced by increasing the network size. In318

particular, if we replace each elemental block like Figure 2(a) by a block like Figure 2(b),319

then the magnitude of parameters can be roughly reduced to its square root. By repeatedly320

applying this idea, it is easy to prove that the magnitude of parameters can be exponentially321
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reduced as the network size increases linearly. If we fix the size of these larger networks and322

only tune their parameters, they can still approximate high-dimensional continuous func-323

tions within an arbitrarily small error. How to fix a network size to balance the number324

of parameters and their memory depends on both the computer hardware and software.325

The goal of this paper is to demonstrate the existence of a simple network with a fixed size326

achieving an arbitrary error in spite of the magnitude of parameters and we have shown327

that the network size can be as small as O(d2). It is interesting to investigate the balance328

between the network size and the memory requirement in the future.329

x ax+ ba · x + b

(a)

x
√
b

√
ax

b

ax

ax+ b
0 · x+

√
b

√
a · x

√
b ·

√
b

√
a · (√ax)

(b)

Figure 2: Illustrations of the magnitude reduction of parameters for a sub-network. The
parameters are marked in orange. Without loss of generality, a� 1 and b� 1. (a) Return
ax + b via two large parameters a and b. (b) Return ax + b via several small parameters
bounded by max{√a,

√
b}.

In real-world applications, the parameters of the EUAF network are learned from the330

samples of the target function, which involves sophisticated numerical optimization. We331

refer to the learnability of network parameters as the existence of a numerical optimization332

algorithm that can identify network parameters to achieve a target approximation error.333

The computability of the EUAF networks does not imply learnability, which involves ap-334

proximation, optimization, and generalization error analyses. The result in this paper shows335

that there exist computable EUAF networks achieving an arbitrarily small approximation336

error. This means the learnability of the best approximation is reduced to achieving small337

generalization and optimization errors, which depend on the given data, the empirical risk338

model, and the optimization algorithm. Therefore, whether or not EUAF networks would339

be useful in real-world applications also depends on optimization and generalization, which340

is out of the scope of this paper. The optimization and generalization error analyses of341

practical deep neural networks including EUAF networks is a challenging problem. To the342

best of our knowledge, there is no complete error analysis to address the learnability of343

neural networks with nonlinear activation functions.344

The rest of this paper is organized as follows. In Section 2, we first summarize notations345

used in this paper and then discuss the ideas of proving Theorem 1. Section 3 focuses346

on numerical experimentation of EUAF, which acts as a proof of concept to explore the347

numerical properties of EUAF. Next, several UAFs with better properties are proposed in348

Section 4. After that, we use several sections to present the complete proofs of Theorems 1349

and 4. In Section 5, by assuming Theorem 6 is true, we give the detailed proofs of Theo-350

rems 1 and 4. Theorem 6 is proved in Section 6 based on Proposition 7, the proof of which351

can be found in Section 7. Finally, Section 8 concludes this paper with a short discussion.352
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2. Notations and Proof Ideas353

In this section, we first summarize notations used in this paper and then discuss the ideas354

of proving Theorem 1.355

2.1 Notations356

Let us summarize all basic notations used in this paper as follows.357

• Let R, Q, and Z denote the set of real numbers, rational numbers, and integers,358

respectively.359

• Let N and N+ denote the set of natural numbers and positive natural numbers, re-360

spectively. That is, N+ = {1, 2, 3, · · ·} and N = N+
⋃{0}.361

• For any x ∈ R, let bxc := max{n : n ≤ x, n ∈ Z} and dxe := min{n : n ≥ x, n ∈ Z}.362

• Let 1S be the indicator (characteristic) function of a set S, i.e., 1S is equal to 1 on S363

and 0 outside S.364

• The set difference of two sets A and B is denoted by A\B := {x : x ∈ A, x /∈ B}.365

• Matrices are denoted by bold uppercase letters. For instance, A ∈ Rm×n is a real366

matrix of size m × n, and AT denotes the transpose of A. Vectors are denoted as367

bold lowercase letters. For example, v = [v1, v2, · · ·, vd]T =




v1
v2
...
vd


 ∈ Rd is a column368

vector. Besides, “[” and “]” are used to partition matrices (vectors) into blocks, e.g.,369

A =
[
A11 A12
A21 A22

]
.370

• For any p ∈ [1,∞), the p-norm (or `p-norm) of a vector x = [x1, x2, · · ·, xd]T ∈ Rd is371

defined by372

‖x‖p = ‖x‖`p :=
(
|x1|p + |x2|p + · · ·+ |xd|p

)1/p
.373

In the case p =∞,374

‖x‖∞ = ‖x‖`∞ := max
{
|xi| : i = 1, 2, · · ·, d

}
.375

• For any a1, a2, · · ·, aJ ∈ R, we say a1, a2, · · ·, aJ are rationally independent if376

they are linearly independent over the rational numbers Q. That is, if there exist377

λ1, λ2, · · ·, λJ ∈ Q such that
∑J

j=1 λj · aj = 0, then λ1 = λ2 = · · · = λJ = 0. For a378

simple example, 1,
√

2, and
√

3 are rationally independent.379

• An algebraic number is any complex number (including real numbers) that is a root380

of a polynomial equation with rational coefficients, i.e., α is an algebraic number if381

and only if there exist λ0, λ1, · · ·, λJ ∈ Q with
∑J

j=0 λjα
j = 0.2 Denote the set of all382

algebraic numbers by A. We say a complex number is transcendental if it is not383

2. For simplicity, we denote 1 = x0 for any x ∈ R, including the case 00.
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in A. The set A is countable, and, therefore, almost all numbers are transcendental.384

The best known transcendental numbers are π (the ratio of a circle’s circumference385

to its diameter) and e (the natural logarithmic base).386

• The expression “a network (architecture) with width N and depth L” means387

– The number of neurons in each hidden layer of this network (architecture) is no388

more than N .389

– The number of hidden layers of this network (architecture) is no more than L.390

2.2 Key Ideas of Proving Theorem 1391

The proof of Theorem 1 has two main steps: 1) prove the one-dimensional case; 2) reduce392

the d-dimensional approximation to the one-dimensional case via KST (Kolmogorov, 1957).393

In fact, in the case of d = 1, the size of the network in Theorem 1 can be further reduced as394

shown in Theorem 6 below. Theorem 6 is actually an enhanced version of Theorem 1 and395

hence implies Theorem 1 in the case d = 1.396

Theorem 6. Let f ∈ C([a, b]) be a continuous function. Then, for an arbitrary ε > 0,397

there exists a function φ generated by an EUAF network with width 36 and depth 5 such398

that399

|φ(x)− f(x)| < ε for any x ∈ [a, b] ⊆ R.400

The detailed proof of Theorem 6 can be found in Section 6. The main ideas of proving401

Theorem 6 are developed from some ideas of our early works (Shen et al., 2021a,b). Roughly402

speaking, we eventually convert a function approximation problem in an interval (e.g.,403

[0, 1)) to a point-fitting problem via the composition architecture of neural networks in the404

following three main steps.3405

• Divide [0, 1) into small intervals Ik = [k−1K , kK ) with a left endpoint xk for k ∈406

{1, 2, · · ·,K}, where K is an integer determined by the given error and the target407

function f .408

• Construct a sub-network to generate a function φ1 mapping the whole interval Ik to k409

for each k. The floor function b·c is a good choice to implement this step. Precisely, we410

can define φ1(x) = bKxc. The floor function is not continuous and has zero-derivative411

almost everywhere. As we shall see later, σ1 (or σ) can be a continuous alternative to412

implement this step, but the construction is more complicated.413

• The final step is to design another sub-network to generate a function φ2 mapping k414

approximately to f(xk) for each k. Then φ2 ◦ φ1(x) = φ2(k) ≈ f(xk) ≈ f(x) for any415

x ∈ Ik and k ∈ {1, 2, · · ·,K}, which implies φ2 ◦ φ1 ≈ f on [0, 1). After the above two416

steps, we simplify the approximation problem to a point-fitting problem, where k is417

approximately mapped to f(k). This step is the bottleneck of the construction in our418

previous papers (Shen et al., 2021a,b). Roughly speaking, the final approximation419

error is essentially determined by how many points we can fit using a neural network.420

3. The goal of a point-fitting problem is to identify a function φ : Rd → R in a given hypothesis space (e.g.,
the space of functions realized by neural networks) such that |φ(xi) − yi| < ε for i = 1, 2, · · ·, n and a
pre-specified error ε > 0, where {(xi, yi)}ni=1 ⊆ Rd+1 are given samples.

12



For the second step, the capacity to generate step functions with sufficiently many421

“steps” via a sub-network with a limited number of neurons plays an important role. The422

reproduced step functions can be considered as a continuous version of the floor function423

(b·c) in (Shen et al., 2021a,b), which is a perfect step function with infinite “steps” that424

improves the approximation power of networks as shown in (Shen et al., 2021a,b). The key425

ingredient in the third step of the proof of Theorem 6 is essentially a point-fitting problem426

with arbitrarily many points. This requires the following proposition motivated by the well-427

known fact that an irrational winding on the torus is dense. See Figure 3 for illustrations428

of such a fact. Here, we propose a new point-fitting technique that can fit arbitrarily many429

points within an arbitrary error using fixed-size neural networks.430

0.0 0.5 1.0
0.0

0.5

1.0

E(1)

0.0 0.5 1.0
0.0

0.5

1.0

E(2)

0.0 0.5 1.0
0.0

0.5

1.0

E(4)

0.0 0.5 1.0
0.0

0.5

1.0

E(8)

0.0 0.5 1.0
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0.0 0.5 1.0
0.0
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1.0
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0.0 0.5 1.0
0.0

0.5

1.0

E(64)
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0.0

0.5

1.0
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Figure 3: Illustrations of the denseness of E(∞) in [0, 1]2, where E(r) is a winding of an
“irrational” direction [1,

√
2]T on [0, r), i.e., E(r) =

{
[τ(t), τ(

√
2 t)]T : t ∈ [0, r)

}
with

τ(t) = t− btc.

Proposition 7. For any K ∈ N+, the following point set431

{[
σ1(

w
π+1), σ1(

w
π+2), · · ·, σ1( w

π+K )
]T

: w ∈ R
}
⊆ [0, 1]K432

is dense in [0, 1]K , where π is the ratio of a circle’s circumference to its diameter.433

The proof of Proposition 7 can be found in Section 7. To prove the denseness in Propo-434

sition 7, we borrow some ideas from transcendental number theory and Diophantine ap-435

proximations in number theory. The number π used in Proposition 7 is transcendental. It436

can be replaced by any other transcendental number.437

Proposition 7 implies that for any given sample points (k, yk) ∈ R2 with yk ∈ [0, 1] for438

k = 1, 2, · · ·,K and anyK ∈ N+, there exists w0 ∈ R such that the function x 7→ σ1(
w0
π+x) can439

fit the points (k, yk) ∈ R2 for k = 1, 2, · · ·,K within an arbitrary pre-specified error ε > 0.440

To put it another way, for any ε > 0, there exists w0 ∈ R such that |σ1( w0
π+k )− yk| < ε for441

all k.442
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As we shall see later in the proof of Proposition 7, the key point is the periodicity of the443

outer function σ1. Of course, the inner function x 7→ w0
π+x is also necessary since it helps444

to adjust sample points for x = 1, 2, · · ·,K. In fact, the inner function x 7→ w0
π+x can be445

regarded as a variant of σ2 via scaling and shifting. The periodicity has been explored to446

improve neural network approximation in the literature, e.g. the sine function in (Yarotsky447

and Zhevnerchuk, 2020) is periodic and the floor function (b·c) in (Shen et al., 2021a,b) is448

implicitly periodic because x− bxc is periodic. We remark that a similar result holds if we449

replace σ1 by a non-trivial periodic function and replace the sample locations x = 1, 2, · · ·,K450

by distinct rational numbers r1, r2, · · ·, rK ∈ Q. See Section 7 for a further discussion.451

Theorem 6 essentially proves Theorem 1 for the univariate case. To prove the general452

case, we need the Kolmogorov superposition theorem (KST) (Kolmogorov, 1957) given453

below to reduce a multivariate problem to a one-dimensional case.454

Theorem 8 (KST). There exist continuous functions hi,j ∈ C([0, 1]) for i = 0, 1, · · ·, 2d455

and j = 1, 2, · · ·, d such that any continuous function f ∈ C([0, 1]d) can be represented as456

f(x) =

2d∑

i=0

gi

( d∑

j=1

hi,j(xj)
)

for any x = [x1, x2, · · ·, xd]T ∈ [0, 1]d,457

where gi : R→ R is a continuous function for each i ∈ {0, 1, · · ·, 2d}.458

KST is often used to reduce a multidimensional problem to a one-dimensional one. In459

fact, the compositional representation in KST can be regarded as a special neural network460

with (complicated) activation functions depending on the target function, which makes461

KST useless in practical computation. To avoid this dependency, an activation function462

was designed in (Maiorov and Pinkus, 1999) to construct neural network representations463

with O(d) neurons that can approximate functions in C([−1, 1]d) within an arbitrary error.464

Let us briefly summarize the main ideas in (Maiorov and Pinkus, 1999): 1) Identify a dense465

and countable subset {uk}∞k=1 of C([−1, 1]), e.g., polynomials with rational coefficients. 2)466

Construct an activation function % to encode all uk(x) for x ∈ [−1, 1]. In fact, for each467

k, uk|[−1,1] is “stored” in % on [4k, 4k + 2], and the values of % on [4k + 2, 4k + 4] are468

properly assigned to make % a smooth and monotonically increasing function. That is, let469

%(x + 4k + 1) = ak + bkx + ckuk(x) for any x ∈ [−1, 1] with carefully chosen constants470

ak, bk, and ck 6= 0 such that %(x) can be a sigmoidal function. 3) For any g ∈ C([−1, 1]),471

there exists a one-hidden-layer %-activated network with width 3 approximating g within472

an arbitrary error δ > 0, i.e., there exists k such that g(x)
δ≈uk(x) = %(x+4k+1)−ak−bkx

ck
473

for any x ∈ [−1, 1]. 4) Replace the inner and outer functions in KST with these one-474

hidden-layer networks to achieve a two-hidden-layer %-activated network with width O(d)475

to approximate f ∈ C([−1, 1]d) within an arbitrary error ε > 0. As we can see, the key476

point of the construction in (Maiorov and Pinkus, 1999) is to encode a dense and countable477

subset of the target function space in an activation function.478

Note that both (Maiorov and Pinkus, 1999) and this paper use KST to reduce dimension.479

However, the activation function of (Maiorov and Pinkus, 1999) is complicated without any480

closed form and there is no efficient numerical algorithm to evaluate it. After encoding481

a dense subset of continuous function into a single but complicated activation function,482

one only needs to construct affine linear transformations to select appropriate functions483
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of this dense subset from this complicated activation function to construct approximation.484

Hence, such a complicated activation function simplifies the proof of the denseness, since485

the denseness is encoded in the activation function. As a contrast, we design a simple486

activation function with efficient numerical implementation (see Figure 1 for an illustration)487

achieving the universal approximation property with fixed-size networks, because simple and488

implementable activation functions are a basic requirement for a neural network to be used489

in applications. However, the proof of the denseness of a neural network generated by such490

a simple activation function becomes difficult. A sophisticated analysis will be developed491

in the rest of this paper to overcome the difficulties.492

3. Experimentation493

In this section, we will conduct two simple experiments as a proof of concept to explore494

the numerical performances of the EUAF activation function. Let us first discuss the495

numerical implementation of EUAF in PyTorch. To enable the automatic differentiation496

feature for EUAF, we need to implement EUAF based on PyTorch built-in functions. With497

the following four built-in functions abs(x) = |x|, floor(x) = bxc,498

softsign(x) =
x

|x|+ 1
, and sign(x) =





1 if x > 0,

0 if x = 0,

−1 if x < 0,

499

we can represent EUAF as500

EUAF(x) =

{
softsign(x) if x < 0,∣∣x− 2bx+1

2 c
∣∣ if x ≥ 0

= softsign(x) · 1− sign(x)

2
+
∣∣∣x− 2

⌊x+ 1

2

⌋∣∣∣ · 1 + sign(x)

2

= softsign(x) · 1− sign(x)

2
+ abs

(
x− 2 · floor

(x+ 1

2

))
· 1 + sign(x)

2
.

501

Thus, it is numerically cheap to compute EUAF and its subgradient. We believe the EUAF502

activation function can achieve good results in some real-world applications if proper op-503

timization algorithms are developed for EUAF. In this paper, we only conduct two simple504

experiments: a function approximation experiment in Section 3.1 and a classification ex-505

periment in Section 3.2.506

Next, let us briefly discuss when our EUAF activation function would outperform the507

practically used ones (e.g., ReLU, Sigmoid, and Softsign), which is based on full error508

analysis in Section 1.3. In our discussion, we take the ReLU activation function as an509

example and suppose the optimization error is well-controlled. Clearly, replacing ReLU by510

EUAF can reduce the approximation error, but would result in a large generalization error.511

Thus, we would expect that EUAF achieves better results than ReLU if the approximation512

error is larger than the generalization error. That means EUAF would outperform ReLU513

in the following two cases.514

• The approximation error is pretty large (e.g., the target function is sufficiently com-515

plicated).516
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• The generalization error is well-controlled (e.g., there are sufficiently many samples).517

If a given problem does not belong to these two cases, one may consider replacing only518

a small number of ReLUs by EUAFs. In the function approximation experiment in Sec-519

tion 3.1, we first choose a complicated target function and then generate sufficiently many520

samples to reduce the generalization error. In the classification experiment in Section 3.2,521

we control the generalization error via three common methods: keeping network parameters522

small via L2 regularization, dropout (Hinton et al., 2012; Srivastava et al., 2014), and batch523

normalization (Ioffe and Szegedy, 2015).524

3.1 Function Approximation525

We will design fully connected neural network (FCNN) architectures activated by ReLU526

or EUAF to solve a function approximation problem. To better compare the approxima-527

tion power of ReLU and EUAF activation functions, we choose a complicated (oscillatory)528

function f as the target function, where f is defined as529

f(x1, x2) := 0.6 sin(8x1) + 0.4 sin(16x2) for any (x1, x2) ∈ [0, 1]2.530

To compare the numerical performances of ReLU and EUAF activation functions, we531

design two FCNN architectures with different activation functions. Both of them have 4532

hidden layers and each hidden layer has 80 neurons. For simplicity, we denote them as533

FCNN1 and FCNN2. See illustrations of them in Figure 4. FCNN1 is a standard fully534

connected ReLU network and FCNN2 can be regarded as a variant of FCNN1 by replacing535

ReLU by EUAF.536

Input FC ReLU FC

ReLU FC ReLU

FC ReLU FC Output

(a) FCNN1.

Input FC EUAF FC

EUAF FC EUAF

FC EUAF FC Output

(b) FCNN2.

Figure 4: Illustrations of FCNN1 and FCNN2. FC represents a fully connected layer.

Before presenting the numerical results, let us present the hyper-parameters for training537

FCNN1 and FCNN2. We randomly choose 106 training samples and 105 test samples in538

[0, 1]2. The number of epochs and the batch size are set to 500 and 256, respectively.539

We adopt RAdam (Liu et al., 2020) as the optimization method and the learning rate is540

0.002 × 0.9i−1 in epochs 5(i − 1) + 1 to 5i for i = 1, 2, · · ·, 100. Several loss functions are541

used to estimate the training and test losses, including the mean squared error (MSE), the542

mean absolute error (MAE), and the maximum (MAX) loss functions. To illustrate MSE,543

MAE and MAX losses, we denote φ as the network-generated function and x1, · · ·,xm as544

the test samples (m = 105 in our setting). Then, the MSE loss is given by 1
m

∑m
i=1

(
φ(xi)−545

f(xi)
)2
, the MAE loss is given by 1

m

∑m
i=1

∣∣φ(xi) − f(xi)
∣∣, and the MAX loss is given by546

max
{
|φ(xi) − f(xi)| : i = 1, 2, · · ·,m

}
. The MSE loss is used in our training process. In547

the settings above, we repeat the experiment 12 times and discard 2 top-performing and 2548

bottom-performing trials by using the average of test losses (MSE) in the last 100 epochs549
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as the performance criterion. For each epoch, we adopt the average of training (test) losses550

in the rest 8 trials as the target training (test) loss.551

Next, let us present the experiment results to compare the numerical performances of552

ReLU and EUAF activation functions. Training and test losses (MSE) over epochs for553

FCNN1 and FCNN2 are summarized in Figure 5.554

100 200 300 400 500

epoch

0.0000

0.0001

0.0002

0.0003 training loss (FCNN1)

test loss (FCNN1)

training loss (FCNN2)

test loss (FCNN2)

Figure 5: Training and test losses (MSE) in epochs 25-500 for FCNN1 and FCNN2.

In Table 1, we present a comparison of FCNN1 and FCNN2 for the average of the test555

losses in the last 100 epochs measured in several loss functions. As we can see from Figure 5556

and Table 1, FCNN2 performs better than FCNN1. That means replacing ReLU by EUAF557

would improve experiment results.558

activation function
test loss

MSE MAE MAX

FCNN1 ReLU 3.53× 10−5 4.57× 10−3 3.69× 10−2

FCNN2 EUAF 7.56× 10−6 2.13× 10−3 1.48× 10−2

Table 1: Test loss comparison.

3.2 Classification559

The goal of a classification problem with J ∈ N+ classes is to identify a classification560

function f defined by561

f(x) = j for any x ∈ Ej and j = 0, 1, · · ·, J − 1,562

where E0, E1, · · ·, EJ−1 are pairwise disjoint bounded closed subsets of Rd and all samples563

with a label j are contained in Ej for each j. Such a classification function f can be564

continuously extended to Rd, which means a classification problem can also be regarded as565

a continuous function approximation problem. We take the case J = 2 as an example to566

illustrate the extension. The multiclass case is similar. By defining567

dist(x, Ei) := inf
y∈Ei

‖x− y‖2 for any x ∈ Rd and i = 0, 1,568

we have dist(x, E0) + dist(x, E1) > 0 for any x ∈ Rd. Thus, we can define569

f̃(x) :=
dist(x, E0)

dist(x, E0) + dist(x, E1)
for any x ∈ Rd.570
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It is easy to verify that f̃ is continuous on Rd and571

f̃(x) =

{
0 if x ∈ E0,

1 if x ∈ E1

= f(x) for any x ∈ E0

⋃
E1.572

That means f̃ is a continuous extension of f . That means we can apply our theory to573

classification problems.574

We will design convolutional neural network (CNN) architectures activated by ReLU or575

EUAF to solve a classification problem corresponding to a standard benchmark data set576

Fashion-MNIST (Xiao et al., 2017). This data set consists of a training set of 60000 samples577

and a test set of 10000 samples. Each sample is a 28×28 grayscale image, associated with a578

label from 10 classes. To compare the numerical performances of ReLU and EUAF activa-579

tion functions, we design two small CNN architectures with different activation functions.580

Both of them have two convolutional layers and two fully connected layers. For simplicity,581

we denote them as CNN1 and CNN2. See illustrations of them in Figure 6. We present582

more details of CNN1 and CNN2 in Table 2.583

Input Conv ReLU BatchNorm Conv ReLU

ReLU FC BatchNorm Flatten Dropout MaxPool

Dropout BatchNorm FC BatchNorm Softmax Output

(a) CNN1.

Input Conv ReLU&EUAF BatchNorm Conv ReLU&EUAF

ReLU&EUAF FC BatchNorm Flatten Dropout MaxPool

Dropout BatchNorm FC BatchNorm Softmax Output

(b) CNN2.

Figure 6: Illustrations of CNN1 and CNN2. Conv and FC represent convolutional and fully
connected layers, respectively.

layers
activation function

output size of each layer dropout batch normalization
CNN1 CNN2

input ∈ R28×28 28× 28

Conv-1: 1× (3× 3), 24 ReLU
EUAF, 1× (26× 26)
ReLU, 23× (26× 26)

24× (26× 26) yes

Conv-2: 24× (3× 3), 24 ReLU
EUAF, 1× (24× 24)
ReLU, 23× (24× 24)

3456 (MaxPool & Flatten) 0.25 yes

FC-1: 3456, 48 ReLU
EUAF, 1
ReLU, 47

48 0.5 yes

FC-2: 48, 10 10 (Softmax) yes

output ∈ R10

Table 2: Details of CNN1 and CNN2.

CNN1 is activated by ReLU, while CNN2 is activated by ReLU and EUAF. In CNN2,584

only one channel (neuron) of a convolutional (fully connected) hidden layer is activated585

by EUAF. CNN2 can be regarded as a variant of CNN1 by replacing a small number of586

ReLUs by EUAFs. This follows a natural question: Why do we not make all (or most)587

neurons (channels) of CNN2 activated by EUAF? We use only a few EUAFs in CNN2 for588

two reasons listed below.589
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• Since the number of available training samples is limited, using too many EUAF590

activation functions would lead to a large generalization error.591

• The key difference of EUAF to the practical used activation functions (e.g., ReLU,592

Sigmoid, and Softsign) is the periodic part on [0,∞). As we shall see later in the593

proof of our main theorem, only a small number of neurons in the constructed network594

require the periodic property. Thus, we would expect that neural networks activated595

by the practical used activation functions and a few EUAFs are super expressive.596

Next, let us discuss why we choose relatively small network architectures. Since the597

Fashion-MNIST classification problem is simple, the expressive power of a relatively large598

ReLU CNN architecture is enough. That means there is no need to introduce EUAF if the599

network architecture is relatively large. We believe EUAF would be useful for complicated600

classification problems.601

We remark that we use CNNs to approximate an equivalent variant f̂ of the original602

classification function f mentioned previously, where f̂ is given by603

f̂(x) = ej for any x ∈ Ej and j = 0, 1, · · ·, J − 1,604

where {e1, e2, · · ·, eJ} is the standard basis of RJ , i.e., ej ∈ RJ denotes the vector with a 1605

in the j-th coordinate and 0’s elsewhere.606

Before presenting the numerical results, let us present the hyper-parameters for training607

two CNN architectures above. We use the cross-entropy loss function to evaluate the loss.608

The number of epochs and the batch size are set to 500 and 128, respectively. We adopt609

RAdam (Liu et al., 2020) as the optimization method. The weight decay of the optimizer is610

0.0001 and the learning rate is 0.002×0.9i−1 in epochs 5(i−1)+1 to 5i for i = 1, 2, · · ·, 100.611

All training (test) samples in the Fashion-MNIST data set are standardized in our experi-612

ment, i.e., we rescale all training (test) samples to have a mean of 0 and a standard deviation613

of 1. In the settings above, we repeat the experiment 48 times and discard 8 top-performing614

and 8 bottom-performing trials by using the average of test accuracy in the last 100 epochs615

as the performance criterion. For each epoch, we adopt the average of test accuracies in616

the rest 32 trials as the target test accuracy.617

Let us present the experiment results to compare the numerical performances of CNN1618

and CNN2. The test accuracy comparison of CNN1 and CNN2 is summarized in Table 3.619

activation function largest accuracy average of largest 100 accuracies average accuracy in last 100 epochs

CNN1 ReLU 0.933066 0.932852 0.932698

CNN2 ReLU and EUAF 0.933922 0.933685 0.933508

Table 3: Test accuracy comparison.

For each of CNN1 and CNN2, we present the largest test accuracy, the average of620

largest 100 test accuracies over epochs, and the average of test accuracies in the last 100621

epochs. For an intuitive comparison, we also provide illustrations of the test accuracy over622

epochs for CNN1 and CNN2 in Figure 7. As we can see from Table 3 and Figure 7, CNN2623

performs better than CNN1. That means replacing a small number of ReLUs by EUAFs624

would improve the experiment results.625
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Figure 7: Test accuracy over epochs.

4. Other Examples of UAFs626

This section aims at designing new UAFs with additional properties such as smooth or627

sigmoidal functions. As discussed in the introduction and shown in the proof of our main628

theorem, the construction of UAFs mainly relies on three properties: high nonlinearity,629

periodicity, and the capacity to reproduce step functions. The EUAF σ defined in Equa-630

tion (1) is a simple and typical example of UAFs satisfying these three properties. Indeed,631

having these properties plays an important role in our proof and is a necessary but not632

sufficient condition for designing a UAF. In other words, these properties are important,633

but cannot guarantee the successful construction of UAFs.634

Here, we present another idea to design new UAFs, which mainly relies on the following635

observation: If a UAF % can be approximated by a fixed-size network activated by a new636

activation function %̃ within an arbitrary error on any bounded interval, then %̃ is also a637

UAF. Such an observation is a direct result of the lemma below.638

Lemma 9. Let %, %̃ : R → R be two functions with % ∈ C(R). For an arbitrary given639

function f ∈ [a, b]d → R and any ε > 0, suppose that the following two conditions hold:640

• There exists a function φ% realized by a %-activated network with width N and depth641

L such that642

|φ%(x)− f(x)| < ε/2 for any x ∈ [a, b]d.643

• For any M > 0 and each δ ∈ (0, 1), there exists a function %δ realized by a %̃-activated644

network with width Ñ and depth L̃ such that645

%δ(t) ⇒ %(t) as δ → 0+ for any t ∈ [−M,M ],646

where ⇒ denotes the uniform convergence.647

Then, there exists a function φ = φ%̃ generated by a %̃-activated network with width N · Ñ648

and depth L · L̃ such that649

|φ(x)− f(x)| < ε for any x ∈ [a, b]d.650

The proof of Lemma 9 is placed in Section 4.3. Based on Lemma 9, we will propose651

two UAFs with better mathematical properties. That is, the idea of designing a Cs UAF652

is given in Section 4.1 and a sigmoidal UAF is constructed in detail in Section 4.2.653
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4.1 Smooth UAF654

The smoothness of a function is one of the most desired properties in mathematical modeling655

and computation. The EUAF σ is continuous but not smooth. So we will show how to656

construct a Cs UAF based on an existing one. The key point is the fact that the indefinite657

integral of a continuous function is continuously differentiable.658

Suppose % is a continuous UAF. Define659

%̃(x) :=

∫ x

0
%(t)dt for any x ∈ R.660

For any M > 0, it holds that661

%̃(x+ δ)− %̃(x)

δ
=

1

δ

∫ x+δ

x
%(t)dt⇒ %(x) as δ → 0+ for any x ∈ [−M,M ].662

This means % can be approximated by a one-hidden-layer %̃-activated network with width663

2 arbitrarily well on any bounded interval. It follows that %̃ is also a UAF. By repeated664

applications of the above idea, one could easily construct a Cs UAF.665

In particular, set %0 = σ and define %1, %2, · · ·, %s by induction as follows.666

%i+1(x) :=

∫ x

0
%i(t)dt for any x ∈ R and i ∈ {0, 1, · · ·, s− 1}. (6)667

Then %s is a Cs UAF as shown in the following theorem.668

Theorem 10. Let %s ∈ Cs(R) be the function defined in Equation (6) for any s ∈ N+.669

Then, for any f ∈ C([a, b]d) and any ε > 0, there exists a function φ generated by a670

%s-activated network with width 72sd(2d+ 1) and depth 11 such that671

|φ(x)− f(x)| < ε for any x ∈ [a, b]d.672

Proof. For any i ∈ {0, 1, · · ·, s− 1} and any M > 0, it is easy to verify that673

%i+1(x+ δ)− %i+1(x)

δ
=

1

δ

∫ x+δ

x
%i(t)dt⇒ %i(x) as δ → 0+ for any x ∈ [−M,M ].674

This means %i can be approximated by a one-hidden-layer %i+1-activated network with675

width 2 arbitrarily well on any bounded interval. By induction, one could easily prove that676

%0 = σ can be approximated by a one-hidden-layer %s-activated network with width 2s677

arbitrarily well on any bounded interval. That is, for each δ ∈ (0, 1), there exists a function678

σs,δ realized by a %s-activated network with width 2s and depth 1 such that679

σs,δ(t) ⇒ σ(t) as δ → 0+ for any t ∈ [−M,M ].680

By Theorem 1, there exists a function φσ generated by a σ-activated network with width681

36d(2d+ 1) and depth 11 such that682

|φσ(x)− f(x)| < ε/2 for any x ∈ [a, b]d.683

Then, by Lemma 9, there exists another function φ = φ%s realized by a %s-activated network684

with width 2s× 36d(2d+ 1) = 72sd(2d+ 1) and depth 1× 11 = 11 such that685

|φ(x)− f(x)| < ε for any x ∈ [a, b]d.686

So we finish the proof.687
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4.2 Sigmoidal UAF688

Many activation functions used in real-world applications are sigmoidal functions. Gener-689

ally, we say a function g : R → R is sigmoidal (or sigmoid, e.g., see (Han and Moraga,690

1995)) if it satisfies the following conditions.691

• Bounded: limx→∞ g(x) = 1 and limx→−∞ g(x) = −1 (or 0).692

• Differentiable: g′(x) exists and continuous for all x ∈ R.693

• Increasing: g′(x) is non-negative for all x ∈ R.694

Our goal is to construct a sigmoidal UAF. To this end, we need to design a new function695

σ̃ based on σ such that σ can be reproduced/approximated by a σ̃-activated network with696

a fixed size. Making σ̃ bounded and increasing is not difficult. The key is to make σ̃697

continuously differentiable, which can be implemented by the fact that the indefinite integral698

of a continuous function is continuously differentiable. To be exact, we can define σ̃ as699

follows.700

• For x ∈ (−∞, 0], define σ̃(x) := σ(x) = x
−x+1 .701

• For x ∈ (0,∞), define702

σ̃(x) :=

∫ x

0

cσ(t) + 1

(2t+ 1)2
dt, where c =

1

2
∫∞
0

σ(t)
(2t+1)2

dt
≈ 2.554.703

We remark that there are many possible choices for the integrand in the above definition704

of σ̃(x) for x ∈ (0,∞). Here, we just give a simple example. See an illustration of σ̃ in705

Figure 8.706

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

0

1

σ̃

Figure 8: An illustration of σ̃ on [−10, 10].

Then σ̃ is a sigmoidal function as verified below.707

• Clearly, limx→−∞ σ̃(x) = limx→−∞
x

−x+1 = −1. Moreover,708

lim
x→∞

σ̃(x) =

∫ ∞

0

cσ(t) + 1

(2t+ 1)2
dt =

1

2
+

∫ ∞

0

1

(2t+ 1)2
dt = 1.709

• Obviously, σ̃ is continuously differentiable on (−∞, 0) and (0,∞). Meanwhile, we710

have σ̃′(0) = 1 and limx→0 σ̃
′(x) = 1. Therefore, we have σ̃ ∈ C1(R) as desired.711
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• For x ∈ (−∞, 0), σ̃′(x) = 1
(−x+1)2

> 0. For x = 0, σ̃′(x) = 1 > 0. For x ∈ (0,∞),712

σ̃′(x) = cσ(x)+1
(2x+1)2

> 0. Therefore, σ̃′(x) > 0 for all x ∈ R.713

Based on Theorem 1 corresponding to σ, we establish a similar theorem for σ̃, Theo-714

rem 11 below, showing that fixed-size σ̃-activated networks can also approximate continuous715

functions within an arbitrary error on a hypercube.716

Theorem 11. For any f ∈ C([a, b]d) and any ε > 0, there exists a function φ generated by717

a σ̃-activated network with width 1800d(2d+ 1) and depth 66 such that718

|φ(x)− f(x)| < ε for any x ∈ [a, b]d.719

To prove this theorem based on Theorem 1, we only need to show σ can be approximated720

by a fixed-size σ̃-activated network within an arbitrary error on any pre-specified interval721

as presented in the following lemma.722

Lemma 12. For any ε > 0 and any M > 0, there exists a function φ realized by a σ̃-723

activated network with width 50 and depth 6 such that724

|φ(x)− σ(x)| < ε for any x ∈ [−M,M ].725

The proof of Lemma 12 can be found later. By assuming Lemma 12 is true, we can give726

the proof of Theorem 11.727

Proof of Theorem 11. By Theorem 1, there exists a function φσ generated by a σ-activated728

network with width 36d(2d+ 1) and depth 11 such that729

|φσ(x)− f(x)| < ε/2 for any x ∈ [a, b]d.730

By Lemma 12, for any M > 0 and each δ ∈ (0, 1), there exists a function σδ realized by a731

σ̃-activated network with width 50 and depth 6 such that732

σδ(t) ⇒ σ(t) as δ → 0+ for any t ∈ [−M,M ].733

Then, by Lemma 9, there exists another function φ = φσ̃ realized by a σ̃-activated network734

with width 50× 36d(2d+ 1) = 1800d(2d+ 1) and depth 6× 11 = 66 such that735

|φ(x)− f(x)| < ε for any x ∈ [a, b]d.736

So we finish the proof.737

Finally, let us present the detailed proof of Lemma 12.738

Proof of Lemma 12. Since 1 = σ̃′(0) = limx→0
σ̃(x)
x , it is easy to show: For any E > 0 and739

any R > 0, there exists a sufficiently small w > 0 such that740
∣∣σ̃(wx)/w − x

∣∣ < E for any x ∈ [−R,R].741

Thus, we may assume the identity map is allowed to be the activation function in σ̃-activated742

networks. Without loss of generality, we may assume M ≥ 2 because M̂ = max{2,M}743

implies M̂ ≥ 2 and [−M,M ] ⊆ [−M̂, M̂ ].744

For simplicity, we denote H̃ (N,L) as the (hypothesis) space of functions generated by745

σ̃-activated networks with width N and depth L. Then the proof can be roughly divided746

into three steps as follows.747
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(1) Design Γ ∈ H̃ (9, 2) to reproduce xy on [−4M̃, 4M̃ ]2, where M̃ = (M + 1)2.748

(2) Design ψδ ∈ H̃ (9, 4) based on the first step to approximate σ well on [0,M ].749

(3) Design φ ∈ H̃ (50, 6) based on the previous two steps to approximate σ well on [−M,M ].750

The details of these three steps can be found below.751

Step 1: Design Γ ∈ H̃ (9, 2) to reproduce xy on [−4M̃, 4M̃ ]2.752

Observe that753

σ̃(y) + 1 =
y

|y|+ 1
+ 1 =

y

−y + 1
+ 1 =

1

−y + 1
for any y ≤ 0.754

For any x ∈ [−4, 4], we have −x− 4 ≤ 0 and −x− 5 ≤ 0, implying755

σ̃(−x− 4)− σ̃(−x− 5) =
(
σ̃(−x− 4) + 1

)
−
(
σ̃(−x− 5) + 1

)

=
1

−(−x− 4) + 1
− 1

−(−x− 5) + 1

=
1

x+ 5
− 1

x+ 6
=

1

(x+ 5)(x+ 6)
.

756

It follows from 1− 90
(x+5)(x+6) ≤ 0 for any x ∈ [−4, 4] that757

σ̃
(

1− 90

(x+ 5)(x+ 6)

)
+ 1 =

1

−
(
1− 90

(x+5)(x+6)

)
+ 1

=
x2 + 11x+ 30

90
,758

implying759

x2 = 90σ̃
(

1− 90

(x+ 5)(x+ 6)

)
+ 90− (11x+ 30)

= 90σ̃
(

1− 90
(
σ̃(−x− 4)− σ̃(−x− 5)

))
− 11x+ 60

= 90σ̃
(

1− 90σ̃(−x− 4) + 90σ̃(−x− 5)
)
− 11x+ 60.

760

Thus, x2 can be realized by a σ̃-activated network with width 3 and depth 2 on [−4, 4]. Set761

M̃ = (M + 1)2. Then, for any x, y ∈ [−4M̃, 4M̃ ], we have x

2M̃
, y

2M̃
, x+y
2M̃
∈ [−4, 4]. Recall762

the fact763

xy = 2M̃2
(

(x+y
2M̃

)2 − ( x

2M̃
)2 − ( y

2M̃
)2
)
.764

Therefore, xy can be realized by a σ̃-activated network with width 9 and depth 2 for any765

x, y ∈ [−4M̃, 4M̃ ]. That is, there exists Γ ∈ H̃ (9, 2) such that Γ(x, y) = xy on [−4M̃, 4M̃ ]2.766

Step 2: Design ψδ ∈ H̃ (9, 4) to approximate σ well on [0,M ].767

Recall that x2 can be realized by a σ̃-activated network with width 3 and depth 2 on768

[−4, 4]. There exists ψ1 ∈ H̃ (3, 2) such that769

ψ1(x) =
(2x+ 1)2

(2M + 1)2
for any x ∈ [−M,M ].770
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For any small δ > 0, we define771

ψ2,δ(x) :=
σ̃(x+ δ)− σ̃(x)

δ
for any x ∈ R.772

Then, we have ψ2,δ ∈ H̃ (2, 1) and773

ψ2,δ(x) :=
σ̃(x+ δ)− σ̃(x)

δ
⇒

d

dx
σ̃(x) =

cσ(x) + 1

(2x+ 1)2
as δ → 0+774

for any x ∈ [0,M ], where c is a constant given by775

c =
1

2
∫∞
0

σ(t)
(2t+1)2

dt
≈ 2.554.776

For any small δ > 0, we define777

ψδ(x) := (2M+1)2

c Γ
(
ψ1(x), ψ2,δ(x)

)
− 1

c for any x ∈ R.778

Since Γ ∈ H̃ (9, 2), ψ1 ∈ H̃ (3, 2), and ψ2,δ ∈ H̃ (2, 1), we have ψδ ∈ H̃ (9, 4).779

Clearly, for any x ∈ [0,M ], we have ψ1(x) = (2x+1)2

(2M+1)2
∈ [0, 1] and ψ2,δ(x) ⇒ cσ(x)+1

(2x+1)2
∈780

[0, c + 1] ⊆ [0, 3.6], implying ψ1(x), ψ2,δ(x) ∈ [−4, 4] ⊆ [−4M̃, 4M̃ ] for any small δ > 0.781

Thus, for any x ∈ [0,M ], as δ goes to 0+, we have782

ψδ(x) = (2M+1)2

c Γ
(
ψ1(x), ψ2,δ(x)

)
− 1

c = (2M+1)2

c · ψ1(x) · ψ2,δ(x)− 1
c

⇒ (2M+1)2

c · (2x+1)2

(2M+1)2
· cσ(x)+1
(2x+1)2

− 1
c = σ(x).

783

That is, for any x ∈ [0,M ],784

ψδ(x) ⇒ σ(x) as δ → 0+.785

Step 3: Design φ ∈ H̃ (50, 6) to approximate σ well on [−M,M ].786

Note that σ̃(x) = σ(x) for all x ∈ [−M, 0) and ψδ(x) approximates σ(x) well for all787

x ∈ [0,M ]. Then, we have788

ψδ(x) · 1{x∈[0,M ]} + σ̃(x) · 1{x∈[−M,0)}789

approximates σ(x) well for all x ∈ [−M,M ]. However, it is impossible to approximate790

1{x∈[0,M ]} well by a σ̃-activated network due to the continuity of σ̃. To address this gap,791

we will construct a continuous function g to replace 1{x∈[0,M ]} such that792

ψδ(x) · g(x) + σ̃(x) ·
(
1− g(x)

)
(7)793

can also approximate σ(x) well for all x ∈ [−M,M ].794

By the continuity of σ̃ and σ, there exists a small η0 ∈ (0, 1) such that795

|σ̃(x)| < ε/6 and |σ(x)| < ε/6 for any x ∈ [0, η0]. (8)796
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Figure 9: An illustration of g on [−10, 10].

Then we define797

g(x) :=
ReLU(x)− ReLU(x− η0)

η0
, where ReLU(x) = max{0, x} for any x ∈ R.798

See Figure 9 for an illustration of g.799

We will construct a σ̃-activated network to approximate g well. To this end, we first800

design a σ̃-activated network to approximate the ReLU function well. For any x ∈ [−M −801

1,M + 1], we have x
M+1 + 1 ∈ [0, 2] ⊆ [0,M ], implying802

1− ψδ( x
M+1 + 1) ⇒ 1− σ( x

M+1 + 1) = | x
M+1 | as δ → 0+,803

where the last equality comes from 1− σ(y) = |y − 1| for any y ∈ [0, 2]. Recall that804

ReLU(x) = x
2 + |x|

2 = x
2 + M+1

2 · | x
M+1 |805

for any x ∈ [−M − 1,M + 1]. For any small δ > 0, we define806

g̃δ(x) := x
2 + M+1

2

(
1− ψδ( x

M+1 + 1)
)

for any x ∈ R.807

Then, ψδ ∈ H̃ (9, 4) implies g̃δ ∈ H̃ (10, 4). Moreover, for any x ∈ [−M − 1,M + 1],808

g̃δ(x) ⇒ x
2 + M+1

2 · | x
M+1 | = ReLU(x) as δ → 0+.809

Define810

gδ(x) :=
g̃δ(x)− g̃δ(x− η0)

η0
for any x ∈ R.811

Clearly, g̃δ ∈ H̃ (10, 4) implies gδ ∈ H̃ (20, 4). For any x ∈ [−M,M ], we have x, x − η0 ∈812

[−M − 1,M + 1], implying813

gδ(x) =
g̃δ(x)− g̃δ(x− η0)

η0
⇒

ReLU(x)− ReLU(x− η0)
η0

= g(x) as δ → 0+.814

Next, motivated by Equation (7), we can define φδ to approximate σ well on [−M,M ].815

The definition of φδ is given by816

φδ(x) := Γ
(
ψδ(x), gδ(x)

)
+ Γ

(
σ̃(x), 1− gδ(x)

)
for any x ∈ R.817
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Since Γ ∈ H̃ (9, 2), ψδ ∈ H̃ (9, 4), and gδ, 1− gδ ∈ H̃ (20, 4), we have818

φδ ∈ H̃ (9 + 20 + 1 + 20, 4 + 2) = H̃ (50, 6).819

Clearly, σ̃(x), gδ(x), and 1 − gδ(x) are all in [−4M̃, 4M̃ ] for any small δ > 0 and all820

x ∈ [−M,M ]. We will show ψδ(x) ∈ [−4M̃, 4M̃ ] for any small δ > 0 and all x ∈ [−M,M ]821

via two cases as follows.822

• For any x ∈ [0,M ], ψδ(x) ⇒ σ(x) implies ψδ(x) ∈ [−4M̃, 4M̃ ] for any small δ > 0.823

• For any x ∈ [−M, 0), we have ψ1(x) = (2x+1)2

(2M+1)2
∈ [0, 1] and824

ψ2,δ(x) = σ̃(x+δ)−σ̃(x)
δ ⇒ d

dx σ̃(x) = 1
(−x+1)2

as δ → 0+.825

Thus, for any x ∈ [−M, 0), as δ goes to 0+, we get826

ψδ(x) = (2M+1)2

c Γ
(
ψ1(x), ψ2,δ(x)

)
− 1

c = (2M+1)2

c · ψ1(x) · ψ2,δ(x)− 1
c

⇒ (2M+1)2

c · (2x+1)2

(2M+1)2
· 1
(−x+1)2

− 1
c = (2x+1)2−1

c(−x+1)2
.

827

For all x ∈ [−M, 0), we have c(−x+ 1)2 ≥ 1, implying (2x+1)2−1
c(−x+1)2

≥ −1
c(−x+1)2

≥ −1 and828

(2x+1)2−1
c(−x+1)2

≤ (2|x|+1)2−1
c(−x+1)2

≤ (2|x|+ 1)2 − 1 = 4(|x|+ 1/2)2 − 1

≤ 4(M + 1)2 − 1 = 4M̃ − 1.
829

That is, (2x+1)2−1
c(−x+1)2

∈ [−1, 4M̃ − 1] for all x ∈ [−M, 0), implying ψδ(x) ∈ [−4M̃, 4M̃ ]830

for any small δ > 0.831

Hence, for any x ∈ [η0,M ], we have 1− g(x) = 0, implying832

φδ(x) = ψδ(x) · gδ(x) + σ̃(x) ·
(
1− gδ(x)

)
⇒ σ(x) · g(x) + 0 = σ(x) as δ → 0+.833

Similarly, for any x ∈ [−M, 0], we have g(x) = 0, implying834

φδ(x) = ψδ(x) · gδ(x) + σ̃(x) ·
(
1− gδ(x)

)
⇒ 0 + σ̃(x) ·

(
1− g(x)

)
= σ(x) as δ → 0+.835

Therefore, there exists a small δ0 > 0 such that836

|φδ0(x)− σ(x)| < ε for any x ∈ [−M, 0]
⋃

[η0,M ],837

‖gδ0‖L∞([0,η0]) ≤ 2, ‖1− gδ0‖L∞([0,η0]) ≤ 2, and838

‖ψδ0‖L∞([0,η0]) ≤ ‖σ‖L∞([0,η0]) + ε/12,839

where the above inequality comes from the fact ψδ(x) uniformly converges to σ(x) for any840

x ∈ [0, η0] ⊆ [0,M ].841
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Clearly, for any x ∈ [0, η0], by Equation (8), we have842

|φδ0(x)− σ(x)| ≤ |φδ0(x)|+ |σ(x)| <
∣∣∣ψδ0(x) · gδ0(x) + σ̃(x) ·

(
1− gδ0(x)

)∣∣∣+ ε/6

≤
∣∣ψδ0(x)

∣∣ ·
∣∣gδ0(x)

∣∣+
∣∣σ̃(x)

∣∣ ·
∣∣1− gδ0(x)

∣∣+ ε/6

≤
(
‖σ‖L∞([0,η0]) +

ε

12

)
· 2 +

ε

6
· 2 +

ε

6

≤
(ε

6
+

ε

12

)
· 2 +

ε

6
· 2 +

ε

6
= ε.

843

By setting φ = φδ0 , we have φ = φδ0 ∈ H̃ (50, 6) and844

|φ(x)− σ(x)| = |φδ0(x)− σ(x)| < ε for any x ∈ [−M,M ].845

So we finish the proof.846

4.3 Proof of Lemma 9847

Let the activation function be applied to a vector elementwisely. Then φ% can be represented848

in a form of function compositions as follows:849

φ%(x) = LL ◦ % ◦LL−1 ◦ · · · ◦ % ◦L1 ◦ % ◦L0(x) for any x ∈ Rd,850

where N0 = d, N1, N2, · · ·, NL ∈ N+, NL+1 = 1, A` ∈ RN`+1×N` and b` ∈ RN`+1 are the851

weight matrix and the bias vector in the `-th affine linear transform L` : y 7→ A`y + b` for852

each ` ∈ {0, 1, · · ·, L}. Define853

φ%δ(x) := LL ◦ %δ ◦LL−1 ◦ · · · ◦ %δ ◦L1 ◦ %δ ◦L0(x) for any x ∈ Rd.854

Recall that %δ can be realized by a %̃-activated network with width Ñ and depth L̃. Thus,855

φ%δ can be realized by a %̃-activated network with width N · Ñ and depth L · L̃. We will856

prove857

φ%δ(x) ⇒ φ%(x) as δ → 0+ for any x ∈ [a, b]d.858

For any x ∈ Rd and each ` ∈ {1, 2, · · ·, L+ 1}, define859

h`(x) := L`−1 ◦ % ◦L`−2 ◦ · · · ◦ % ◦L1 ◦ % ◦L0(x)860

and861

h`,δ(x) := L`−1 ◦ %δ ◦L`−2 ◦ · · · ◦ %δ ◦L1 ◦ %δ ◦L0(x).862

Note that h` and h`,δ are two maps from Rd to RN` for each `.863

We will prove by induction that864

h`,δ(x) ⇒ h`(x) as δ → 0+ (9)865

for any x ∈ [a, b]d and each ` ∈ {1, 2, · · ·, L+ 1}.866

First, we consider the case ` = 1. Clearly,867

h1,δ(x) = L0(x) = h1(x) as δ → 0+ for any x ∈ [a, b]d.868
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This means Equation (9) holds for ` = 1.869

Next, suppose Equation (9) holds for ` = i ∈ {1, 2, · · ·, L}. Our goal is to prove that it870

also holds for ` = i+ 1. Determine M > 0 by defining871

M := sup
{
‖hj(x)‖∞ + 1 : x ∈ [a, b]d, j = 1, 2, · · ·, L+ 1

}
,872

where the continuity of % guarantees the above supremum is finite, i.e., M ∈ (1,∞). By873

the induction hypothesis, we have874

hi,δ(x) ⇒ hi(x) as δ → 0+ for any x ∈ [a, b]d.875

Clearly, for any x ∈ [a, b]d, we have ‖hi(x)‖∞ ≤ M and ‖hi,δ(x)‖∞ ≤ ‖hi(x)‖∞ + 1 ≤ M876

for any small δ > 0.877

Recall the fact %δ(t) ⇒ %(t) as δ → 0+ for any t ∈ [−M,M ]. Then, we have878

%δ ◦ hi,δ(x)− % ◦ hi,δ(x) ⇒ 0 as δ → 0+ for any x ∈ [a, b]d.879

The continuity of % implies the uniform continuity of % on [−M,M ], from which we deduce880

% ◦ hi,δ(x)− % ◦ hi(x) ⇒ 0 as δ → 0+ for any x ∈ [a, b]d.881

Therefore, for any x ∈ [a, b]d, as δ → 0+, we have882

%δ ◦ hi,δ(x)− % ◦ hi(x) = %δ ◦ hi,δ(x)− % ◦ hi,δ(x)︸ ︷︷ ︸
⇒0

+ % ◦ hi,δ(x)− % ◦ hi(x)︸ ︷︷ ︸
⇒0

⇒ 0,883

implying884

hi+1,δ(x) = Li ◦ %δ ◦ hi,δ(x) ⇒ Li ◦ % ◦ hi(x) = hi+1(x).885

This means Equation (9) holds for ` = i+ 1. So we complete the inductive step.886

By the principle of induction, we have887

φ%δ(x) = hL+1,δ(x) ⇒ hL+1(x) = φ%(x) as δ → 0+ for any x ∈ [a, b]d.888

There exists a small δ0 > 0 such that889

∣∣φ%δ0 (x)− φ%(x)
∣∣ < ε/2 for any x ∈ [a, b]d.890

By defining φ := φ%δ0 , we have891

∣∣φ(x)− f(x)
∣∣ ≤

∣∣φ%δ0 (x)− φ%(x)
∣∣+
∣∣φ%(x)− f(x)

∣∣ < ε/2 + ε/2 = ε892

for any x ∈ [a, b]d. Moreover, φ = φ%δ0 can be generated by a %̃-activated network with893

width N · Ñ and depth L · L̃. So we finish the proof.894

5. Detailed Proofs of Theorems 1 and 4895

In this section, we will give the detailed proofs of Theorems 1 and 4. First, we prove The-896

orem 1 based on Theorem 6, which will be proved in Section 6. Next, we apply Theorem 1897

to prove Theorem 4.898
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5.1 Proof of Theorem 1899

The detailed proof of Theorem 1 converts the above ideas mentioned in Section 2.2 to900

implementations using neural networks with fixed sizes. The whole construction procedure901

can be divided into three steps.902

(1) Apply KST to reduce dimension, i.e., represent f ∈ C([a, b]d) by the compositions and903

combinations of univariate continuous functions.904

(2) Apply Theorem 6 to design sub-networks to approximate the univariate continuous905

functions in the previous step within the desired error.906

(3) Integrate the sub-networks to form the final network and estimate its size.907

The details of these three steps can be found below.908

Step 1: Apply KST to reduce dimension.909

To apply KST, we define a linear function L1(t) = (b−a)t+a for any t ∈ [0, 1]. Clearly,910

L1 is a bijection from [0, 1] to [a, b]. Define911

f̃(y) := f
(
L1(y1),L1(y2), · · ·,L1(yd)

)
for any y = [y1, y2, · · ·, yd]T ∈ [0, 1]d.912

Then, f̃ : [0, 1]d → R is a continuous function since f ∈ C([a, b]d). By Theorem 8, there913

exists h̃i,j ∈ C([0, 1]) and g̃i ∈ C(R) for i = 0, 1, · · ·, 2d and j = 1, 2, · · ·, d such that914

f̃(y) =
2d∑

i=0

g̃i

( d∑

j=1

h̃i,j(yj)
)

for any y = [y1, y2, · · ·, yd]T ∈ [0, 1]d.915

Let L̃1 be the inverse of L1, i.e., L̃1(t) = (t − a)/(b − a) for any t ∈ [a, b]. Then, for any916

xj ∈ [a, b], there exists a unique yj ∈ [0, 1] such that L1(yj) = xj and yj = L̃1(xj) for any917

j = 1, 2, · · ·, d, which implies918

f(x) = f(x1, x2, · · ·, xd) = f
(
L1(y1),L1(y2), · · ·,L1(yd)

)
= f̃(y)

=
2d∑

i=0

g̃i

( d∑

j=1

h̃i,j(yj)
)

=
2d∑

i=0

g̃i

( d∑

j=1

h̃i,j
(
L̃1(xj)

))
=

2d∑

i=0

g̃i

( d∑

j=1

h̃i,j ◦ L̃1(xj)
)
.

919

It follows that920

f(x) =

2d∑

i=0

g̃i

( d∑

j=1

h̃i,j ◦ L̃1(xj)
)

=

2d∑

i=0

g̃i ◦ ĥi(x) for any x ∈ [a, b]d,921

where922

ĥi(x) =

d∑

j=1

h̃i,j ◦ L̃1(xj) for any x = [x1, x2, · · ·, xd]T ∈ [a, b]d. (10)923

Set924

M = max
i∈{0,1,···,2d}

‖ĥi‖L∞([a,b]d) + 1 > 0.925
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Define L2(t) = (t + 2M)/4M and L̃2(t) = 4Mt − 2M for any t ∈ R. Then, L2 is a926

bijection from [−M,M ] to [14 ,
3
4 ] and L̃2 is the inverse of L2. Clearly, L̃2 ◦ L2(t) = t for any927

t ∈ [−M,M ], which implies ĥi(x) = L̃2 ◦ L2 ◦ ĥi(x) for any x ∈ [a, b]d. Therefore, for any928

x ∈ [a, b]d, we have929

f(x) =
2d∑

i=0

g̃i ◦ ĥi(x) =
2d∑

i=0

g̃i ◦ L̃2 ◦ L2 ◦ ĥi(x) =
2d∑

i=0

gi ◦ hi(x),930

where931

gi = g̃i ◦ L̃2 and hi = L2 ◦ ĥi for i = 0, 1, · · ·, 2d. (11)932

Clearly, L2(t) ∈ [14 ,
3
4 ] for any t ∈ [−M,M ], which implies933

hi(x) = L2 ◦ ĥi(x) ∈ [14 ,
3
4 ] for any x ∈ [a, b]d and i = 0, 1, · · ·, 2d.934

Step 2: Design sub-networks to approximate gi and hi.935

Next, we will construct sub-networks to approximate gi and hi for each i. Obviously,936

gi = g̃i ◦ L̃2 is continuous on R and hence uniformly continuous on [0, 1] for each i. Thus,937

for i = 0, 1, · · ·, 2d, there exists δi > 0 such that938

|gi(z1)− gi(z2)| < ε/(4d+ 2) for any z1, z2 ∈ [0, 1] with |z1 − z2| < δi.939

Set δ = min
(
{δi : i = 0, 1, · · ·, 2d}⋃{14}

)
. Then, for i = 0, 1, · · ·, 2d, we have940

|gi(z1)− gi(z2)| < ε/(4d+ 2) for any z1, z2 ∈ [0, 1] with |z1 − z2| < δ. (12)941

For each i ∈ {0, 1, · · ·, 2d}, by Theorem 6, there exists a function φi generated by an942

EUAF network with width 36 and depth 5 such that943

|gi(z)− φi(z)| < ε/(4d+ 2) for any z ∈ [0, 1]. (13)944

Fix i ∈ {0, 1, · · ·, 2d}, we will design an EUAF network to generate a function ψi :945

[a, b]d → R satisfying946

|hi(x)− ψi(x)| < δ for any x ∈ [a, b]d.947

For any x = [x1, x2, · · ·, xd]T ∈ [a, b]d, by Equations (10) and (11), we have948

hi(x) = L2 ◦ ĥi(x) = L2
( d∑

j=1

h̃i,j ◦ L̃1(xj)
)

=

(∑d
j=1 h̃i,j ◦ L̃1(xj)

)
+ 2M

4M

=

d∑

j=1

( h̃i,j ◦ L̃1(xj)
4M

+
1

2d

)
=

d∑

j=1

hi,j(xj),

949

where950

hi,j(t) :=
h̃i,j ◦ L̃1(t)

4M
+

1

2d
for any t ∈ [a, b], i = 0, 1, · · ·, 2d, and j = 1, 2, · · ·, d.951
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It is easy to verify that hi,j ∈ C([a, b]d) each i ∈ {0, 1, · · ·, 2d} and each j ∈ {1, 2, · · ·, d},952

from which we deduce by Theorem 6 that there exists a function ψi,j generated by an EUAF953

network with width 36 and depth 5 such that954

|hi,j(t)− ψi,j(t)| < δ/d for any t ∈ [a, b].955

For each i ∈ {0, 1, · · ·, 2d}, we define956

ψi(x) :=
d∑

j=1

ψi,j(xj) for any x = [x1, x2, · · ·, xd]T ∈ [a, b]d.957

Then, for any x = [x1, x2, · · ·, xd]T ∈ [a, b]d and each i ∈ {0, 1, · · ·, 2d}, we have958

|hi(x)− ψi(x)| =
∣∣∣

d∑

j=1

hi,j(xj)−
d∑

j=1

ψi,j(xj)
∣∣∣ =

d∑

j=1

∣∣∣hi,j(xj)− ψi,j(xj)
∣∣∣ <

d∑

j=1

δ/d = δ.959

Step 3: Integrate sub-networks.960

Finally, we build an integrated network with the desired size to approximate the target961

function f . The desired function φ can be defined as962

φ(x) :=
2d∑

i=0

φi ◦ ψi(x) =
2d∑

i=0

φi

( d∑

j=1

ψi,j(xj)
)

for any x = [x1, x2, · · ·, xd]T ∈ [a, b]d.963

Let us first estimate the approximation error and then determine the size of the target964

network realizing φ. See Figure 10 for an illustration of the target network realizing φ for965

the case d = 2.966

x1

x2

ψ0,1(x1)

ψ4,1

ψ1,1(x1)

ψ3,1

ψ2,1(x1)ψ2,1

ψ3,1(x1)

ψ1,1

ψ4,1(x1)

ψ0,1

ψ0,2(x2)

ψ0,2
ψ1,2(x2)

ψ1,2

ψ2,2(x2)ψ2,2

ψ3,2(x2)
ψ3,2

ψ4,2(x2)

ψ4,2

2∑

j=1

ψ0,j(xj) = ψ0(x)

2∑

j=1

ψ1,j(xj) = ψ1(x)

2∑

j=1

ψ2,j(xj) = ψ2(x)

2∑

j=1

ψ3,j(xj) = ψ3(x)

2∑

j=1

ψ4,j(xj) = ψ4(x)

ϕ0 ◦ ψ0(x)ϕ0

ϕ1 ◦ ψ1(x)ϕ1

ϕ2 ◦ ψ2(x)ϕ2

ϕ3 ◦ ψ3(x)ϕ3

ϕ4 ◦ ψ4(x)ϕ4

ϕ(x) =
4∑

i=0

ϕi ◦ ψi(x) =
4∑

i=0

ϕi

( 2∑

j=1

ψi,j(xj)
)

Figure 10: An illustration of the target network realizing φ for any x ∈ [a, b]d in the case
of d = 2. This network contains (2d + 1)d + (2d + 1) = (d + 1)(2d + 1) sub-networks that
realize ψi,j and φi for i = 0, 1, · · ·, 2d and j = 1, 2, · · ·, d.

Fix x ∈ [a, b]d and i ∈ {0, 1, · · ·, 2d}. Recall that hi(x) ∈ [14 ,
3
4 ] and967

|hi(x)− ψi(x)| < δ ≤ 1
4 ,968

32



implying ψi(x) ∈ [0, 1]. Then, by Equation (12) (set z1 = hi(x) and z2 = ψi(x) therein),969

we have970 ∣∣∣gi ◦ hi(x)− gi ◦ ψi(x)
∣∣∣ =

∣∣∣gi
(
hi(x)

)
− gi

(
ψi(x)

)∣∣∣ < ε/(4d+ 2).971

By Equation (13) (set z = ψi(x) ∈ [0, 1] therein), we have972

∣∣∣gi ◦ ψi(x)− φi ◦ ψi(x)
∣∣∣ =

∣∣∣gi
(
ψi(x)

)
− φi

(
ψi(x)

)∣∣∣ < ε/(4d+ 2).973

Therefore, for any x ∈ [a, b]d, we have974

∣∣f(x)− φ(x)
∣∣ =

∣∣∣
2d∑

i=0

gi ◦ hi(x)−
2d∑

i=0

φi ◦ ψi(x)
∣∣∣ =

2d∑

i=0

∣∣∣gi ◦ hi(x)− φi ◦ ψi(x)
∣∣∣

≤
2d∑

i=0

(∣∣∣gi ◦ hi(x)− gi ◦ ψi(x)
∣∣∣+
∣∣∣gi ◦ ψi(x)− φi ◦ ψi(x)

∣∣∣
)

<
2d∑

i=0

(
ε/(4d+ 2) + ε/(4d+ 2)

)
= ε.

975

It remains to show φ can be generated by an EUAF network with the desired size. Recall976

that, for each i ∈ {0, 1, · · ·, 2d} and each j ∈ {1, 2, · · ·, d}, ψi,j can be generated by an EUAF977

network with width 36, depth 5, and therefore at most978

(1× 36 + 36) + (36× 36 + 36)× 4 + (36× 1 + 1) = 5437979

nonzero parameters. Hence, for each i ∈ {0, 1, · · ·, 2d}, ψi, given by ψi(x) =
∑d

j=1 ψi,j(xj),980

can be generated by an EUAF network with width 36d, depth 5, and at most 5437d nonzero981

parameters.982

Since ψi(x) ∈ [0, 1] for any x ∈ [a, b]d and i = 0, 1, · · ·, 2d, we have σ
(
ψi(x)

)
= ψi(x)983

for any x ∈ [a, b]d. Hence, φi ◦ ψi can be generated by an EUAF network as visualized in984

Figure 11.985

x σ
(
ψi(x)

)
= ψi(x) ϕi

(
ψi(x)

)
= ϕi ◦ ψi(x)ψi ϕi

Figure 11: An illustration of the target EUAF network generating φi ◦ ψi(x) for any x ∈
[a, b]d and i = 0, 1, · · ·, 2d.

Recall that φi can be generated by an EUAF network with width 36 and depth 5.986

Hence, the network generating φi has at most 5437 nonzero parameters. As we can see from987

Figure 11, φi ◦ ψi can be generated by an EUAF network with width max{36d, 36} = 36d,988

depth 5 + 1 + 5 = 11, and at most 5437d + 5437 = 5437(d + 1) nonzero parameters. This989

means φ =
∑2d

i=0 φi ◦ ψi can be generated by an EUAF network with width 36d(2d + 1),990

depth 11, and therefore at most 5437(d+ 1)(2d+ 1) nonzero parameters as desired. So we991

finish the proof.992
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5.2 Proof of Theorem 4993

The proof of Theorem 4 relies on a basic result of real analysis given in the following lemma.994

Lemma 13. Suppose A,B ⊆ Rd are two disjoint bounded closed sets. Then, there exists995

a continuous function f ∈ C(Rd) such that f(x) = 1 for any x ∈ A and f(y) = 0 for any996

y ∈ B.997

Proof. Define dist(x, A) = inf{‖x − y‖2 : y ∈ A} and dist(x, B) = inf{‖x − y‖2 : y ∈ B}998

for any x ∈ Rd. It is easy to verify that dist(x, A) and dist(x, B) are continuous in x ∈ Rd.999

Since A,B ∈ Rd are two disjoint bounded closed subsets, we have dist(x, A)+dist(x, B) > 01000

for any x ∈ Rd. Finally, define1001

f(x) :=
dist(x, B)

dist(x, A) + dist(x, B)
for any x ∈ Rd.1002

Then f meets the requirements. So we finish the proof.1003

With Lemma 13, we can prove Theorem 4.1004

Proof of Theorem 4. For any f =
∑J

j=1 rj ·1Ej ∈ Cd(E1, E2, · · ·, EJ), our goal is to construct1005

a function φ generated by a σ-activated network such that φ(x) = f(x) for any x ∈1006 ⋃J
j=1Ej , where E1, E2, · · ·, EJ are pairwise disjoint bounded closed subsets of Rd. Define1007

E :=
⋃J
j=1Ej and choose a, b ∈ R properly such that E ⊆ [a, b]d.1008

For each j ∈ {1, 2, · · ·, J}, Ej and Ẽj := E
∖
Ej are two disjoint bounded closed subsets.1009

Then, for each j, by Lemma 13, there exists gj ∈ C(Rd) such that gj(x) = 1 for any x ∈ Ej1010

and gj(y) = 0 for any y ∈ Ẽj = E\Ej . By defining g :=
∑J

j=1 rj · gj ∈ C(Rd), we have1011

g(x) =
∑J

j=1 rj · 1Ej (x) = f(x) for any x ∈ E =
⋃J
j=1Ej .1012

Since r1, r2, · · ·, rJ are rational numbers and g : [a, b]d → R is continuous, there exist1013

n1, n2 ∈ Z\{0} such that1014

• n1 · rj + n2 ∈ N+ for j = 1, 2, · · ·, J ;1015

• n1 · g(x) + n2 ≥ 0 for any x ∈ [a, b]d.1016

By applying Theorem 1 to 2(n1 · g + n2) + 1 ∈ C([a, b]d), there exists a function φ11017

generated by an EUAF network with width 36d(2d + 1), depth 11, and at most 5437(d +1018

1)(2d+ 1) nonzero parameters such that1019

∣∣∣2
(
n1 · g(x) + n2

)
+ 1− φ1(x)

∣∣∣ ≤ 1/2 for any x ∈ [a, b]d. (14)1020

It follows that1021

∣∣∣2
(
n1 ·

J∑

j=1

rj · 1Ej (x) + n2
)

+ 1− φ1(x)
∣∣∣ ≤ 1/2 for any x ∈ E =

J⋃

j=1

Ej .1022

Since E1, E2, · · ·, EJ are pairwise disjoint, we have1023

∣∣∣2(n1 · rj + n2) + 1− φ1(x)
∣∣∣ ≤ 1/2 for any x ∈ Ej and each j ∈ {1, 2, · · ·, J}. (15)1024
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Figure 12: An illustration of φ2 on [0, 10].

Define φ2(x) = x+ 1/2− σ(x+ 3/2) for any x ∈ R. See Figure 12 for an illustration.1025

It is easy to verify that1026

φ2(y) = 2k + 1 for any y and k ∈ N+ with |2k + 1− y| ≤ 1/2. (16)1027

Then, by Equations (15) and (16) (set y = φ1(x) and k = n1 · rj + n2 therein), we have1028

φ2 ◦ φ1(x) = φ2(y) = 2k + 1 = 2(n1 · rj + n2) + 11029

for any x ∈ Ej and any j ∈ {1, 2, · · ·, J}, which implies1030

φ2 ◦ φ1(x)− 2n2 − 1

2n1
= rj for any x ∈ Ej and any j ∈ {1, 2, · · ·, J}.1031

Define1032

φ(x) :=
φ2 ◦ φ1(x)− 2n2 − 1

2n1
for any x ∈ [a, b]d.1033

Clearly, we have φ(x) = rj for any x ∈ Ej and each j ∈ {1, 2, · · ·, J}, which implies1034

φ(x) =
J∑

j=1

rj · 1Ej (x) = f(x) for any x ∈ E =
J⋃

j=1

Ej .1035

It remains to show that φ can be generated by an EUAF network with the desired size.1036

Set M = 2‖n1g + n2‖L∞([a,b]d) + 3/2 > 0. By Equation (14) and the fact n1 · g(x) + n2 ≥ 01037

for any x ∈ [a, b]d, we have1038

φ1(x) ∈
[
1/2, 2‖n1g + n2‖L∞([a,b]d) + 1 + 1/2

]
⊆ [0,M ] for any x ∈ [a, b]d.1039

Then, for any x ∈ [a, b]d, we have1040

φ2 ◦ φ1(x) = φ1(x) + 1/2− σ
(
φ1(x) + 3/2

)

= Mσ
(
φ1(x)/M

)
+ 1/2− σ

(
φ1(x) + 3/2

)
.

1041

It follows that1042

φ(x) =
φ2 ◦ φ1(x)− 2n2 − 1

2n1
=
Mσ

(
φ1(x)/M

)
− σ

(
φ1(x) + 3/2

)
− 2n2 − 1/2

2n1
,1043
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for any x ∈ [a, b]d. That means the network realizing φ has just one more hidden layer with1044

2 neurons, compared to the network realizing φ1. Recall that φ1 can be generated by an1045

EUAF network with width 36d(2d+ 1), depth 11, and at most 5437(d+ 1)(2d+ 1) nonzero1046

parameters. Therefore, φ, limited on [a, b]d, can be generated by an EUAF network with1047

width 36d(2d+ 1), depth 12, and at most1048

5437(d+ 1)(2d+ 1) + 2× 36d(2d+ 1) + 2 + 2× 1 + 1︸ ︷︷ ︸
all possible new parameters

≤ 5509(d+ 1)(2d+ 1)1049

nonzero parameters. So we finish the proof.1050

6. Proof of Theorem 61051

To prove Theorem 6, we need to introduce two auxiliary theorems, Theorems 14 and 15,1052

which serve as two important intermediate steps.1053

Theorem 14. Let f ∈ C([0, 1]) be a continuous function. Given any ε > 0, if K is a1054

positive integer satisfying1055

|f(x1)− f(x2)| < ε/2 for any x1, x2 ∈ [0, 1] with |x1 − x2| < 1/K, (17)1056

then there exists a function φ generated by an EUAF network with width 2 and depth 3 such1057

that ‖φ‖L∞([0,1]) ≤ ‖f‖L∞([0,1]) + 1 and1058

|φ(x)− f(x)| < ε for any x ∈
K−1⋃

k=0

[
2k
2K ,

2k+1
2K

]
.1059

Theorem 15. Let f ∈ C([0, 1]) be a continuous function. Then, for any ε > 0, there exists1060

a function φ generated by an EUAF network with width 36 and depth 5 such that1061

|φ(x)− f(x)| < ε for any x ∈ [0, 9
10 ].1062

To prove Theorem 14, we only need to care about the approximation on one “half” of1063

[0, 1]. It is not necessary to care about the approximation on the other “half” of [0, 1]. Such1064

an idea is similar to the “trifling region” in (Lu et al., 2021; Zhang, 2020). As we shall1065

see later, the proof of Theorem 14 can eventually be converted to a point-fitting problem,1066

which can be solved by applying Proposition 7.1067

The key idea to prove Theorem 15 is to apply Theorem 14 to several horizontally shifted1068

variants of the target function. Then a good approximation can be constructed via the1069

combinations and multiplications of these variants, similar to the idea of (Lu et al., 2021;1070

Zhang, 2020) to obtain an error estimation with the L∞-norm from a result with the Lp-1071

norm for p ∈ [1,∞).1072

The proofs of Theorems 14 and 15 will be presented in Sections 6.1 and 6.2, respectively.1073

Let us first prove Theorem 6 by assuming Theorem 15 is true.1074

Proof of Theorem 6. Define a linear function L by L(x) = a + 10(b−a)
9 x for any x ∈ [0, 9

10 ].1075

Then L is a bijection from [0, 9
10 ] to [a, b]. It follows that f ◦ L is a continuous function1076
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on [0, 9
10 ]. By Theorem 15, there exists a function φ̃ generated by an EUAF network with1077

width 36 and depth 5 such that1078

|f ◦ L(x)− φ̃(x)| < ε for any x ∈ [0, 9
10 ].1079

Define L̃(y) = 9(y−a)
10(b−a) for any y ∈ [a, b]. Clearly, it is the inverse of L, i.e., L ◦ L̃(y) = y1080

for any y ∈ [a, b]. Therefore, for any y ∈ [a, b], we have x = L̃(y) ∈ [0, 9
10 ], which implies1081

|f(y)− φ̃ ◦ L̃(y)| =
∣∣f ◦ L ◦ L̃(y)− φ̃ ◦ L̃(y)

∣∣

=
∣∣∣f ◦ L

(
L̃(y)

)
− φ̃

(
L̃(y)

)∣∣∣ = |f ◦ L(x)− φ̃(x)| < ε.
1082

By defining φ := φ̃ ◦ L̃, we have |f(y)− φ(y)| < ε for any y ∈ [a, b] as desired.1083

Note that φ̃ can be realized by an EUAF network with width 36 and depth 5. We can1084

compose L̃ and the affine linear map of the network φ̃ that connects the input layer and1085

the first hidden layer. Therefore, φ = φ̃ ◦ L̃ can also be realized by an EUAF network with1086

width 36 and depth 5. So we finish the proof.1087

6.1 Proof of Theorem 141088

Partition [0, 1] into 2K small intervals Ik and Ĩk for k = 1, 2, · · ·,K, i.e.,1089

Ik =
[
2k−2
2K , 2k−12K

]
and Ĩk =

[
2k−1
2K , 2k

2K

]
.1090

Clearly, [0, 1] =
⋃K
k=1(Ik ∪ Ĩk). Let xk be the right endpoint of Ik, i.e., xk = 2k−1

2K for1091

k = 1, 2, · · ·,K. See an illustration of Ik, Ĩk, and xk in Figure 13 for the case K = 5.1092

0.0 0.2 0.4 0.6 0.8 1.0

Ĩ1I1

x1

Ĩ2I2

x2

Ĩ3I3

x3

Ĩ4I4

x4

Ĩ5I5

x5

xk for k ∈ {1, 2, 3, 4, 5} Ik for k ∈ {1, 2, 3, 4, 5} Ĩk for k ∈ {1, 2, 3, 4, 5}

Figure 13: An illustration of Ik and Ĩk for k ∈ {1, 2, · · ·,K} with K = 5.

Our goal is to construct a function φ generated by an EUAF network with the desired1093

size to approximate f well on Ik for k = 1, 2, · · ·,K. It is not necessary to care about the1094

values of φ on Ĩk for all k. In other words, we only need to care about the approximation1095

on one “half” of [0, 1], which is the key for our proof.1096

Define ψ(x) := x−σ(x) for any x ∈ R, where σ is defined in Equation (1). See Figure 141097

for an illustration of ψ.1098

It is easy to verify that1099

ψ(y) = 2k − 2 for any y ∈ [2k − 2, 2k − 1] and each k ∈ {1, 2, · · ·,K}.1100

It follows that1101

ψ(2Kx)/2 + 1 = k for any x ∈ [2k−22K , 2k−12K ] = Ik and each k ∈ {1, 2, · · ·,K}. (18)1102
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Figure 14: An illustration of ψ on [0, 10].

Recall that xk is the right endpoint of Ik for k = 1, 2, · · ·,K. Set M = ‖f‖L∞([0,1]) + 11103

and define1104

ξk := f(xk)+M
2M ∈ [0, 1] for k = 1, 2, · · ·,K.1105

Then [ξ1, ξ2, · · ·, ξK ]T is in [0, 1]K . By Proposition 7, there exists w0 ∈ R such that1106

∣∣σ1( w0
π+k )− ξk

∣∣ < ε/(4M) for k = 1, 2, · · ·,K.1107

Let m0 be an integer larger than |w0|, e.g., set m0 = b|w0|c+ 1. It is easy to verify that1108

w0
π+k + 2m0 ≥ 0 for any x ∈ [0, 1].1109

Since σ(x) = σ1(x) for any x ≥ 0 and σ1 is periodic with period 2, we have1110

∣∣σ( w0
π+k + 2m0)− ξk

∣∣ =
∣∣σ1( w0

π+k + 2m0)− ξk
∣∣ =

∣∣σ1( w0
π+k )− ξk

∣∣ < ε/(4M),1111

for k = 1, 2, · · ·,K. It follows that1112

∣∣∣2Mσ( w0
π+k + 2m0)−M − f(xk)

∣∣∣ =
∣∣∣2Mσ( w0

π+k + 2m0)−M − (2Mξk −M)
∣∣∣

= 2M
∣∣σ( w0

π+k + 2m0)− ξk
∣∣ < 2M · ε

4M = ε/2,
(19)1113

for k = 1, 2, · · ·,K.1114

The desired φ is defined as1115

φ(x) := 2Mσ
(

w0
π+ψ(2Kx)/2+1 + 2m0

)
−M for any x ∈ [0, 1].1116

Recall that m0 ≥ |w0| and ψ(x) ≥ 0 for any x ≥ 0, which implies1117

w0
π+ψ(2Kx)/2+1 + 2m0 ≥ 0 for any x ∈ [0, 1].1118

It follows that ‖φ‖L∞([0,1]) ≤M = ‖f‖L∞([0,1]) + 1 since 0 ≤ σ(y) ≤ 1 for any y ≥ 0.1119

For any x ∈ Ik and each k ∈ {1, 2, · · ·,K}, by Equation (18), we have ψ(2Kx)/2+1 = k,1120

which implies1121

φ(x) = 2Mσ
(

w0
π+ψ(2Kx)/2+1 + 2m0

)
−M = 2Mσ

(
w0
π+k + 2m0

)
−M.1122

Clearly, for any x ∈ Ik and each k ∈ {1, 2, · · ·,K}, we have |xk − x| < 1/K. Then, by1123

Equation (17), we get1124

|f(xk)− f(x)| < ε/2 for any x ∈ Ik and each k ∈ {1, 2, · · ·,K}.1125
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Therefore, by Equation (19), we have1126

|φ(x)− f(x)| =
∣∣∣2Mσ

(
w0
π+k + 2m0

)
−M − f(x)

∣∣∣

≤
∣∣∣2Mσ

(
w0
π+k + 2m0

)
−M − f(xk)

∣∣∣+
∣∣f(xk)− f(x)

∣∣ < ε/2 + ε/2 = ε
1127

for any x ∈ Ik and each k ∈ {1, 2, · · ·,K}. It follows that1128

|φ(x)− f(x)| < ε for any x ∈
K⋃

j=1

Ij =
K⋃

j=1

[2j−2
2K , 2j−12K

]
=

K−1⋃

k=0

[
2k
2K ,

2k+1
2K

]
.1129

It remains to show that φ can be generated by an EUAF network with the desired size.1130

Observe that1131

σ(y) + 1 =
y

|y|+ 1
+ 1 =

y

−y + 1
+ 1 =

1

−y + 1
for any y ≤ 0.1132

By setting y = −π − ψ(2Kx)/2 ≤ 0 for any x ∈ [0, 1], we have1133

1

π + ψ(2Kx)/2 + 1
=

1

−y + 1
= σ(y) + 1 = σ

(
− π − ψ(2Kx)/2

)
+ 1

= σ
(
− π −

(
2Kx− σ(2Kx)

)
/2
)

+ 1

= σ
(
− π −Kx+ σ(2Kx)/2

)
+ 1,

1134

where the second-to-last equality comes from ψ(z) = z− σ(z) for any z ∈ R. Therefore, we1135

get1136

φ(x) = 2Mσ
(

w0
π+ψ(2Kx)/2+1 + 2m0

)
−M

= 2Mσ
(
w0σ

(
− π −Kx+ σ(2Kx)/2

)
+ w0 + 2m0

)
−M.

(20)1137

x

σ(2Kx)

σ(x) = x

σ
(
− π −Kx+ σ(2Kx)/2

)
σ

(
w0σ

(
− π −Kx+ σ(2Kx)/2

)
+ w0 + 2m0

)
2Mσ

(
w0σ

(
− π −Kx+ σ(2Kx)/2

)
+ w0 + 2m0

)
−M = ϕ(x)

Figure 15: An illustration of the target EUAF network realizing φ(x) for x ∈ [0, 1] based
on Equation (20).

Thus, the desired EUAF network realizing φ is shown in Figure 15. Clearly, the network1138

in Figure 15 has width 2 and depth 3 as desired. It is easy to verify that the network1139

architecture corresponding φ is independent of the target function f and the desired error1140

ε. That is, we can fix the architecture and only adjust parameters to achieve the desired1141

approximation error. So we finish the proof.1142
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6.2 Proof of Theorem 151143

The key idea of proving Theorem 15 is to apply Theorem 14 to several horizontally shifted1144

variants of the target function. Then a good approximation can be expected via combina-1145

tions and multiplications of these variants. Thus, we need to reproduce f(x, y) = xy locally1146

via an EUAF network as shown in the following lemma.1147

Lemma 16. For any M > 0, there exists a function φ generated by an EUAF network with1148

width 9 and depth 2 such that1149

φ(x, y) = xy for any x, y ∈ [−M,M ].1150

The proof of this lemma is given in Section 6.3. Now let us first prove Theorem 15 by1151

assuming this lemma is true.1152

Proof of Theorem 15. Set ε̃ = ε/4 and extend f from [0, 1] to [−1, 1] by defining f(x) = f(0)1153

for any x ∈ [−1, 0). Then f is continuous on [−1, 1] and therefore uniformly continuous.1154

Thus, there exists K = K(f, ε) ∈ N+ with K ≥ 10 such that1155

|f(x1)− f(x2)| < ε̃/2 for any x1, x2 ∈ [−1, 1] with |x1 − x2| < 1/K.1156

For i = 1, 2, 3, 4, define1157

fi(x) := f
(
x− i

4K

)
for any x ∈ [0, 1].1158

For each i ∈ {1, 2, 3, 4} and any x1, x2 ∈ [0, 1] with |x1 − x2| < 1/K, we have x1 −1159
i

4K , x2 − i
4K ∈ [−1, 1] and

∣∣(x1 − i
4K )− (x2 − i

4K )
∣∣ = |x1 − x2| < 1/K, which implies1160

|fi(x1)− fi(x2)| =
∣∣f(x1 − i

4K )− f(x2 − i
4K )

∣∣ < ε̃/2.1161

That is, for i = 1, 2, 3, 4, we have1162

|fi(x1)− fi(x2)| < ε̃/2 for any x1, x2 ∈ [0, 1] with |x1 − x2| < 1/K,1163

which means we can apply Theorem 14 to fi ∈ C([0, 1]). For each i ∈ {1, 2, 3, 4}, by1164

Theorem 14, there exists a function φi generated by an EUAF network with width 2 and1165

depth 3 such that1166

‖φi‖L∞([0,1]) ≤ ‖fi‖L∞([0,1]) + 1 ≤ ‖f‖L∞([−1,1]) + 11167

and1168

∣∣φi(x)− fi(x)
∣∣ < ε̃ = ε/4 for any x ∈

K−1⋃

k=0

[
2k
2K ,

2k+1
2K

]
.1169

Define1170

ψ(x) = σ
(
x+ 1− σ(x+ 1)

)
for any x ∈ R.1171

See an illustration of ψ on [0, 2K] for K = 5 in Figure 16.1172
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Figure 16: An illustration of ψ on [0, 2K] for K = 5.

Clearly, 0 ≤ ψ(2Kx) ≤ 1 for any x ∈ [0, 1], from which we deduce1173

∣∣∣
(
φi(x)− fi(x)

)
ψ(2Kx)

∣∣∣ ≤
∣∣φi(x)− fi(x)

∣∣ < ε/4 for any x ∈
K−1⋃

k=0

[
2k
2K ,

2k+1
2K

]
.1174

Observe that ψ(y) = 0 for y ∈ ⋃K−1
k=0 [2k + 1, 2k + 2], which implies1175

ψ(2Kx) = 0 for any x ∈
K−1⋃

k=0

[2k+1
2K , 2k+2

2K ] ⊇ [0, 1]
∖K−1⋃

k=0

[
2k
2K ,

2k+1
2K

]
.1176

It follows that1177

∣∣∣
(
φi(x)− fi(x)

)
ψ(2Kx)

∣∣∣ < ε/4 for any x ∈ [0, 1] and i = 1, 2, 3, 4. (21)1178

For each i ∈ {1, 2, 3, 4} and any z ∈ [0, 9
10 ] ⊆ [0, 1− 1

K ] ⊆ [0, 1− i
4K ], we have1179

yi = z + i
4K ∈ [ i

4K , 1] ⊆ [0, 1].1180

Therefore, by bringing x = yi ∈ [0, 1] into Equation (21), we have1181

ε/4 >
∣∣∣
(
φi(yi)− fi(yi)

)
ψ(2Kyi)

∣∣∣ =
∣∣∣φi(yi)ψ(2Kyi)− fi(yi)ψ(2Kyi)

∣∣∣

=
∣∣∣φi(z + i

4K )ψ
(
2K(z + i

4K )
)
− fi(z + i

4K )ψ
(
2K(z + i

4K )
)∣∣∣

=
∣∣∣φi(z + i

4K )ψ
(
2Kz + i

2

)
− f(z)ψ

(
2Kz + i

2

)∣∣∣

(22)1182

for any z ∈ [0, 9
10 ], where the last equality comes from the fact that fi(x) = f(x − i

4K ) for1183

any x ∈ [0, 1] ⊇ [ i
4K , 1]. The desired φ is defined as1184

φ(x) :=
4∑

i=1

φi(x+ i
4K )ψ

(
2Kx+ i

2

)
for any x ∈ [0, 9

10 ].1185

It is easy to verify that
∑4

i=1 ψ
(
x+ i

2

)
= 1 for any x ≥ 0 based on the definition of ψ.1186

See Figure 17 for illustrations. It follows that
∑4

i=1 ψ
(
2Kz + i

2

)
= 1 for any z ∈ [0, 9

10 ].1187
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Figure 17: Illustrations of
∑4

i=1 ψ(x+ i/2) = 1 for any x ∈ [0, 10].

Hence, for any z ∈ [0, 9
10 ], by Equation (22), we have1188

∣∣φ(z)− f(z)
∣∣ =

∣∣∣
4∑

i=1

φi(z + i
4K )ψ

(
2Kz + i

2

)
− f(z)

4∑

i=1

ψ
(
2Kz + i

2

)∣∣∣

≤
4∑

i=1

∣∣∣φi(z + i
4K )ψ

(
2Kz + i

2

)
− f(z)ψ

(
2Kz + i

2

)∣∣∣ < 4 · ε
4

= ε.

1189

That is, |φ(x)− f(x)| < ε for any x ∈ [0, 9
10 ] as desired. It remains to show that φ, limited1190

on [0, 9
10 ], can be generated by an EUAF network with the desired size.1191

Note that x+ 1 = (2K + 1)σ( x+1
2K+1) for any x ∈ [0, 2K], which implies1192

ψ(x) = σ
(
x+ 1− σ(x+ 1)

)
= σ

(
(2K + 1)σ( x+1

2K+1)− σ(x+ 1)
)
.1193

This means ψ, limited on [0, 2K], can be generated by an EUAF network with width 2 and1194

depth 2. Since 0 ≤ 2Kx+ i
2 ≤ 2K 9

10 +2 = 2K( 9
10 + 1

K ) ≤ 2K for any x ∈ [0, 9
10 ], ψ(2K ·+ i

2),1195

limited on [0, 9
10 ], can also be generated by an EUAF network with width 2 and depth 2.1196

Note that φi, limited on [0, 1], can also be generated by an EUAF network with width 21197

and depth 3. Clearly, x+ i
4K ∈ [0, 1] for any x ∈ [0, 9

10 ], and, therefore, φi(·+ i
4K ), limited1198

on [0, 9
10 ], can also be generated by an EUAF network with width 2 and depth 3.1199

Recall that ‖φi‖L∞([0,1]) ≤ ‖f‖L∞([−1,1]) + 1 =: M . Thus, |φi(x + i
4K )| ≤ M and1200

|ψ(2Kx + i
2)| ≤ 1 ≤ M for any x ∈ [0, 9

10 ] and i = 1, 2, 3, 4. By Lemma 16, there exists a1201

function Γ generated by an EUAF network with width 9 and depth 2 such that1202

Γ(x, y) = xy for any x, y ∈ [−M,M ].1203

It follows that1204

Γ
(
φi(x+ i

4K ), ψ
(
2Kx+ i

2

))
= φi(x+ i

4K )ψ
(
2Kx+ i

2

)
for i = 1, 2, 3, 4.1205

Therefore, each component of φ(x), φi(x+ i
4K )ψ

(
2Kx+ i

2

)
for each i ∈ {1, 2, 3, 4}, can1206

be generated by the network in Figure 18 for any x ∈ [0, 9
10 ]. Clearly, such a network has1207

width 9 and depth 6. Since the 4-th hidden layer of the network in Figure 18 uses the1208
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Figure 18: An illustration of the target EUAF network realizing each component of φ(x),
φi(x+ i

4K )ψ
(
2Kx+ i

2

)
, for any x ∈ [0, 9

10 ] and each i ∈ {1, 2, 3, 4}. The networks realizing
φi(· + i

4K ) and ψ
(
2K · + i

2

)
can be placed in parallel since we can manually add a hidden

layers to ψ since σ ◦ ψ
(
2Kx+ i

2

)
= ψ

(
2Kx+ i

2

)
for any x ∈ [0, 9

10 ].

identity map as an activation function for each neuron in this hidden layer, we can reduce1209

the depth by 1 via composing two adjacent affine linear maps to generate a new one. Thus,1210

the network in Figure 18 can be interpreted as an EUAF network with width 9 and depth1211

5.1212

Note that φ is the sum of its four components, namely,1213

φ(x) =
4∑

i=1

φi(x+ i
4K )ψ

(
2Kx+ i

2

)
for any x ∈ [0, 9

10 ].1214

Therefore, φ, limited on [0, 9
10 ], can be generated by an EUAF network with width 9×4 = 361215

and depth 5 as desired. It is easy to verify that the designed network architecture is1216

independent of the target function f and the desired error ε. That is, we can fix the1217

architecture and only adjust parameters to achieve an arbitrarily small approximation error.1218

So we finish the proof.1219

6.3 Proof of Lemma 161220

The key idea of proving Lemma 16 is the polarization identity 2xy = (x + y)2 − x2 − y2.1221

Thus, we need to reproduce x2 locally by an EUAF network as shown in the following1222

lemma.1223

Lemma 17. There exists a function φ generated by an EUAF network with width 3 and1224

depth 2 such that1225

φ(x) = x2 for any x ∈ [−1, 1].1226

Proof. Observe that1227

σ(y) + 1 =
y

|y|+ 1
+ 1 =

y

−y + 1
+ 1 =

1

−y + 1
for any y ≤ 0.1228

For any x ∈ [−1, 1], we have −x− 1 ≤ 0 and −x− 2 ≤ 0, which implies1229

σ(−x− 1)− σ(−x− 2) =
(
σ(−x− 1) + 1

)
−
(
σ(−x− 2) + 1

)

=
1

−(−x− 1) + 1
− 1

−(−x− 2) + 1

=
1

x+ 2
− 1

x+ 3
=

1

(x+ 2)(x+ 3)
.

1230
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It follows from 1− 12
(x+2)(x+3) ≤ 0 for any x ∈ [−1, 1] that1231

σ
(

1− 12

(x+ 2)(x+ 3)

)
+ 1 =

1

−
(
1− 12

(x+2)(x+3)

)
+ 1

=
x2 + 5x+ 6

12
,1232

implying1233

x2 = 12σ
(

1− 12

(x+ 2)(x+ 3)

)
+ 12− (5x+ 6)

= 12σ
(

1− 12
(
σ(−x− 1)− σ(−x− 2)

))
+ 11

6− 5x

11

= 12σ
(

1− 12σ(−x− 1) + 12σ(−x− 2)
)

+ 11σ
(6− 5x

11

)
=: φ(x),

1234

where the equality 6−5x
11 = σ

(
6−5x
11

)
comes from two facts: 6−5x

11 ∈ [0, 1] since x ∈ [−1, 1]1235

and σ(z) = z for any z ∈ [0, 1].1236

x

σ(−x− 1)

σ(−x− 2)

σ(x+1
2 ) = x+1

2

σ
(
1− 12σ(−x− 1) + 12σ(−x− 2)

)

σ
(
− 10

11 · x+1
2 + 1

)
= σ

(
6−5x
11

)

ϕ(x) = 12σ
(
1− 12σ(−x− 1) + 12σ(−x− 2)

)
+ 11σ

(
6−5x
11

)
= x2

Figure 19: An illustration of the target EUAF network realizing φ(x) = x2 for x ∈ [−1, 1].

Then, x2 can be generated by the network shown in Figure 19 for any x ∈ [−1, 1]. The1237

target network has width 3 and depth 2. So we finish the proof.1238

With Lemma 17 at hand, we are ready to prove Lemma 16.1239

Proof of Lemma 16. By Lemma 17, there exists a function φ̃ generated by an EUAF net-1240

work such that φ̃(t) = t2 for any t ∈ [−1, 1]. Then, for any x, y ∈ [−M,M ], we have1241

xy = 2M2
((x+y

2M

)2 −
(
x

2M

)2 −
( y
2M

)2)

= 2M2
(
φ̃
(x+y
2M

)
− φ̃

(
x

2M

)
− φ̃

( y
2M

))
=: φ(x, y).

1242

x

y

x+y
2M

x
2M

y
2M

ϕ̃
(
x+y
2M

)

ϕ̃
(
x

2M

)

ϕ̃
(

y
2M

)

ϕ(x, y) = 2M 2

(
ϕ̃
(
x+y
2M

)
− ϕ̃
(

x
2M

)
− ϕ̃
(

y
2M

))
= xy

ϕ̃

ϕ̃

ϕ̃

1 2 3 4Input Output

Figure 20: An illustration of the target network realizing φ(x) = xy for x, y ∈ [−M,M ].

The target network realizing φ with width 9 and depth 4 is shown in Figure 20. Note1243

that we can reduce the depth by one if the activation function of each neuron in a hidden1244

44



layer is the identity map. In fact, we can eliminate this hidden layer by composing two1245

adjacent affine linear maps to generate a new one. The 1-st and 4-th hidden layers of the1246

network in Figure 20 use the identity map as an activation function for each neuron. Thus,1247

the network in Figure 20 can be interpreted as an EUAF network with width 9 and depth1248

2. So we finish the proof.1249

7. Proof of Proposition 71250

We will prove Proposition 7 in this section. The proof includes two main steps. First,1251

we show how to simply generate a set of rationally independent numbers in Lemma 181252

below. Next, we prove that the target point set via a winding of the generated rationally1253

independent numbers is dense in a hypercube. Such a proof relies on the fact that an1254

irrational winding on the torus is dense (e.g., see Lemma 2 of (Yarotsky, 2021)) as shown1255

in Lemma 19 below.1256

Lemma 18. Given any K ∈ N+, any transcendental number α ∈ R\A, and any pairwise1257

distinct rational numbers r1, r2, · · ·, rK ∈ Q, the set of numbers1258

{
1

α+rk
: k = 1, 2, · · ·,K

}
1259

are rationally independent.1260

Lemma 19. Given any rationally independent numbers a1, a2, · · ·, aK for any K ∈ N+ and1261

an arbitrary periodic function g : R→ R with period T , i.e., g(x+T ) = g(x) for any x ∈ R,1262

assume there exist x1, x2 ∈ R with 0 < x2 − x1 < T such that g is continuous on [x1, x2].1263

Then the following set1264
{[
g(wa1), g(wa2), · · ·, g(waK)

]T
: w ∈ R

}
1265

is dense in [M1,M2]
K , where M1 = min

x∈[x1,x2]
g(x) and M2 = max

x∈[x1,x2]
g(x).1266

The proofs of these two lemmas can be found in Sections 7.1 and 7.2, respectively.1267

With these two lemmas at hand, the proof of Proposition 7 is straightforward. In fact,1268

we can prove a more general result in Proposition 20 below, which implies Proposition 71269

immediately.1270

Proposition 20. Given an arbitrary periodic function g : R → R with period T , i.e.,1271

g(x + T ) = g(x) for any x ∈ R, assume there exist x1, x2 ∈ R with 0 < x2 − x1 < T1272

such that g is continuous on [x1, x2]. Then, for any K ∈ N+, any transcendental number1273

α ∈ R\A, and any pairwise distinct rational numbers r1, r2, · · ·, rK ∈ Q, the following set1274
{[
g( w
α+r1

), g( w
α+r2

), · · ·, g( w
α+rK

)
]T

: w ∈ R
}

1275

is dense in [M1,M2]
K , where M1 = min

x∈[x1,x2]
g(x) and M2 = max

x∈[x1,x2]
g(x). In the case of1276

M1 < M2, the following set1277
{[
u · g( w

α+r1
) + v, u · g( w

α+r2
) + v, · · ·, u · g( w

α+rK
) + v

]T
: u, v, w ∈ R

}
1278

is dense in RK .1279
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Clearly, Proposition 7 is a special case of Proposition 20 with g = σ1, α = π, rk = k for1280

k = 1, 2, · · ·,K. The transcendence of π is well known (e.g., see the Lindemann-Weierstrass1281

Theorem). By setting x1 = 0 and x2 = 1, we have [M1,M2] = [0, 1] and σ1 is continuous1282

on [0, 1], which means that the following set1283

{[
σ1(

w
π+1), σ1(

w
π+2), · · ·, σ1( w

α+K )
]T

: w ∈ R
}

1284

is dense in [0, 1]K as desired.1285

Finally, let us prove Proposition 20 by assuming Lemmas 18 and 19 are true.1286

Proof of Proposition 20. By Lemma 18, the set of numbers1287

{
1

α+rk
: k = 1, 2, · · ·,K

}
1288

are rationally independent. Denote ak = 1
α+rk

for k = 1, 2, · · ·,K. Then, by Lemma 19,1289

{[
g(wa1), g(wa2), · · ·, g(waK)

]T
: w ∈ R

}

=
{[
g( w
α+r1

), g( w
α+r2

), · · ·, g( w
α+rK

)
]T

: w ∈ R
}1290

is dense in [M1,M2]
K .1291

Next, let us consider the case M1 < M2 for the latter result. For any ε > 0 and any1292

x ∈ RK , by setting J = ‖x‖∞ + 1 > 0, we have x+J
2J ∈ [0, 1]K , and hence1293

y := x+J
2J (M2 −M1) +M1 ∈ [M1,M2]

K .1294

By the former result, there exists w0 ∈ R such that1295

∥∥∥y −
[
g( w0
α+r1

), g( w0
α+r2

), · · ·, g( w0
α+rK

)
]T∥∥∥

∞
< M2−M1

2J ε1296

It follows from y = x+J
2J (M2 −M1) +M1 that1297

x = 2J
M2−M1

y + J(M1+M2)
M1−M2

=: u0y + v0,1298

where u0 = 2J
M2−M1

and v0 = J(M1+M2)
M1−M2

. Therefore,1299

∥∥∥∥x−
[
u0g( w0

α+r1
) + v0, u0g( w0

α+r2
) + v0, · · ·, u0g( w0

α+rK
) + v0

]T∥∥∥∥
∞

=

∥∥∥∥u0y + v0 −
[
u0g( w0

α+r1
) + v0, u0g( w0

α+r2
) + v0, · · ·, u0g( w0

α+rK
) + v0

]T∥∥∥∥
∞

< u0
M2−M1

2J ε = 2J
M2−M1

M2−M1
2J ε = ε.

1300

Since ε > 0 and x ∈ RK are arbitrary, the following set1301

{[
u · g( w

α+r1
) + v, u · g( w

α+r2
) + v, · · ·, u · g( w

α+rK
) + v

]T
: u, v, w ∈ R

}
1302

is dense in RK . So we finish the proof.1303
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7.1 Proof of Lemma 181304

Before proving Lemma 18, let us first briefly discuss related concepts. Recall that a com-1305

plex number α is an algebraic number if and only if there exist λ0, λ1, · · ·, λJ ∈ Q with1306 ∑J
j=0 λjα

j = 0. The set of all algebraic numbers is denoted by A. We say a complex num-1307

ber is transcendental if it is not in A. Almost all complex numbers are transcendental1308

since the set A is countable. The best known transcendental numbers are π (the ratio of a1309

circle’s circumference to its diameter) and e (the natural logarithmic base).1310

In order to prove Lemma 18, we need an auxiliary lemma below, characterizing some1311

properties of coefficients of Lagrange basis polynomials. Recall that, for any given pairwise1312

distinct numbers x1, x2, · · ·, xK ∈ R, the Lagrange basis polynomials are1313

pk(x) :=
∏

j∈{1,2,···,K}
j 6=k

x− xj
xk − xj

=
x− x1
xk − x1

· · · x− xk−1
xk − xk−1

x− xk+1

xk − xk+1
· · · x− xK

xk − xK
(23)1314

for k = 1, 2, · · ·,K. They are polynomials of degree ≤ K− 1, which means we can represent1315

each pk by1316

pk(x) =
K∑

j=1

ak,jx
j−1 = ak,1 + ak,2x+ · · ·+ ak,Kx

K−1
1317

for k = 1, 2, · · ·,K and any x ∈ R. Thus, the coefficients of these K Lagrange basis1318

polynomials p1, p2, · · ·, pK form a matrix1319

A = (ai,j) =




a1,1 a1,2 · · · a1,K
a2,1 a2,2 · · · a2,K

...
...

. . .
...

aK,1 aK,2 · · · aK,K


 ∈ RK×K . (24)1320

The lemma below essentially characterizes the linear independence of Lagrange basis1321

polynomials.1322

Lemma 21. With the same setting just above, the matrix A given in Equation (24) is1323

invertible.1324

Proof. For any y = [y1, y2, · · ·, yK ] ∈ RK , by the definition of Lagrange basis polyno-1325

mials pk(x) for k = 1, 2, · · ·,K in Equation (23), p(x) =
∑K

k=1 ykpk(x) is the target in-1326

terpolation polynomial for sample points (x1, y1), (x2, y2), · · ·, (xK , yK). That is, for any1327

` ∈ {1, 2, · · ·,K}, we have1328

y` = p(x`) =
K∑

k=1

ykpk(x`) =
K∑

k=1

yk

K∑

j=1

ak,jx
j−1
`

= [y1, y2, · · ·, yK ] ·




a1,1 a1,2 · · · a1,K
a2,1 a2,2 · · · a2,K

...
...

. . .
...

aK,1 aK,2 · · · aK,K


 ·




x0`
x1`
...

xK−1`


 = yTA




x0`
x1`
...

xK−1`


 .

1329
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It follows that1330

yT = [y1, y2, · · ·, yK ] = yTA




x01 x02 · · · x0K
x11 x12 · · · x1K
...

...
. . .

...

xK−11 xK−12 · · · xK−1K


 .1331

Since y ∈ RK is arbitrary, we have1332

A




x01 x02 · · · x0K
x11 x12 · · · x1K
...

...
. . .

...

xK−11 xK−12 · · · xK−1K


 = IK ,1333

where IK ∈ RK×K is the identity matrix. Recall that x1, x2, · · ·, xK are pairwise distinct,1334

which implies the Vandermonde matrix1335



x01 x02 · · · x0K
x11 x12 · · · x1K
...

...
. . .

...

xK−11 xK−12 · · · xK−1K


1336

is invertible. Thus, A is also invertible. So we complete the proof.1337

With Lemma 21 at hand, we are ready to prove Lemma 18.1338

Proof of Lemma 18. Let xk = −rk ∈ Q for k = 1, 2, · · ·,K and define the Lagrange basis1339

polynomials as1340

pk(x) :=
∏

j∈{1,2,···,K}
j 6=k

x− xj
xk − xj

= wk
∏

j∈{1,2,···,K}
j 6=k

(x− xj),
1341

where1342

wk =
∏

j∈{1,2,···,K}
j 6=k

1

xk − xj
6= 0 for k = 1, 2, · · ·,K.1343

It follows from xk ∈ Q that wk is rational and nonzero, i.e., wk ∈ Q/{0} for any k. Clearly,1344

each pk is a polynomial of degree ≤ K − 1. That means we can represent pk by1345

pk(x) =

K∑

j=1

ak,jx
j−1 = ak,1 + ak,2x+ · · ·+ ak,Kx

K−1
1346

for k = 1, 2, · · ·,K and any x ∈ R, where each coefficient ak,j is rational. Therefore, the1347

coefficients of p1, p2, · · ·, pK form a matrix1348

A = (ai,j) =




a1,1 a1,2 · · · a1,K
a2,1 a2,2 · · · a2,K

...
...

. . .
...

aK,1 aK,2 · · · aK,K


 ∈ QK×K .1349
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Now assume there exist rational numbers λ1, λ2, · · ·, λK ∈ Q such that
∑K

k=1 λk · 1
α+rk

=1350

0. Our goal is to prove λ1 = λ2 = · · · = λK = 0. Clearly, we have1351

0 =
K∑

k=1

λk
α+ rk

=
K∑

k=1

λk
α− xk

︸ ︷︷ ︸
=0

=
K∏

j=1

(α− xj) ·
K∑

k=1

λk
α− xk

︸ ︷︷ ︸
=0

=
K∑

k=1

λk
wk
· wk

∏

j∈{1,2,···,K}
j 6=k

(α− xj)

=

K∑

k=1

λk
wk
· pk(α) =

K∑

k=1

λk
wk

K∑

j=1

ak,jα
j−1 =

K∑

j=1

( K∑

k=1

λk
wk
ak,j

︸ ︷︷ ︸
=0 since α∈R\A

)
· αj−1.

1352

For any k, j ∈ {1, 2, · · ·,K}, we have λk, wk, ak,j ∈ Q, implying
∑K

k=1
λk
wk
ak,j ∈ Q. Since1353

α ∈ R\A is a transcendental number, the coefficients must be 0, i.e.,1354

K∑

k=1

λk
wk
ak,j = 0 for j = 1, 2, · · ·,K.1355

It follows that1356

0 =
[
λ1
w1
, λ2w2

, · · ·, λKwK
]



a1,1 a1,2 · · · a1,K
a2,1 a2,2 · · · a2,K

...
...

. . .
...

aK,1 aK,2 · · · aK,K


 =

[
λ1
w1
, λ2w2

, · · ·, λKwK
]
A.1357

By Lemma 21, A is invertible. Thus,
[
λ1
w1
, λ2w2

, · · ·, λKwK
]

= 0, which implies λ1 = λ2 = · · · =1358

λK = 0. Hence, the set of numbers
{

1
α+rk

: k = 1, 2, · · ·,K
}

are rationally independent,1359

which means we finish the proof.1360

7.2 Proof of Lemma 191361

The proof of Lemma 19 is mainly based on the fact that an irrational winding is dense on1362

the torus (e.g., see Lemma 2 of (Yarotsky, 2021)). For completeness, we establish a lemma1363

below and give its detailed proof.1364

Lemma 22. Given any K ∈ N+ and an arbitrary set of rationally independent numbers1365

{ak : k = 1, 2, · · ·,K} ⊆ R, the following set1366

{ [
τ(wa1), τ(wa2), · · ·, τ(waK)

]T
: w ∈ R

}
⊆ [0, 1)K1367

is dense in [0, 1]K , where τ(x) := x− bxc for any x ∈ R.1368

The proof of Lemma 22 can be found later in this section. Now let us first prove1369

Lemma 19 by assuming Lemma 22 is true.1370

Proof of Lemma 19. Define g̃(x) := g(Tx) for any x ∈ R. Clearly, g̃ is periodic with period1371

1 since g is periodic with period T . The continuity of g on [x1, x2] implies g̃ is continuous1372
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on [x1T ,
x2
T ] and therefore uniformly continuous on [x1T ,

x2
T ]. For any ε > 0, there exists1373

δ ∈ (0, x2−x1T ) such that1374

|g̃(u)− g̃(v)| < ε for any u, v ∈ [x1T ,
x2
T ] with |u− v| < δ. (25)1375

Given any ξ = [ξ1, ξ2, · · ·, ξK ] ∈ [M1,M2]
K , by the extreme value theorem and the1376

intermediate value theorem, there exists z1, z2, · · ·, zK ∈ [x1, x2] such that1377

g(zk) = ξk for any k = 1, 2, · · ·,K. (26)1378

For k = 1, 2, · · ·,K, set yk = zk/T ∈ [x1T ,
x2
T ] and1379

ỹk = yk + δ
2 · 1{yk≤x1T +

δ
2}
− δ

2 · 1{yk≥x2T − δ2}
.1380

Then, for k = 1, 2, · · ·,K, we have1381

ỹk = yk + δ
2 · 1{yk≤x1T +

δ
2}
− δ

2 · 1{yk≥x2T − δ2}
∈
[
x1
T + δ

2 ,
x2
T − δ

2

]
1382

and1383

|ỹk − yk| ≤
∣∣∣ δ2 · 1{yk≤x1T +

δ
2}
− δ

2 · 1{yk≥x2T − δ2}
∣∣∣ ≤ δ/2.1384

Define τ(x) := x−bxc for any x ∈ R. Clearly, [τ(ỹ1), τ(ỹ2), · · ·, τ(ỹK)]T ∈ [0, 1]K . Then,1385

by Lemma 22, there exists w0 ∈ R such that1386

|τ(w0ak)− τ(ỹk)| < δ/2 for k = 1, 2, · · ·,K.1387

It follows that1388
∣∣∣τ(w0ak) + bỹkc − ỹk

∣∣∣ =
∣∣∣τ(w0ak)− (ỹk − bỹkc)

∣∣∣ =
∣∣τ(w0ak)− τ(ỹk)

∣∣ < δ/21389

for k = 1, 2, · · ·,K. Since ỹk ∈ [x1T + δ
2 ,

x2
T − δ

2 ], we have τ(w0ak) + bỹkc ∈ [x1T ,
x2
T ]. Besides,1390

∣∣∣τ(w0ak) + bỹkc − yk
∣∣∣ ≤

∣∣∣τ(w0ak) + bỹkc − ỹk
∣∣∣+
∣∣ỹk − yk

∣∣ < δ/2 + δ/2 = δ1391

for k = 1, 2, · · ·,K. Then, by Equation (25), we have1392

∣∣∣g̃
(
τ(w0ak) + bỹkc

)
− g̃(yk)

∣∣∣ < ε for k = 1, 2, · · ·,K.1393

Recall that g̃ is periodic with period 1, from which we deduce1394

g̃
(
τ(w0ak) + bỹkc

)
= g̃
(
w0ak − bw0akc+ bỹkc

)
= g̃(w0ak) = g(T · w0ak)1395

for k = 1, 2, · · ·,K. Also, we have1396

g̃(yk) = g(Tyk) = g(zk) = ξk for k = 1, 2, · · ·,K,1397

where the last equality comes from Equation (26). It follows that1398

∣∣g(T · w0ak)− ξk
∣∣ =

∣∣∣g̃
(
τ(w0ak) + bỹkc

)
− g̃(yk)

∣∣∣ < ε for k = 1, 2, · · ·,K.1399
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That is1400 ∥∥∥
[
g(w1a1), g(w1a2), · · ·, g(w1aK)

]T − ξ
∥∥∥
∞
< ε,1401

where w1 = T · w0 ∈ R. Since ξ ∈ [M1,M2]
K and ε > 0 are arbitrary, the following set1402

{[
g(wa1), g(wa2), · · ·, g(waK)

]T
: w ∈ R

}
1403

is dense in [M1,M2]
K as desired. So we finish the proof.1404

Finally, let us present the detailed proof of Lemma 22.1405

Proof of Lemma 22. We prove this lemma by mathematical induction. First, we consider1406

the case K = 1. Note that a1 6= 0 since it is rationally independent. Thus, we have1407

{τ(wa1) : w ∈ R} = [0, 1), which implies {τ(wa1) : w ∈ R} is dense in [0, 1].1408

Now assume this lemma holds for K = J−1 ∈ N+. Our goal is to prove the case K = J .1409

Given any ε ∈ (0, 1/100) and an arbitrary ξ = [ξ1, ξ2, · · ·, ξJ ]T ∈ [0, 1]J , our goal is to find1410

a proper w ∈ R such that1411

|τ(waj)− ξj | < Cε for j = 1, 2, · · ·, J , where C is an absolute constant. (27)1412

We remark that the constant C in the above equation is actually equal to 11 in our proof.1413

As we shall see later, we need an assumption that the given point is in [6ε, 1− 6ε]J . Thus,1414

we slightly modify ξ by setting1415

ξ̃j = ξj + 6ε · 1{ξj≤6ε} − 6ε · 1{ξj≥1−6ε} for j = 1, 2, · · ·, J .1416

Then, we have1417

ξ̃j ∈ [6ε, 1− 6ε] for j = 1, 2, · · ·, J (28)1418

and1419 ∣∣ξj − ξ̃j
∣∣ =

∣∣6ε · 1{ξj≤6ε} − 6ε · 1{ξj≥1−6ε}
∣∣ ≤ 6ε for j = 1, 2, · · ·, J . (29)1420

For any n ∈ N+, we define1421

ξ̂j := τ(ξ̃j − ξ̃J
aJ
aj) for j = 1, 2, · · ·, J .1422

Then ξ̂J = 0 and ξ̂j ∈ [0, 1) for j = 1, 2, · · ·, J − 1. To approximate [ξ̂1, ξ̂2, · · ·, ξ̂J−1]T ∈1423

[0, 1)J−1, we only need to consider J − 1 indices, and, therefore, we can use the induction1424

hypothesis to continue our proof.1425

Clearly, the rational independence of a1, a2, · · ·, aJ implies none of them is equal to zero.1426

Define1427

bn :=
[
τ( n

aJ
a1), τ( n

aJ
a2), · · ·, τ( n

aJ
aJ−1)

]T ∈ [0, 1)J−1.1428

Then, the bounded sequence (bn)∞n=1 has a convergent subsequence by the Bolzano-Weierstrass1429

Theorem. Thus, there exist n1, n2 ∈ N+ with n1 < n2 such that ‖bn2 − bn1‖∞ < ε, i.e.,1430

∣∣τ(n2
aJ
aj)− τ(n1

aJ
aj)
∣∣ < ε for j = 1, 2, · · ·, J − 1.1431
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Set n̂ = n2 − n1 ∈ N+ and1432

kj =
⌊
n1
aJ
aj
⌋
−
⌊
n2
aJ
aj
⌋
∈ Z for j = 1, 2, · · ·, J − 1.1433

Then, by defining1434

âj := n̂
aJ
aj + kj for j = 1, 2, · · ·, J − 1,1435

we have1436

|âj | =
∣∣ n̂
aJ
aj + kj

∣∣ =
∣∣∣n2
aJ
aj − n1

aJ
aj +

⌊
n1
aJ
aj
⌋
−
⌊
n2
aJ
aj
⌋∣∣∣

=
∣∣∣
(
n2
aJ
aj −

⌊
n2
aJ
aj
⌋)
−
(
n1
aJ
aj −

⌊
n1
aJ
aj
⌋)∣∣∣

=
∣∣τ(n2

aJ
aj)− τ(n1

aJ
aj)
∣∣ < ε.

(30)1437

It is easy to verify that â1, â2, · · ·, âJ−1 are rationally independent. To see this, assume1438

there exist λ1, λ2, · · ·, λJ−1 ∈ Q such that1439

0 =
J−1∑

j=1

λj âj =
J−1∑

j=1

λj
(
n̂
aJ
aj + kj

)
=

J−1∑

j=1

λj
n̂
aJ
aj +

J−1∑

j=1

λjkj .1440

It follows that1441

0 =

J−1∑

j=1

λjn̂aj +
( J−1∑

j=1

λjkj

)
aJ .1442

Recall that n̂ ∈ N+, kj ∈ Z, and λj ∈ Q for any j. That means the coefficients λjn̂ and1443 ∑J−1
j=1 λjkj are rational for any j. Since a1, a2, · · ·, aJ are rationally independent, we have1444

λjn̂ = 0 and
J−1∑

j=1

λjkj = 0 for j = 1, 2, · · ·, J − 1.1445

It follows from n̂ = n2 − n1 > 0 that λ1 = λ2 = · · · = λJ−1 = 0. Therefore, â1, â2, · · ·, âJ−11446

are rationally independent as desired.1447

By the induction hypothesis, the following set1448

{[
τ(s · â1), τ(s · â2), · · ·, τ(s · âJ−1)

]T
: s ∈ R

}
⊆ [0, 1)J−11449

is dense in [0, 1]J−1. Recall that ξ̂j = τ(ξ̃j − ξ̃J
aJ
aj) ∈ [0, 1] for j = 1, 2, · · ·, J − 1, implying1450

ξ̂j + 3ε · 1{ξ̂j≤3ε} − 3ε · 1{ξ̂j≥1−3ε} ∈ [3ε, 1− 3ε].1451

Hence, there exists s0 ∈ R such that1452

∣∣∣τ(s0âj)−
(
ξ̂j + 3ε · 1{ξ̂j≤3ε} − 3ε · 1{ξ̂j≥1−3ε}

)∣∣∣ < ε1453

for j = 1, 2, · · ·, J − 1. It follows that1454

τ(s0âj) ∈ [2ε, 1− 2ε] for j = 1, 2, · · ·, J − 11455
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and1456 ∣∣∣τ(s0âj)− ξ̂j
∣∣∣ < ε+

∣∣∣3ε · 1{ξ̂j≤3ε} − 3ε · 1{ξ̂j≥1−3ε}
∣∣∣ ≤ 4ε (31)1457

for j = 1, 2, · · ·, J − 1.1458

To estimate τ(bs0câj)− ξ̂j , we need to bound τ(s0âj)− τ(bs0câj). To this end, we need1459

an observation for any x, y ∈ R as follows.1460

|x− y| < ε and τ(x) ∈ [2ε, 1− 2ε] =⇒ |τ(x)− τ(y)| < ε. (32)1461

In fact, τ(x) ∈ [2ε, 1− 2ε] implies ε ≤ τ(x)− ε ≤ τ(x) + ε ≤ 1− ε, from which we deduce1462

y ∈ [x− ε, x+ ε] =
[
bxc+ τ(x)− ε︸ ︷︷ ︸

≥ε

, bxc+ τ(x) + ε︸ ︷︷ ︸
≤1−ε

]

⊆
[
bxc+ ε, bxc+ 1− ε

]
⊆
[
bxc, bxc+ 1

)
.

1463

Then, we have byc = bxc, which implies1464

|τ(x)− τ(y)| =
∣∣τ(x)− τ(y) + bxc − byc

∣∣

=
∣∣∣
(
τ(x) + bxc

)
−
(
τ(y) + byc

)∣∣∣ = |x− y| < ε.
1465

Thus, Equation (32) is proved.1466

By Equation (30), we have1467

∣∣∣s0âj − bs0câj
∣∣∣ ≤

∣∣∣s0 − bs0c
∣∣∣ · |âj | ≤ |âj | < ε for j = 1, 2, · · ·, J − 1.1468

Recall that1469

τ(s0âj) ∈ [2ε, 1− 2ε] for j = 1, · · ·, J − 1.1470

Then, for each j ∈ {1, 2, · · ·, J−1}, by the observation above in Equation (32) (set x = s0âj1471

and y = bs0câj therein), we have
∣∣τ(s0âj)− τ(bs0câj)

∣∣ < ε.1472

Recall that ξ̂j = τ(ξ̃j − ξ̃J
aJ
aj) for j = 1, 2, · · ·, J . Therefore, by Equation (31), we have1473

∣∣∣τ(bs0câj)− τ(ξ̃j − ξ̃J
aJ
aj)
∣∣∣ =

∣∣∣τ(bs0câj)− ξ̂j
∣∣∣

≤
∣∣∣τ(bs0câj)− τ(s0âj)

∣∣∣+
∣∣∣τ(s0âj)− ξ̂j

∣∣∣ < ε+ 4ε = 5ε,
1474

for j = 1, 2, · · ·, J − 1.1475

Observe that, for any x, y ∈ R, there exist z ∈ Z such that τ(x)− τ(y) = x− y − z. To1476

see this, we set z = bxc − byc ∈ Z and then τ(x)− τ(y) = x− bxc −
(
y − byc

)
= x− y − z.1477

Therefore, for j = 1, 2, · · ·, J − 1, there exists zj ∈ Z such that1478

τ(bs0câj)− τ(ξ̃j − ξ̃J
aJ
aj) = bs0câj −

(
ξ̃j − ξ̃J

aJ
aj
)
− zj = bs0câj + ξ̃J

aJ
aj − (zj + ξ̃j),1479

which implies1480

∣∣∣bs0câj + ξ̃J
aJ
aj − (zj + ξ̃j)

∣∣∣ =
∣∣∣τ(bs0câj)− τ(ξ̃j − ξ̃J

aJ
aj)
∣∣∣ < 5ε.1481
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It follows that, for j = 1, 2, · · ·, J − 1,1482

bs0câj + ξ̃J
aJ
aj ∈ [zj + ξ̃j − 5ε︸ ︷︷ ︸

≥ε

, zj + ξ̃j + 5ε︸ ︷︷ ︸
≤1−ε

] ⊆ [zj + ε, zj + 1− ε],1483

where the fact ε ≤ ξ̃j − 5ε ≤ ξ̃j + 5ε ≤ 1− ε comes from Equation (28). Therefore, we have1484

⌊
bs0câj + ξ̃J

aJ
aj)
⌋

= zj for j = 1, 2, · · ·, J − 1,1485

implying1486

τ(bs0câj + ξ̃J
aJ
aj) =

(
bs0câj + ξ̃J

aJ
aj
)
− zj ∈ [ξ̃j − 5ε, ξ̃j + 5ε].1487

Clearly, we have1488

bs0câj + ξ̃J
aJ
aj = bs0c

(
n̂
aJ
aj + kj

)
+ ξ̃J

aJ
aj = bs0cn̂+ξ̃J

aJ
aj + kjbs0c︸ ︷︷ ︸

∈Z

1489

for j = 1, 2, · · ·, J − 1, which implies1490

τ( bs0cn̂+ξ̃JaJ
aj) = τ(bs0câj + ξ̃J

aJ
aj) ∈ [ξ̃j − 5ε, ξ̃j + 5ε].1491

We also need to consider the case j = J . By Equation (28), we have ξ̃J ∈ [6ε, 1− 6ε], from1492

which we deduce1493

τ( bs0cn̂+ξ̃JaJ
aJ) = τ(bs0cn̂︸ ︷︷ ︸

∈Z

+ξ̃J) = ξ̃J .1494

Thus, for j = 1, 2, · · ·, J , we have1495

∣∣∣τ( bs0cn̂+ξ̃JaJ
aj)− ξ̃j

∣∣∣ ≤ 5ε.1496

By Equation (29), we have |ξ̃j − ξj | < 6ε for j = 1, 2, · · ·, J , which implies1497

∣∣∣τ( bs0cn̂+ξ̃JaJ
aj)− ξj

∣∣∣ ≤
∣∣∣τ( bs0cn̂+ξ̃JaJ

aj)− ξ̃j
∣∣∣+
∣∣ξ̃j − ξj

∣∣ ≤ 5ε+ 6ε = 11ε.1498

That means w0 = bs0cn̂+ξ̃J
aJ

is the desired w in Equation (27) and the constant C > 0 therein1499

is 11. Therefore,1500 ∣∣τ(w0aj)− ξj
∣∣ ≤ 11ε for j = 1, 2, · · ·, J .1501

Since ξ = [ξ1, ξ2, · · ·, ξJ ]T ∈ [0, 1]J and ε > 0 are arbitrary, the following set1502

{[
τ(wa1), τ(wa2), · · ·, τ(waJ)

]T
: w ∈ R

}
⊆ [0, 1)J1503

is dense in [0, 1]J as desired. We finish the process of mathematical induction and therefore1504

finish the proof by the principle of mathematical induction.1505

We remark that the target parameter w0 = bs0cn̂+ξ̃J
aJ

designed in the above proof may1506

not be bounded uniformly for any approximation error ε since n̂ can be arbitrarily large as1507

ε goes to 0. Therefore, the network in Theorem 1 may require sufficiently large parameters1508

to achieve an arbitrarily small error ε.1509
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8. Conclusion1510

This paper studies the super approximation power of deep feed-forward neural networks1511

activated by EUAF with a fixed size. It is proved by construction that there exists an EUAF1512

network architecture with d input neurons, a maximum width 36d(2d+1), 11 hidden layers,1513

and at most 5437(d+1)(2d+1) nonzero parameters, achieving the universal approximation1514

property by only adjusting its finitely many parameters. That is, without changing the1515

network size, our EUAF network can approximate any continuous function f : [a, b]d → R1516

within an arbitrarily small error ε > 0 with appropriate parameters depending on f , ε, d,1517

a, and b. Moreover, augmenting this EUAF network using one more layer with 2 neurons1518

can exactly realize a classification function
∑J

j=1 rj ·1Ej in
⋃J
j=1Ej for any J ∈ N+, where1519

r1, r2, · · ·, rJ are distinct rational numbers and E1, E2, · · ·, EJ are arbitrary pairwise disjoint1520

bounded closed subsets of Rd.1521

While we are interested in the analysis of the approximation error here, it would be very1522

interesting to investigate the generalization and optimization errors of EUAF networks.1523

Acting as a proof of concept, our experimentation shows the numerical advantages of EUAF1524

compared to ReLU. We believe our EUAF activation function could be further developed1525

and applied to real-world applications.1526
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Dennis Elbrächter, Philipp Grohs, Arnulf Jentzen, and Christoph Schwab. DNN expression1580

rate analysis of high-dimensional PDEs: Application to option pricing. Constructive1581

Approximation, 55:3–71, 2022. doi: 10.1007/s00365-021-09541-6.1582

56

https://doi.org/10.1137/18m118709x
https://doi.org/10.1007/s00365-020-09511-4
https://doi.org/10.1002/mma.5575
https://doi.org/10.1007/s10208-021-09494-z
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/s00365-021-09548-z
https://doi.org/10.1017/S0962492900002816
https://doi.org/10.1007/s11425-018-9387-x
https://arxiv.org/abs/2009.13500
https://arxiv.org/abs/2009.13500
https://arxiv.org/abs/2009.13500
https://doi.org/10.1007/s00526-021-02156-6
http://arxiv.org/abs/1903.02154
http://arxiv.org/abs/1903.02154
http://arxiv.org/abs/1903.02154
https://doi.org/10.4310/CMS.2019.v17.n5.a11
https://doi.org/10.1007/s00365-021-09541-6


Johannes Gedeon, Jonathan Schmidt, Matthew J.P. Hodgson, Jack Wetherell, Car-1583

los L. Benavides-Riveros, and Miguel A. L. Marques. Machine learning the deriva-1584

tive discontinuity of density-functional theory. Machine Learning: Science and Tech-1585

nology, 3:article 015011, 2021. URL http://iopscience.iop.org/article/10.1088/1586

2632-2153/ac3149.1587

Vanshika Gupta, Sharad Kumar Gupta, and Jungrack Kim. Automated discontinuity de-1588

tection and reconstruction in subsurface environment of Mars using deep learning: A case1589

study of sharad observation. Applied Sciences, 10(7):article 2279, 2020. ISSN 2076-3417.1590

URL https://www.mdpi.com/2076-3417/10/7/2279.1591

Jun Han and Claudio Moraga. The influence of the sigmoid function parameters on the speed1592
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