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Abstract

This paper proposes a new neural network architecture by introducing an additional1
dimension called height beyond width and depth. Neural network architectures2
with height, width, and depth as hyper-parameters are called three-dimensional3
architectures. It is shown that neural networks with three-dimensional architectures4
are significantly more expressive than the ones with two-dimensional architectures5
(those with only width and depth as hyper-parameters), e.g., standard fully con-6
nected networks. The new network architecture is constructed recursively via a7
nested structure, and hence we call a network with the new architecture nested net-8
work (NestNet). A NestNet of height s is built with each hidden neuron activated9
by a NestNet of height ≤ s−1. When s = 1, a NestNet degenerates to a standard net-10
work with a two-dimensional architecture. It is proved by construction that height-s11
ReLU NestNets with O(n) parameters can approximate 1-Lipschitz continuous12
functions on [0,1]d with an error O(n−(s+1)/d), while the optimal approximation13
error of standard ReLU networks with O(n) parameters is O(n−2/d). Further-14
more, such a result is extended to generic continuous functions on [0,1]d with15
the approximation error characterized by the modulus of continuity. Finally, we16
use numerical experimentation to show the advantages of the super-approximation17
power of ReLU NestNets.18

1 Introduction19

In this paper, we design a new neural network architecture by introducing one more dimension, called20
height, in addition to width and depth in the characterization of dimensions of neural networks. We21
call neural network architectures with height, width, and depth as hyper-parameters three-dimensional22
architectures. It is proved by construction that neural networks with three-dimensional architectures23
improve the approximation power significantly, compared to standard networks with two-dimensional24
architectures (those with only width and depth as hyper-parameters). The approximation power of25
standard neural networks has been widely studied in recent years. The optimality of the approximation26
of standard fully-connected rectified linear unit (ReLU) networks (e.g., see [35, 40, 49, 52]) implies27
limited room for further improvements. This motivates us to design a new neural network architecture28
by introducing an additional dimension of height beyond width and depth.29
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We will focus on the ReLU (max{0, x}) activation function and use it to demonstrate our ideas. Our30
new network architecture is constructed recursively via a nested structure, and hence we call a neural31
network with the new architecture nested network (NestNet). A NestNet of height s is built with each32
hidden neuron activated by a NestNet of height ≤ s − 1. In the case of s = 1, a NestNet degenerates33
to a standard network with a two-dimensional architecture. Let us use a simple example to explain34
the height of a NestNet. We say a network is activated by ϱ1,⋯, ϱr if each hidden neuron of this35
network is activated by one of ϱ1,⋯, ϱr. Here, ϱ1,⋯, ϱr are trainable functions mapping R to R.36
Then, a network of height s ≥ 2 can be regarded as a (ϱ1,⋯, ϱr)-activated network, where ϱ1,⋯, ϱr37
are (realized by) networks of height ≤ s − 1. See an example of a height-2 network in Figure 1. The38
network therein can be regarded as a (ϱ1, ϱ2)-activated network, where ϱ1 and ϱ2 are (realized by)39
networks of height 1 (i.e., standard networks). The number of parameters in the network of Figure 140
is the sum of the numbers of parameters in L0,L1,L2 and ϱ1, ϱ2.41
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Figure 1: An example of a network of height 2, where ϱ1 and ϱ2 are (realized by) networks of height
1 (i.e., standard networks). Here, L0, L1 and L2 are affine linear maps.

We remark that a NestNet can be regarded as a sufficiently large standard network by expanding all42
of its sub-network activation functions. We propose the nested network architecture since it shares43
the parameters via repetitions of sub-network activation functions. In other words, a NestNet can44
provide a special parameter-sharing scheme. This is the key reason why the NestNet has much better45
approximation power than the standard network. If we regard the network in Figure 1 as a NestNet of46
height 2, then the number of parameters is the sum of the numbers of parameters in L0,L1,L2 and47
ϱ1, ϱ2. However, if we expand the network in Figure 1 to a large standard network, then the number48
of parameters in ϱ1 and ϱ2 will be added many times for computing the total number of parameters.49

Next, let us discuss our new network architecture from the perspective of hyper-parameters. We call50
the network architecture with only width as a hyper-parameter one-dimensional architecture. Its51
depth and height are both equal to one. Neural networks with this type of architecture are generally52
called shallow networks. See an example in Figure 2(a). We call the network architecture with53
only width and depth as hyper-parameters two-dimensional architecture. Its height is equal to one.54
Neural networks with this type of architecture are generally called deep networks. See an example55
in Figure 2(b). We call the network architecture with height, width, and depth as hyper-parameters56
three-dimensional architecture, which is proposed in this paper. Neural networks with this type of57
architecture are called NestNets. See an example in Figure 2(c). One may refer to Table 1 for the58
approximation power of networks with these three types of architectures discussed above.59

Table 1: Comparison for the approximation error of 1-Lipschitz continuous functions on [0,1]d
approximated by ReLU NestNets and standard ReLU networks.

dimension(s) #parameters approximation error remark reference

one-hidden-layer network width varies (depth = height = 1) O(n) n−1 for d = 1 linear combination

deep network width and depth vary (height = 1) O(n) n−2/d composition [35, 40, 49, 52]

NestNet of height s width, depth, and height vary O(n) n−(s+1)/d nested composition this paper

Our main contributions are summarized as follows. We first propose a three-dimensional neural60
network architecture by introducing one more dimension called height beyond width and depth. We61
show that neural networks with three-dimensional architectures are significantly more expressive62
than standard networks. In particular, we prove that height-s ReLU NestNets with O(n) parameters63
can approximate 1-Lipschitz continuous functions on [0,1]d with an error O(n−(s+1)/d), which is64
much better than the optimal error O(n−2/d) of standard ReLU networks with O(n) parameters. In65
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Figure 2: Illustrations of neural networks with one-, two-, and three-dimensional architectures. (a)
One-dimensional case (width = 3, depth = height = 1). (b) Two-dimensional case (width = depth = 3,
height = 1). (c) Three-dimensional case (width = depth = height = 3). (d) Zoom-in of an activation
function of the network in (c). The network in (d) can also be regarded as a network of height 2.

the case of s + 1 ≥ d, the approximation error is bounded by O(n−(s+1)/d) ≤ O(n−1), which means66
we overcome the curse of dimensionality. Furthermore, we extend our result to generic continuous67
functions with the approximation error characterized by the modulus of continuity. See Theorem 2.168
and Corollary 2.2 for more details. Finally, we conduct simple experiments to show the numerical69
advantages of the super-approximation power of ReLU NestNets.70

The rest of this paper is organized as follows. In Section 2, we present the main results, provide the71
ideas of proving them, and discuss related work. The detailed proofs of the main results are placed72
in the appendix. Next, we conduct experiments to show the advantages of the super-approximation73
power of ReLU NestNets in Section 3. Finally, Section 4 concludes this paper with a short discussion.74

2 Main results and related work75

In this section, we first present our main results and discuss the proof ideas. The detailed proofs of the76
main results are placed in the appendix. Next, we discuss related work from multiple perspectives.77

2.1 Main results78

We use NNs{n} for n, s ∈ N to denote the set of functions realized by height-s ReLU NestNets with79
as most n parameters. We will give the mathematical definition of NNs{n}. We first discuss some80
notations regarding affine linear maps. We use L to denote the set of all affine linear maps, i.e.,81

L ∶= {L ∶ L(x) =Wx + b, W ∈ Rd2×d1 , b ∈ Rd2 , d1, d2 ∈ N+}.82

Let #L denote the number of parameters in L ∈L , i.e.,83

#L = (d1 + 1)d2 if L(x) =Wx + b for W ∈ Rd2×d1 and b ∈ Rd2 .84

We use g⃗ = (ϱ1,⋯, ϱk) to denote an activation function vector, where ϱi ∶ R → R is an activation85
function for each i ∈ {1,⋯, k}. When g⃗ = (ϱ1,⋯, ϱk) is applied to a vector input x = (x1,⋯, xk),86

g⃗(x) = (ϱ1(x1), ⋯, ϱk(xk)) for any x = (x1,⋯, xk) ∈ Rk.87

Let set(g⃗) denote the function set containing all entries (functions) in g⃗. For example, if g⃗ =88 (ϱ1, ϱ2, ϱ3, ϱ2, ϱ1), then set(g⃗) = {ϱ1, ϱ2, ϱ3}.89
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To define NNs{n} for n, s ∈ N recursively, we first consider the degenerate case. Define90

NN0{n} ∶= {idR, ReLU} =∶ NNs{0} for n, s ∈ N,91

where idR ∶ R → R is the identity map. That is, we regard the identity map and ReLU as height-092
ReLU NestNets with n parameters or as height-s ReLU NestNets with 0 parameters.93

Next, let us present the recursive step. For n, s ∈ N+, a (vector-valued) function ϕ ∈ NNs{n} has the94
following form:95

ϕ = Lm ○ g⃗m ○ ⋯ ○L1 ○ g⃗1 ○L0, (1)96

where L0,⋯,Lm ∈ L are affine linear maps. Moreover, Equation (1) satisfies the following two97
conditions:98

• Condition on activation functions:99
m⋃
i=1

set(g⃗i) = {ϱ1,⋯, ϱr} and ϱj ∈ s−1⋃
i=0
NNi{nj} for j = 1,⋯, r. (2)100

Here, g⃗i is an activation function vector for each i ∈ {1,⋯,m}. All entries in g⃗1,⋯, g⃗m101
form an activation function set {ϱ1,⋯, ϱr}. For each j ∈ {1,⋯, r}, ϱj can be realized by a102
height-i NestNet with ≤ nj parameters for some i = ij ≤ s − 1. This condition means each103
hidden neuron is activated by a NestNet of lower height.104

• Condition on the number of parameters:105
m∑
i=0

#Li + r∑
j=1

nj ≤ n. (3)106

This condition means the total number of parameters is no more than n. The total number of107
parameters is calculated by adding two parts. The first one is the number of parameters in108
affine linear maps L0,⋯,Lm. The other part is the number of parameters in the activation109
set {ϱ1,⋯, ϱr} formed by the entries in activation function vectors g⃗1,⋯, g⃗m.110

Then, with two conditions in Equations (2) and (3), we can define NNs{n} for n, s ∈ N+ as follows:111

NNs{n} ∶= {ϕ ∶ ϕ = Lm ○ g⃗m ○ ⋯ ○L1 ○ g⃗1 ○L0, L0,⋯,Lm ∈L ,
m⋃
i=1

set(g⃗i) = {ϱ1,⋯, ϱr},
ϱj ∈ s−1⋃

i=0
NNi{nj} for j = 1,⋯, r, m∑

i=0
#Li + r∑

j=1
nj ≤ n}.112

We remark that, in the definition above, m can be equal to 0. In this case, the function ϕ degenerates113
to an affine linear map.114

In the NestNet example in Figure 1, the function ϕ therein is in ⋃n∈N NN2{n} and the activation115
function vectors g⃗1 and g⃗2 can be represented as116

g⃗1 = (ϱ1, ϱ2, ϱ1, ϱ1) and g⃗2 = (ϱ2, ϱ1, ϱ1, ϱ2, ϱ2).117

Moreover, the activation function set containing all entries in g⃗1 and g⃗2 is a subset of ⋃n∈N NN1{n},118
i.e., {ϱ1, ϱ2} ⊆ ⋃n∈N NN1{n}.119

Let C([0,1]d) denote the set of continuous functions on [0,1]d. By convention, the modulus of120
continuity of a continuous function f ∈ C([0,1]d) is defined as121

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ ∥x − y∥2 ≤ r, x,y ∈ [0,1]d} for any r ≥ 0.122

Under these settings, we can find a function in NNs{O(n)} to approximate f ∈ C([0,1]d) with an123

approximation error O(ωf(n−(s+1)/d)), as shown in the main theorem below.124

Theorem 2.1. Given a continuous function f ∈ C([0,1]d), for any n, s ∈ N+ and p ∈ [1,∞], there125
exists ϕ ∈ NNs{Cs,d(n + 1)} such that126

∥ϕ − f∥Lp([0,1]d) ≤ 7√dωf(n−(s+1)/d),127

where Cs,d = 103d2(s + 7)2 if p ∈ [1,∞) and Cs,d = 10d+3d2(s + 7)2 if p =∞.128
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We remark that the constant Cs,d in Theorem 2.1 is valid for all n ∈ N+. As we shall see later, Cs,d129
can be greatly reduced if one only cares about large n ∈ N+. Generally, it is challenging to simplify130
the approximation error in Theorem 2.1 to make it explicitly depend on n due to the complexity of131
ωf(⋅). However, the approximation error can be simplified to an explicit one depending on n in the132
case of special target function spaces like Hölder continuous function space. To be exact, if f is a133
Hölder continuous function on [0,1]d of order α ∈ (0,1] with a Hölder constant λ > 0, then134

∣f(x) − f(y)∣ ≤ λ∥x − y∥α2 for any x,y ∈ [0,1]d,135

implying ωf(r) ≤ λrα for any r ≥ 0. This means we can get an exponentially small approximation136
error 7λ

√
dn−(s+1)α/d as shown in Corollary 2.2 below.137

Corollary 2.2. Suppose f is a Hölder continuous function on [0,1]d of order α ∈ (0,1] with a138
Hölder constant λ > 0. For any n, s ∈ N+ and p ∈ [1,∞], there exists ϕ ∈ NNs{Cs,d(n + 1)} such139
that140 ∥ϕ − f∥Lp([0,1]d) ≤ 7λ√dn−(s+1)α/d,141

where Cs,d = 103d2(s + 7)2 if p ∈ [1,∞) and Cs,d = 10d+3d2(s + 7)2 if p =∞.142

In Corollary 2.2, if α = 1, i.e., f is a Lipschitz continuous function with a Lipschitz constant143
λ > 0, then the approximation error can be further simplified to 7λ

√
dn−(s+1)/d. See Table 1 for the144

comparison of the approximation error of 1-Lipschitz continuous functions on [0,1]d approximated145
by ReLU NestNets and standard ReLU networks.146

2.2 Sketch of proving Theorem 2.1147

We will discuss how to prove Theorem 2.1. Given a target function f ∈ C([0,1]d), the key point is148
to construct an almost piecewise constant function realized by a ReLU NestNet to approximate f149
well except for a small region. Then we can get the desired result by dealing with the approximation150
in this small region. We divide the sketch of proving Theorem 2.1 into three main steps.151

1. First, we divide [0,1]d into a union of cubes {Qβ}β∈{0,1,⋯,K−1}d and a small region Ω with152

K = O(n(s+1)/d). Each Qβ is associated with a representative xβ ∈ Qβ for each vector index β.153
See Figure 3 for an illustration for K = 4 and d = 2.154

2. Next, we design a vector-valued function Φ1(x) to map the whole cube Qβ to its index β for155
each β. Here, Φ1 can be defined/constructed via156

Φ1(x) = [ϕ1(x1), ϕ1(x2), ⋯, ϕ1(xd)]T ,157

where each one-dimensional function ϕ1 is a step function outside a small region. We can158
efficiently construct ReLU NestNets with the desired size to approximate such an almost step159
function ϕ1 with sufficiently many “steps” by using the composition architecture of ReLU160
NestNets. See the appendix for the detailed construction.161

3. Finally, we need to construct a function ϕ2 realized by a ReLU NestNet to map β approximately162
to f(xβ) for each β ∈ {0,1,⋯,K − 1}d. Then we have163

ϕ2 ○Φ1(x) = ϕ2(β) ≈ f(xβ) ≈ f(x) for any x ∈ Qβ and each β,164

implying165
ϕ ∶= ϕ2 ○Φ1 ≈ f on [0,1]d/Ω.166

Then, we can get a good approximation on [0,1]d by using Lemma 3.4 of our previous paper [24]167
to deal with the approximation inside Ω. We remark that, in the construction of ϕ2 ∶ Rd → R, we168
only need to care about the values of ϕ2 at a set of Kd points {0,1,⋯,K − 1}d. As we shall see169
later, this is the key point to ease the design of a ReLU NestNet with the desired size to realize ϕ2.170

See Figure 3 for an illustration of the above steps. Observe that in Figure 3, we have171

ϕ(x) = ϕ2 ○Φ1(x) = ϕ2(β) E1≈ f(xβ) E2≈ f(x)172

for any x ∈ Qβ and each β ∈ {0,1,⋯,K −1}d. That means ϕ−f is bounded by E1+E2 on [0,1]d/Ω.173
For any x ∈ Qβ and each β, we have174

∥xβ −x∥2 ≤√d/K Ô⇒ ∣f(xβ) − f(x)∣ ≤ ωf(√d/K) Ô⇒ E2 ≤ ωf(√d/K).175
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Figure 3: An illustration of the ideas of constructing ϕ = ϕ2 ○Φ1 to approximate f for K = 4 and
d = 2. Note that ϕ ≈ f outside Ω since ϕ(x) = ϕ2 ○Φ1(x) = ϕ2(β) ≈ f(xβ) ≈ f(x) for any x ∈ Qβ

and each β ∈ {0,1,⋯,K − 1}d.

The upper bound of E1 is determined by the construction of ϕ2 ∶ Rd → R. As stated previously, we176
only need to care about the values of ϕ2 at a set of Kd points {0,1,⋯,K − 1}d ⊆ Rd, which gives us177
much freedom to control E1. As we shall see later, E1 can be bounded byO(ωf(√d/K)). Therefore,178

ϕ − f is controlled by O(ωf(√d/K)) outside Ω, from which we deduce the desired approximation179

error on [0,1]d/Ω since K = O(n−(s+1)/d). Finally, by using Lemma 3.4 of our previous paper [24]180
to deal with the approximation inside Ω, we can get the desired approximation error on [0,1]d.181

2.3 Related work182

We first compare our results with existing ones from an approximation perspective. Next, we discuss183
the parameter-sharing schemes of neural networks. Finally, we connect our NestNet architecture to184
existing trainable activation functions.185

Discussion from an approximation perspective186

The study of the approximation power of deep neural networks has become an active topic in recent187
years. This topic has been extensively studied from many perspectives, e.g., in terms of combinatorics188
[27], topology [7], information theory [29], fat-shattering dimension [1, 21], Vapnik-Chervonenkis189
(VC) dimension [6, 14, 32], classical approximation theory [3, 4, 8, 9, 10, 11, 12, 13, 18, 22, 24, 25,190
28, 34, 35, 38, 39, 42, 48, 49, 52, 53], etc. To the best of our knowledge, the study of neural network191
approximation has two main stages: shallow (one-hidden-layer) networks and deep networks.192

In the early works of neural network approximation, the approximation power of shallow networks is193
investigated. In particular, the universal approximation theorem [11, 17, 18], without approximation194
error estimate, showed that a sufficiently large neural network can approximate a target function195
in a certain function space arbitrarily well. For one-hidden-layer neural networks of width n and196
sufficiently smooth functions, an asymptotic approximation error O(n−1/2) in the L2-norm is proved197
in [4, 5], leveraging an idea that is similar to Monte Carlo sampling for high-dimensional integrals.198

Recently, a large number of works focus on the study of deep neural networks. It is shown in199
[35, 49, 52] that the optimal approximation error is O(n−2/d) by using ReLU networks with n200
parameters to approximate 1-Lipschitz continuous functions on [0,1]d. This optimal approximation201
error follows a natural question: How can we get a better approximation error? Generally, there202
are two ideas to get better errors. The first one is to consider smaller function spaces, e.g., smooth203
functions [24, 50] and band-limited functions [26]. The other one is to introduce new networks,204
e.g., Floor-ReLU networks [36], Floor-Exponential-Step (FLES) networks [37], and (Sin, ReLU,205
2x)-activated networks [20].206

This paper proposes a three-dimensional neural network architecture by introducing one more207
dimension called height beyond width and depth. As shown in Theorem 2.1 and Corollary 2.2, neural208
networks with three-dimensional architectures are significantly more expressive than the ones with209
two-dimensional architectures. We will conduct experiments to explore the numerical properties of210
NestNets in Section 3.211
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Discussion from a parameter-sharing perspective212

As discussed previously, our NestNet architecture can be regarded as a sufficiently large standard213
network architecture with a specific parameter-sharing scheme. Parameter-sharing schemes are214
used in neural networks to control the overall number of parameters for reducing memory and215
communication costs. There are two common parameter-sharing schemes for a neural network. The216
first scheme is to share parameters in the same layer. A typical network example with this scheme is217
the convolutional neural network (CNN). In CNN architectures, filters in a CNN layer are shared for218
all channels, which means the parameters in the filters are shared. The second scheme is to share219
parameters across different layers of networks, e.g., recurrent neural networks.220

In the NestNet architecture, we share parameters via repetitions of sub-network activation functions.221
Both of parameter-sharing schemes discussed just above are used in the NestNet architecture. The222
nested architecture of NestNets gives us much freedom to determine how many parameters to share.223
Beyond parameter-sharing schemes for a neural network, there are also parameter-sharing schemes224
among different neural networks or models, especially for multi-task learning. One may refer to225
[30, 33, 44, 45, 46, 51] for more discussion on parameter sharing in neural networks.226

Connection to trainable activation functions227

The key idea of trainable activation functions is to add a small number of trainable parameters to228
existing activation functions. Let us present several existing trainable activation functions as follows.229
A ReLU-like function is introduced in [15] by modifying the negative part of ReLU using a trainable230

parameter α, i.e., the parametric ReLU (PReLU) is defined as PReLU(x) ∶= {x if x ≥ 0
αx if x < 0. A variant231

of ELU unit is introduced in [43] by adding two trainable parameters β, γ > 0, i.e., the parametric232

ELU (PELU) is given by PELU(x) ∶= {β/γ if x ≥ 0
β(exp(x/γ) − 1)x if x < 0. Authors in [31] propose a type of233

flexible ReLU (FReLU), which is defined via FReLU(x) ∶= ReLU(x+α)+β, where α and β are two234
trainable parameters. One may refer to [2] for a survey of modern trainable activation functions. To235
the best of our knowledge, most existing trainable activation functions can be regarded as parametric236
variants of the original activation functions. That is, they are attained via parameterizing the original237
activation functions with a small number of (typically 1 or 2) trainable parameters.238

By contrast, activation functions in our NestNets are much more flexible. They can be (realized239
by) either complicated or simple sub-NestNets. That is, we can freely determine the number of240
parameters in the activation functions of NestNets. In other words, in NestNets, we can randomly241
distribute the parameters in the affine linear maps and activation functions. In short, compared to the242
networks with existing trainable activation functions, our NestNets are more flexible and have much243
more freedom in the choice of activation functions.244

3 Experimentation245

In this section, we will conduct experiments as a proof of concept to explore the numerical properties246
of ReLU NestNets. It is challenging to tune the hyper-parameters of large NestNets due to their247
nested architectures. Thus, our experimentation focuses on relatively small NestNets of height248
2 and we introduce a simple sub-network activation function ϱ, which is realized by a trainable249
one-hidden-layer ReLU network of width 3. To be exact, ϱ is given by250

ϱ(x) =wT
1 ⋅ (xw0 + b0) + b1 for any x ∈ R, (4)251

where w0,w1,b0 ∈ R3 and b1 ∈ R are trainable parameters. There are 10 parameters in ϱ. The initial252
settings for ϱ in our experiments are w0 = (1,1,1), w1 = (1,1,−1), b0 = (−0.2,−0.1,0.0), and253
b1 = 0. We believe that NestNets can achieve good results in some real-world applications if proper254
optimization algorithms are developed for NestNets. In this paper, we only consider two classification255
problems: a synthetic classification problem based on the Archimedean spiral in Section 3.1 and an256
image classification problem corresponding to a standard benchmark dataset Fashion-MNIST [47]257
in Section 3.2. We remark that a classification function can be continuously extended to Rd if each258
class of samples are located in a bounded closed subset of Rd and these subsets are pairwise disjoint.259
That means we can apply our theory to classification problems.260
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3.1 Archimedean spiral261

We will design a binary classification experiment by constructing two disjoint sets based on the262
Archimedean spiral, which can be described by the equation r = a + bθ in polar coordinates (r, θ) for263
given a, b ∈ R. Let us first define two curves (Archimedean spirals) as follows:264

C̃i ∶= {(x, y) ∶ x = ri cos θ, y = ri sin θ, ri = ai + biθ, θ ∈ [0, sπ]},265

for i = 0,1, where a0 = 0, a1 = 1, b0 = b1 = 1/π, and s = 30. To simplify the discussion below, we266
normalize C̃i as Ci ⊆ [0,1]2, where Ci is defined by267

Ci ∶= {(x, y) ∶ x = x̃
2(s+2) + 1

2
, y = ỹ

2(s+2) + 1
2
, (x̃, ỹ) ∈ C̃i},268

for i = 0,1. Then, we can define the two desired sets as follows:269

Si ∶= {(u, v) ∶√(u − x)2 + (v − y)2 ≤ ε, (x, y) ∈ Ci},270

for i = 0,1, where ε = 0.005 in our experiments. See an illustration for S0 and S1 in Figure 4.271

0.0 0.5 1.0
0.0

0.5

1.0 S0

S1

Figure 4: An illustration for S0 and S1.

Input FC ActFun BatchNorm

BatchNorm ActFun FC

FC ActFun BatchNorm

BatchNorm ActFun FC

FC BatchNorm Softmax Output

Figure 5: A network architecture illustration.

To explore the numerical performance of NestNets, we design NestNets and standard networks to272
classify samples in S0⋃S1. We adopt four-hidden-layer fully connected network architecture of273
width 20, 35, or 50. To make the optimization more stable, we add the layers of batch normalization274
[19]. See Figure 5 for an illustration of the full network architecture. In Figure 5, FC and ActFun275
are short of fully connected layer and activation function, respectively. ActFun is ReLU for standard276
networks, while for NestNets, ActFun is the learnable sub-network activation function ϱ given in277
Equation (4).278

Before presenting the experiment results, let us present the hyper-parameters for training the networks279
mentioned above. For each i ∈ {0,1}, we randomly choose 3 × 105 training samples and 3 × 104 test280
samples in Si with label i. Then, we use these 6 × 105 training samples to train the networks and use281
these 6 × 104 test samples to compute the test accuracy. We use the cross-entropy loss function to282
evaluate the loss between the networks and the target classification function. The number of epochs283
and the batch size are set to 500 and 512, respectively. We adopt RAdam [23] as the optimization284
method. In epochs 5(i − 1) + 1 to 5i for i = 1,2,⋯,100, the learning rate is 0.2 × 0.002 × 0.9i−1 for285
the parameters in ϱ and 0.002 × 0.9i−1 for all other parameters. We remark that all training (test)286
samples are standardized before training, i.e., we rescale the samples to have a mean of 0 and a287
standard deviation of 1.288

Finally, let us present the experiment results to compare the numerical performances of NestNets289
and standard networks. We adopt the average of test accuracies in the last 100 epochs as the target290
test accuracy. As we can see from Table 2 and Figure 6, by adding 10 more parameters (stored in ϱ),291
NestNets achieve much better test accuracies than standard networks though slightly more training292
time is required. In an “unfair” comparison, the test accuracy attained by the NestNet with 1.4 × 103293
parameters is still better than that of the standard network with 7.9×103 parameters. This numerically294
verifies that the NestNet has much better approximation power than the standard network.295

3.2 Fashion-MNIST296

We will design convolutional neural network (CNN) architectures activated by ReLU or the sub-297
network activation function ϱ given in Equation (4) to classify image samples in Fashion-MNIST [47].298
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Table 2: Test accuracy comparison.

width depth #parameters activation function training time test accuracy

standard network 20 4 1362 ReLU ≈ 2532 s 0.738290
NestNet 20 4 1362 + 10 sub-network (ϱ) ≈ 4016 s 0.873631

standard network 35 4 3957 ReLU ≈ 2595 s 0.816048
NestNet 35 4 3957 + 10 sub-network (ϱ) ≈ 4104 s 0.995962

standard network 50 4 7902 ReLU ≈ 2642 s 0.866118
NestNet 50 4 7902 + 10 sub-network (ϱ) ≈ 4218 s 0.999984
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Figure 6: Test accuracy over epochs.

This dataset consists of a training set of 6 × 104 samples and a test set of 104 samples. Each sample299
is a 28 × 28 grayscale image, associated with a label from 10 classes. To compare the numerical300
performances of NestNets and standard networks, we design a standard CNN architecture and a301
NestNet architecture that is constructed by replacing a few activation functions of a standard CNN302
network by the sub-network activation function ϱ. For simplicity, we denote the standard CNN and303
the NestNet as CNN1 and CNN2. To make the optimization more stable, we add the layers of dropout304
[16, 41] and batch normalization [19]. See illustrations of CNN1 and CNN2 in Figure 7. We present305
more details of them in Table 3.306

Input Conv ReLU BatchNorm Conv ReLU

ReLU FC BatchNorm Flatten Dropout MaxPool

Dropout BatchNorm FC BatchNorm Softmax Output

(a) CNN1.

Input Conv SubNet/ReLU BatchNorm Conv SubNet/ReLU

SubNet/ReLU FC BatchNorm Flatten Dropout MaxPool

Dropout BatchNorm FC BatchNorm Softmax Output

(b) CNN2.

Figure 7: Illustrations of CNN1 and CNN2. Conv and FC represent convolutional and fully connected
layers, respectively. CNN2 is indeed a NestNet of height 2.

Table 3: Details of CNN1 and CNN2.

layers activation function output size of each layer dropout batch normalization
CNN1 CNN2

input ∈ R28×28 28 × 28
Conv-1: 1 × (3 × 3), 12 ReLU SubNet (ϱ), 1 × (26 × 26)

ReLU, 11 × (26 × 26) 12 × (26 × 26) yes

Conv-2: 12 × (3 × 3), 12 ReLU SubNet (ϱ), 1 × (24 × 24)
ReLU, 11 × (24 × 24) 1728 (MaxPool & Flatten) 0.25 yes

FC-1: 1728, 48 ReLU SubNet (ϱ), 1
ReLU, 47

48 0.5 yes

FC-2: 48, 10 10 (Softmax) yes

output ∈ R10

Before presenting the numerical results, let us present the hyper-parameters for training two CNN307
architectures above. We use the cross-entropy loss function to evaluate the loss between the CNNs308
and the target classification function. The number of epochs and the batch size are set to 500 and 128,309
respectively. We adopt RAdam [23] as the optimization method and the weight decay of the optimizer310
is 0.0001. In epochs 5(i − 1) + 1 to 5i for i = 1,2,⋯,100, the learning rate is 0.2 × 0.002 × 0.9i−1311
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for the parameters in ϱ and 0.002 × 0.9i−1 for all other parameters. All training (test) samples in the312
Fashion-MNIST dataset are standardized in our experiment, i.e., we rescale all training (test) samples313
to have a mean of 0 and a standard deviation of 1. In the settings above, we repeat the experiment314
18 times and discard 3 top-performing and 3 bottom-performing trials by using the average of test315
accuracy in the last 100 epochs as the performance criterion. For each epoch, we adopt the average of316
test accuracies in the rest 12 trials as the target test accuracy.317

Next, let us present the experiment results to compare the numerical performances of CNN1 and318
CNN2. The test accuracy comparison of CNN1 and CNN2 is summarized in Table 4.319

Table 4: Test accuracy comparison.

training time largest accuracy average of largest 100 accuracies average accuracy in last 100 epochs

CNN1 ≈ 5802 s 0.925290 0.924796 0.924447

CNN2 ≈ 7217 s 0.926620 0.926287 0.926032

For each of CNN1 and CNN2, we present the training time, the largest test accuracy, the average320
of the largest 100 test accuracies, and the average of test accuracies in the last 100 epochs. For an321
intuitive comparison, we also provide illustrations of the test accuracy over epochs for CNN1 and322
CNN2 in Figure 8. As we can see from Table 4 and Figure 8, CNN2 performs better than CNN1323
though slightly more training time and 10 more parameters are required. This numerically shows that324
the NestNet is significantly more expressive than the standard network.325
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Figure 8: Test accuracy over epochs.

4 Conclusion326

This paper proposes a three-dimensional neural network architecture by introducing one more327
dimension called height beyond width and depth. We show by construction that neural networks with328
three-dimensional architectures are significantly more expressive than the ones with two-dimensional329
architectures. We use simple numerical examples to show the advantages of the super-approximation330
power of ReLU NestNets, which is regarded as a proof of possibility. It would be of great interest to331
further explore the numerical performance of NestNets to bridge our theoretical results to applications.332
We believe that NestNets can be further developed and applied to real-world applications.333

We remark that our analysis is limited to the ReLU activation function and the (Hölder) continuous334
function space. It would be interesting to generalize our results to other activation functions (e.g.,335
tanh and sigmoid functions) and other function spaces (e.g, Lebesgue and Sobolev spaces).336
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A Proof of main theorem497

In this section, we will prove the main theorem, Theorem 2.1, based on an auxiliary theorem,498
Theorem A.1, which will be proved in Section B. Notations throughout this paper are summarized in499
Section A.1.500

A.1 Notations501

Let us summarize all basic notations used in this paper as follows.502

• Let R, Q, and Z denote the set of real numbers, rational numbers, and integers, respectively.503

• Let N and N+ denote the set of natural numbers and positive natural numbers, respectively.504
That is, N+ = {1,2,3,⋯} and N = N+⋃{0}.505

• For any x ∈ R, let ⌊x⌋ ∶=max{n ∶ n ≤ x, n ∈ Z} and ⌈x⌉ ∶=min{n ∶ n ≥ x, n ∈ Z}.506

• Let 1S be the indicator (characteristic) function of a set S, i.e., 1S is equal to 1 on S and 0507
outside S.508

• The set difference of two sets A and B is denoted by A/B ∶= {x ∶ x ∈ A, x ∉ B}.509

• Matrices are denoted by bold uppercase letters. For instance, A ∈ Rm×n is a real matrix510
of size m × n and AT denotes the transpose of A. Vectors are denoted as bold lowercase511

letters. For example, v = [v1,⋯, vd]T = ⎡⎢⎢⎢⎢⎣
v1⋮
vd

⎤⎥⎥⎥⎥⎦ ∈ Rd is a column vector.512

• For any p ∈ [1,∞), the p-norm (or ℓp-norm) of a vector x = [x1, x2,⋯, xd]T ∈ Rd is defined513
by514 ∥x∥p = ∥x∥ℓp ∶= (∣x1∣p + ∣x2∣p +⋯ + ∣xd∣p)1/p.515
In the case of p =∞,516 ∥x∥∞ = ∥x∥ℓ∞ ∶=max{∣xi∣ ∶ i = 1,2,⋯, d}.517

• By convention, ∑n2

j=n1
aj = 0 if n1 > n2, no matter what aj is for each j.518

• Given any K ∈ N+ and δ ∈ (0, 1
K
), define a trifling region Ω([0,1]d,K, δ) of [0,1]d as519

Ω([0,1]d,K, δ) ∶= d⋃
j=1
{x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xj ∈ K−1⋃

k=1
( k
K
− δ, k

K
)}. (5)520

In particular, Ω([0,1]d,K, δ) = ∅ if K = 1. See Figure 9 for two examples of trifling521
regions.522
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δ δ δ δ

Ω([0, 1]d, K, δ) for K = 5 and d = 1
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(b)

Figure 9: Two examples of trifling regions. (a) K = 5, d = 1. (b) K = 4, d = 2.

• For a continuous piecewise linear function f(x), the x values where the slope changes are523
typically called breakpoints.524

• Let σ ∶ R→ R denote the rectified linear unit (ReLU), i.e. σ(x) =max{0, x} for any x ∈ R.525

With a slight abuse of notation, we define σ ∶ Rd → Rd as σ(x) = ⎡⎢⎢⎢⎢⎣
max{0, x1}⋮
max{0, xd}

⎤⎥⎥⎥⎥⎦ for any526

x = [x1,⋯, xd]T ∈ Rd.527
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• Let NNs{n} for n, s ∈ N+ denote the set of functions realized by height-s ReLU NestNets528
with as most n parameters.529

• A function ϕ realized by a ReLU network can be briefly described as follows:530

x = h̃0
W0, b0

L0
h1

σ h̃1 ⋯ WL−1, bL−1

LL−1
hL

σ h̃L
WL, bL

LL
hL+1 = ϕ(x),531

where Wi ∈ RNi+1×Ni and bi ∈ RNi+1 are the weight matrix and the bias vector in the i-th532
affine linear transformation Li, respectively, i.e.,533

hi+1 =Wi ⋅ h̃i + bi =∶ Li(h̃i) for i = 0,1,⋯, L,534

and535
h̃i = σ(hi) for i = 1,2,⋯, L.536

In particular, ϕ can be represented in a form of function compositions as follows537

ϕ = LL ○ σ ○ ⋯ ○L1 ○ σ ○L0,538

which has been illustrated in Figure 10.539

(x1, x2)
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h̃1
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h2
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h2,3

h2,4

h2,5

h̃2

h̃2,1

h̃2,2

h̃2,3

h̃2,4

h̃2,5

ϕ(x1, x2)

ϕ(x1, x2)

W0, b0

L0

W1, b1

L1

W2, b2

L2

ReLU

σ
ReLU

σ

L0 L1 L2

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 10: An example of a ReLU network of width 5 and depth 2.

• The expression “a network of width N and depth L” means540

– The number of neurons in each hidden layer of this network (architecture) is no more541
than N .542

– The number of hidden layers of this network (architecture) is no more than L.543

A.2 Detailed proof of Theorem 2.1544

The key point of proving Theorem 2.1 is to construct a piecewise constant function to approximate545
the target continuous function. However, ReLU NestNets are unable to approximate piecewise546
constant functions well the continuity of ReLU NestNets. Thus, we introduce the trifling region547
Ω([0,1]d,K, δ), defined in Equation (5), and use ReLU NestNets to implement piecewise constant548
functions outside the trifling region. To simplify the proof of Theorem 2.1, we introduce an auxiliary549
theorem, Theorem A.1 below. It can be regarded as a weaker variant of Theorem 2.1, ignoring the550
approximation in the trifling region.551

Theorem A.1. Given a continuous function f ∈ C([0,1]d), for any n, s ∈ N+, there exists ϕ ∈552 NNs{355d2(s + 7)2(2n + 1)} such that ∥ϕ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(√d) and553

∣ϕ(x) − f(x)∣ ≤ 6√dωf(n−(s+1)/d) for any x ∈ [0,1]d/Ω([0,1]d,K, δ),554

where K = ⌊n(s+1)/d⌋ and δ is an arbitrary number in (0, 1
3K
].555

The proof of Theorem A.1 can be found in Section B. By assuming Theorem A.1 is true, we can556
easily prove Theorem 2.1 for the case p ∈ [1,∞). To prove Theorem 2.1 for the case p =∞, we need557
to control the approximation error in the trifling region. To this intent, we introduce a theorem to558
handle the approximation inside the trifling region.559
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Theorem A.2 (Lemma 3.11 of [52] or Lemma 3.4 of [24]). Given any ε > 0,K ∈ N+, and δ ∈ (0, 1
3K
],560

assume f ∈ C([0,1]d) and g ∶ Rd → R is a general function with561

∣g(x) − f(x)∣ ≤ ε for any x ∈ [0,1]d/Ω([0,1]d,K, δ).562

Then563 ∣ϕ(x) − f(x)∣ ≤ ε + d ⋅ ωf(δ) for any x ∈ [0,1]d,564

where ϕ ∶= ϕd is defined by induction through ϕ0 ∶= g and565

ϕi+1(x) ∶= mid(ϕi(x − δei+1), ϕi(x), ϕi(x + δei+1)) for i = 0,1,⋯, d − 1,566

where {ei}di=1 is the standard basis in Rd and mid(⋅, ⋅, ⋅) is the function returning the middle value of567
three inputs.568

Now, let we prove Theorem 2.1 by assuming Theorem A.1 is true, the proof of which can be found in569
Section B.570

Proof of Theorem 2.1. We may assume f is not a constant function since it is a trivial case. Then571
ωf(r) > 0 for any r > 0. Let us first consider the case p ∈ [1,∞). Set K = ⌊n(s+1)/d⌋ and choose a572
sufficiently small δ ∈ (0, 1

3K
] such that573

Kdδ(2∣f(0)∣ + 2ωf(√d))p = ⌊n(s+1)/d⌋dδ(2∣f(0)∣ + 2ωf(√d))p
≤ (ωf(n−(s+1)/d))p.574

By Theorem A.1, there exists575

ϕ ∈ NNs{355d2(s + 7)2(2n + 1)} ⊆ NNs{355d2(s + 7)2 ⋅ 2(n + 1)}⊆ NNs{103d2(s + 7)2(n + 1)}576

such that ∥ϕ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(√d) and577

∣ϕ(x) − f(x)∣ ≤ 6√dωf(n−(s+1)/d) for any x ∈ [0,1]d/Ω([0,1]d,K, δ).578

Since ∥f∥L∞([0,1]d) ≤ ∣f(0)∣ + ωf(√d) and the Lebesgue measure of Ω([0,1]d,K, δ) is bounded579
by Kdδ, we have580

∥ϕ − f∥p
Lp([0,1]d) = ∫Ω([0,1]d,K,δ)

∣ϕ(x) − f(x)∣pdx + ∫[0,1]d/Ω([0,1]d,K,δ)
∣ϕ(x) − f(x)∣pdx

≤Kdδ(2∣f(0)∣ + 2ωf(√d))p + (6√dωf(n−(s+1)/d))p
≤ (ωf(n−(s+1)/d))p + (6√dωf(n−(s+1)/d))p ≤ (7√dωf(n−(s+1)/d))p.

581

Hence, we have ∥ϕ − f∥Lp([0,1]d) ≤ 7√dωf(n−(s+1)/d).582

Next, let us discuss the case p =∞. Set K = ⌊n(s+1)/d⌋ and choose a sufficiently small δ ∈ (0, 1
3K
]583

such that584
d ⋅ ωf(δ) ≤ ωf(n−(s+1)/d).585

By Theorem A.1,586
ϕ0 ∈ NNs{355d2(s + 7)2(2n + 1)}587

such that588

∣ϕ0(x) − f(x)∣ ≤ 6√dωf(n−(s+1)/d) for any x ∈ [0,1]d/Ω([0,1]d,K, δ).589

By Theorem A.2 with g = ϕ0 and ε = 6√dωf(n−(s+1)/d) therein, we have590

∣ϕ(x) − f(x)∣ ≤ ε + d ⋅ ωf(δ) ≤ 7√dωf(n−(s+1)/d) for any x ∈ [0,1]d,591

where ϕ ∶= ϕd is defined by induction through592

ϕi+1(x) ∶= mid(ϕi(x − δei+1), ϕi(x), ϕi(x + δei+1)) for i = 0,1,⋯, d − 1,593
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where {ei}di=1 is the standard basis in Rd and mid(⋅, ⋅, ⋅) is the function returning the middle value of594
three inputs.595

It remains to estimate the number of parameters in the NestNet realizing ϕ = ϕd. By Lemma 3.1 of596
[37], mid(⋅, ⋅, ⋅) can be realized by a ReLU network of width 14 and depth 2, and hence with at most597
14 × (14 + 1) × (2 + 1) = 630 parameters.598

By defining a vector-valued function Φ0 ∶ Rd → R3 as599

Φ0(x) ∶= [ϕ0(x − δe1), ϕ0(x), ϕ0(x + δe1)]T for any x ∈ Rd,600

we have Φ0 ∈ NNs{32(355d2(s + 7)2(2n + 1))}, implying601

ϕ1 = mid(⋅, ⋅, ⋅) ○Φ0 ∈ NNs{630 + 32(355d2(s + 7)2(2n + 1))}
⊆ NNs{10(355d2(s + 7)2(2n + 1))}.602

Similarly, we have603

ϕ = ϕd ∈ NNs{10d(355d2(s + 7)2(2n + 1))} ⊆ NNs{10d(355d2(s + 7)2 ⋅ 2(n + 1))}
⊆ NNs{10d+3d2(s + 7)2(n + 1)}.604

Thus, we finish the proof of Theorem 2.1.605

606

B Proof of auxiliary theorem607

We will prove the auxiliary theorem, Theorem A.1, in this section. We first present the key ideas608
in Section B.1. Next, the detailed proof is presented in Section B.2, based on two propositions in609
Section B.1, the proofs of which can be found in Sections C and D.610

B.1 Key ideas of proving Theorem A.1611

Our goal is to construct an almost piecewise constant function realized by a ReLU NestNet to612
approximate the target function f ∈ C([0,1]d) well. The construction can be divided into three main613
steps.614

1. First, we divide [0,1]d into a union of “important” cubes {Qβ}β∈{0,1,⋯,K−1}d and the trifling615

region Ω([0,1]d,K, δ), where K = O(n(s+1)/d). Each Qβ is associated with a representative616
xβ ∈ Qβ for each vector index β. See Figure 13 for illustrations.617

2. Next, we design a vector-valued function Φ1(x) to map the whole cube Qβ to its index β for618
each β. Here, Φ1 can be defined/constructed via619

Φ1(x) = [ϕ1(x1), ϕ1(x2), ⋯, ϕ1(xd)]T ,620

where each one-dimensional function ϕ1 is a step function outside the trifling region and hence621
can be realized by a ReLU NestNet.622

3. The aim of the final step is essentially to solve a point fitting problem. We will construct a function623
ϕ2 realized by a ReLU NestNet to map β approximately to f(xβ) for each β. Then we have624

ϕ2 ○Φ1(x) = ϕ2(β) ≈ f(xβ) ≈ f(x) for any x ∈ Qβ and each β,625

implying626
ϕ ∶= ϕ2 ○Φ1 ≈ f on [0,1]d/Ω([0,1]d,K, δ).627

We remark that, in the construction of ϕ2, we only need to care about the values of ϕ2 sampled628
inside the set {0,1,⋯,K − 1}d, which is a key point to ease the design of a ReLU NestNet to629
realize ϕ2 as we shall see later.630
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A set of function values
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{f(xβ) ∶ β ∈ {0,1,⋯,K − 1}d}
Figure 11: An illustration of the ideas of constructing the desired function ϕ = ϕ2 ○Φ1. Note that
ϕ ≈ f outside the trifling region since ϕ(x) = ϕ2 ○Φ1(x) = ϕ2(β) ≈ f(xβ) ≈ f(x) for any x ∈ Qβ

and each β ∈ {0,1,⋯,K − 1}d.

Observe that in Figure 11, we have631

ϕ(x) = ϕ2 ○Φ1(x) = ϕ2(β) E1≈ f(xβ) E2≈ f(x)632

for any x ∈ Qβ and each β ∈ {0,1,⋯,K − 1}d. That means ϕ − f is controlled by E1 + E2 on633 [0,1]d/Ω([0,1]d,K, δ). Since ∥x − xβ∥2 ≤ √d/K for any x ∈ Qβ and each β, E2 is bounded by634
ωf(√d/K). As we shall see later, E1 can be bounded by O(ωf(√d/K)) by applying Proposi-635

tion B.2. Therefore, ϕ − f is controlled by O(ωf(√d/K)) outside the trifling region, from which636

we deduce the desired approximation error since K = O(n−(s+1)/d).637

Finally, we introduce two propositions to simplify the constructions of Φ1 and ϕ2 mentioned above.638
We first show how to construct a ReLU network to implement a one-dimensional step function ϕ1 in639
Proposition B.1 below. Then Φ1 can be defined via640

Φ1(x) ∶= [ϕ1(x1), ϕ1(x2), ⋯, ϕ1(xd)]T for any x = [x1, x2,⋯, xd]T ∈ Rd.641

Proposition B.1. Given any n, r ∈ N+, δ ∈ (0,1), and J ∈ N+ with J ≤ 2n
r

, there exists ϕ ∈642 NNr{36(r + 7)n} such that643

ϕ(x) = ⌊x⌋ for any x ∈ J−1⋃
j=0
[j, j + 1 − δ]644

and645

ϕ(x) = J for any x ∈ [J, J + 1].646

The construction of ϕ2 is mainly based on Proposition B.2 below, whose proof relies on the bit647
extraction technique proposed in [6]. As we shall see later, some pre-processing is necessary for648
meeting the requirements of applying Proposition B.2 to construct ϕ2.649

Proposition B.2. Given any ε > 0 and n, s ∈ N+, assume yj ≥ 0 for j = 0,1,⋯, J − 1 are samples650
with J ≤ ns+1 and651 ∣yj − yj−1∣ ≤ ε for j = 1,2,⋯, J − 1.652

Then there exists ϕ ∈ NNs{350(s + 7)2(n + 1)} such that653

(i) ∣ϕ(j) − yj ∣ ≤ ε for j = 0,1,⋯, J − 1.654

(ii) 0 ≤ ϕ(x) ≤max{yj ∶ j = 0,1,⋯, J − 1} for any x ∈ R.655

The proofs of these two propositions can be found in Sections C and D. We will give the detailed656
proof of Theorem A.1 in Section B.2.657
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B.2 Detailed proof of Theorem A.1658

We essentially construct an almost piecewise constant function realized by a ReLU NestNet with659
at most O(n) parameters to approximate f . We may assume f is not a constant function since660
it is a trivial case. Then ωf(r) > 0 for any r > 0. It is clear that ∣f(x) − f(0)∣ ≤ ωf(√d) for661
any x ∈ [0,1]d. By defining f̃ ∶= f − f(0) + ωf(√d), we have ωf̃(r) = ωf(r) for any r ≥ 0 and662

0 ≤ f̃(x) ≤ 2ωf(√d) for any x ∈ [0,1]d.663

Set K = ⌊n(s+1)/d⌋ and let δ be an arbitrary number in (0, 1
3K
]. The proof can be divided into four664

main steps as follows:665

1. Divide [0,1]d into a union of sub-cubes {Qβ}β∈{0,1,⋯,K−1}d and the trifling region666
Ω([0,1]d,K, δ), and denote xβ as the vertex of Qβ with minimum ∥ ⋅ ∥1 norm.667

2. Construct a sub-network based on Proposition B.1 to implement a vector function Φ1668
projecting the whole cube Qβ to the d-dimensional index β for each β, i.e., Φ1(x) = β for669
all x ∈ Qβ.670

3. Construct a sub-network to implement a function ϕ2 mapping the index β approximately to671
f̃(xβ). This core step can be further divided into three sub-steps:672

3.1. Construct a sub-network to implement ψ1 bijectively mapping the index set673 {0,1,⋯,K − 1}d to an auxiliary set A1 ⊆ { j
2Kd ∶ j = 0,1,⋯,2Kd} defined later.674

See Figure 14 for an illustration.675

3.2. Determine a continuous piecewise linear function g with a set of breakpoints A1 ∪676 A2 ∪ {1}, where A2 ∈ { j
2Kd ∶ j = 0,1,⋯,2Kd} is a set defined later. Moreover, g677

should satisfy two conditions: 1) the values of g at breakpoints in A1 is given based on678 {f̃(xβ)}β, i.e., g ○ ψ1(β) = f̃(xβ); 2) the values of g at breakpoints in A2 ∪ {1} is679
defined to reduce the variation of g, which is necessary for applying Proposition B.2.680

3.3. Apply Proposition B.2 to construct a sub-network to implement a function ψ2 approxi-681
mating g well onA1 ∪A2 ∪{1}. Then the desired function ϕ2 is given by ϕ2 = ψ2 ○ψ1682
satisfying ϕ2(β) = ψ2 ○ ψ1(β) ≈ g ○ ψ1(β) = f̃(xβ).683

4. Construct the final network to implement the desired function ϕ via ϕ = ϕ2 ○Φ1 + f(0) −684
ωf(√d). Then we have ϕ2 ○ Φ1(x) = ϕ2(β) ≈ f̃(xβ) ≈ f̃(x) for any x ∈ Qβ and685
β ∈ {0,1,⋯,K − 1}d, implying ϕ(x) = ϕ2 ○Φ1(x) + f(0) − ωf(√d) ≈ f̃(x) + f(0) −686
ωf(√d) = f(x).687

x1 ϕ1

x2 ϕ1

xd ϕ1

ψ1 ψ2
ϕ2○Φ1(x)

Φ1(x) = [ϕ1(x1),⋯, ϕ1(xd)]T ϕ2 = ψ2 ○ ψ1

+f(0) − ωf(√d)
ϕ(x)

Figure 12: An illustration of the NestNet architecture realizing ϕ = ϕ2 ○Φ1 + f(0) − ωf(√d). Here,
ϕ1 is implemented via Proposition B.1; ψ1 ∶ Rd → R is an affine linear function; ψ2 is implemented
via Proposition B.2.

See Figure 12 for an illustration of the NestNet architecture realizing ϕ = ϕ2 ○Φ1 + f(0) − ωf(√d).688
The details of the steps mentioned above can be found below.689

Step 1∶ Divide [0,1]d into {Qβ}β∈{0,1,⋯,K−1}d and Ω([0,1]d,K, δ).690
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Define xβ ∶= β/K and691

Qβ ∶= {x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xi ∈ [βi

K
, βi+1

K
− δ ⋅ 1{βi≤K−2}], i = 1,2,⋯, d}692

for each d-dimensional index β = [β1, β2,⋯, βd]T ∈ {0,1,⋯,K−1}d. Recall that Ω([0,1]d,K, δ) is693
the trifling region defined in Equation (5). Apparently, xβ = β/K is the vertex of Qβ with minimum694 ∥ ⋅ ∥1 norm and695 [0,1]d = ( ∪β∈{0,1,⋯,K−1}d Qβ)⋃Ω([0,1]d,K, δ).696

See Figure 13 for illustrations.697
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Figure 13: Illustrations of Ω([0,1]d,K, δ), Qβ, and xβ for β ∈ {0,1,⋯,K − 1}d. (a) K = 4 and
d = 1. (b) K = 4 and d = 2.

Step 2∶ Construct Φ1 mapping x ∈ Qβ to β.698

Note that699

K − 1 = ⌊n(s+1)/d⌋ − 1 ≤ ns+1 ≤ (ns)2 ≤ 4(ns) = 22(ns) ≤ 2(2n)s = 2ñs

,700

where ñ = 2n. By Proposition B.1 with r = s and J =K − 1 ≤ 2ñs = 2ñr

therein, there exists701

ϕ̃1 ∈ NNs{36(s + 7)ñ} = NNs{36(s + 7)(2n)} = NNs{72(s + 7)n}702

such that703

ϕ̃1(x) = ⌊x⌋ for any x ∈ K−2⋃
k=0
[k, k + 1 − δ̃] with δ̃ =Kδ704

and705
ϕ̃1(x) =K − 1 for any x ∈ [K − 1, K].706

Define ϕ1(x) ∶= ϕ̃1(Kx) for any x ∈ R. Then, we have ϕ1 ∈ NNs{72(s + 7)n} and707

ϕ1(x) = k if x ∈ [ k
K
, k+1

K
− δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.708

It follows that ϕ1(xi) = βi if x = [x1, x2,⋯, xd]T ∈ Qβ for each β = [β1, β2,⋯, βd]T .709

By defining710

Φ1(x) ∶= [ϕ1(x1), ϕ1(x2), ⋯, ϕ1(xd)]T for any x = [x1, x2,⋯, xd]T ∈ Rd,711

we have712
Φ1(x) = β if x ∈ Qβ for each β ∈ {0,1,⋯,K − 1}d. (6)713

Step 3∶ Construct ϕ2 mapping β approximately to f̃(xβ).714

The construction of the sub-network implementing ϕ2 is essentially based on Proposition B.2. To715
meet the requirements of applying Proposition B.2, we first define two auxiliary sets A1 and A2 as716

A1 ∶= { i
Kd−1 + k

2Kd ∶ i = 0,1,⋯,Kd−1 − 1 and k = 0,1,⋯,K − 1}717
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and718 A2 ∶= { i
Kd−1 + K+k

2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1}.719

Clearly,720 A1 ∪A2 ∪ {1} = { j
2Kd ∶ j = 0,1,⋯,2Kd} and A1 ∩A2 = ∅.721

See Figure 13 for an illustration of A1 and A2. Next, we further divide this step into three sub-steps.722

Step 3.1∶ Construct ψ1 bijectively mapping {0,1,⋯,K − 1}d to A1.723

Inspired by the binary representation, we define724

ψ1(x) ∶= xd
2Kd

+ d−1∑
i=1

xi
Ki

for any x = [x1, x2,⋯, xd]T ∈ Rd. (7)725

Then ψ1 is a linear function bijectively mapping the index set {0,1,⋯,K − 1}d to726

{ψ1(β) ∶ β ∈ {0,1,⋯,K − 1}d} = { βd

2Kd + d−1∑
i=1

βi

Ki ∶ β ∈ {0,1,⋯,K − 1}d}
= { i

Kd−1 + k
2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1} = A1.

727

Step 3.2∶ Construct g to satisfy g ○ ψ1(β) = f̃(xβ) and to meet the requirements of applying728
Proposition B.2.729

Let g ∶ [0,1]→ R be a continuous piecewise linear function with a set of breakpoints730

{ j
2Kd ∶ j = 0,1,⋯,2Kd} = A1 ∪A2 ∪ {1}.731

Moreover, the values of g at these breakpoints are assigned as follows:732

• At the breakpoint 1, let g(1) = f̃(1), where 1 = [1,1,⋯,1]T ∈ Rd.733

• For the breakpoints in A1 = {ψ1(β) ∶ β ∈ {0,1,⋯,K − 1}d}, we set734

g(ψ1(β)) = f̃(xβ) for any β ∈ {0,1,⋯,K − 1}d. (8)735

• The values of g at the breakpoints in A2 are assigned to reduce the variation of g, which is a736
requirement of applying Proposition B.2. Recall that737

{ i
Kd−1 − K+1

2Kd ,
i

Kd−1 } ⊆ A1 ∪ {1} for i = 1,2,⋯,Kd−1,738

implying the values of g at i
Kd−1 − K+1

2Kd and i
Kd−1 have been assigned in the previous739

cases for. Thus, the values of g at the breakpoints in A2 can be successfully assigned740
by letting g linear on each interval [ i

Kd−1 − K+1
2Kd ,

i
Kd−1 ] for i = 1,2,⋯,Kd−1 since A2 ⊆741

⋃Kd−1

i=1 [ i
Kd−1 − K+1

2Kd ,
i

Kd−1 ]. See Figure 14 for an illustration.742
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Figure 14: An illustration of A1, A2, {1}, and g for K = 4 and d = 2.
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Apparently, such a function g exists. See Figure 14 for an illustration of g. It is easy to verify that743

∣g( j
2Kd ) − g( j−1

2Kd )∣ ≤max{ωf̃(√d
K
), ωf̃ (

√
d)

K
} ≤ ωf̃(√d

K
) = ωf(√d

K
)744

for j = 1,2,⋯,2Kd. Moreover, we have745

0 ≤ g( j
2Kd ) ≤ 2ωf(√d) for j = 0,1,⋯,2Kd.746

Step 3.3∶ Construct ψ2 approximating g well on A1 ∪A2 ∪ {1}.747

Observe that748

2Kd = 2(⌊n(s+1)/d⌋)d ≤ 2ns+1 ≤ (2n)s+1 = ñs+1, where ñ = 2n.749

By Proposition B.2 with yj = g( j
2K2 ) and ε = ωf(√d

K
) > 0 therein, there exists750

ψ̃2 ∈ NNs{350(s + 7)2(ñ + 1)} = NNs{350(s + 7)2(2n + 1)}751

such that752 ∣ψ̃2(j) − g( j
2Kd )∣ ≤ ωf(√d

K
) for j = 0,1,⋯,2Kd − 1753

and754

0 ≤ ψ̃2(x) ≤max{g( j
2Kd ) ∶ j = 0,1,⋯,2Kd − 1} ≤ 2ωf(√d) for any x ∈ R.755

By defining ψ2(x) ∶= ψ̃2(2Kdx) for any x ∈ R, we have756

0 ≤ ψ2(x) = ψ̃2(2Kdx) ≤ 2ωf(√d) for any x ∈ R (9)757

and758 ∣ψ2( j
2Kd ) − g( j

2Kd )∣ = ∣ψ̃2(j) − g( j
2Kd )∣ ≤ ωf(√d

K
) for j = 0,1,⋯,2Kd − 1. (10)759

Let us end Step 3 by defining the desired function ϕ2 as ϕ2 ∶= ψ2 ○ ψ1. Recall that ψ1(β) = A1 ⊆760 { j
2Kd ∶ j = 0,1,⋯,2Kd − 1}. Then, by Equations (8) and (10), we have761

∣ϕ2(β) − f̃(xβ)∣ = ∣ψ2(ψ1(β)) − g(ψ1(β))∣ ≤ ωf(√d
K
) (11)762

for any β ∈ {0,1,⋯,K − 1}d. Moreover, by Equation (9) and ϕ2 = ψ2 ○ ψ1, we have763

0 ≤ ϕ2(x) = ψ2(ψ(x)) ≤ 2ωf(√d) for any x ∈ Rd. (12)764

Step 4∶ Construct the final network to implement the desired function ϕ.765

Define ϕ ∶= ϕ2 ○Φ1 + f(0) − ωf(√d). By Equation (12), we have766

0 ≤ ϕ2 ○Φ1(x) ≤ 2ωf(√d)767

for any x ∈ Rd, implying768

f(0) − ωf(√d) ≤ ϕ(x) = ϕ2 ○Φ1(x) + f(0) − ωf(√d) ≤ f(0) + ωf(√d).769

It follows that ∥ϕ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(√d).770

Next, let us estimate the approximation error. Recall that f = f̃ + f(0) − ωf(√d) and ϕ = ϕ2 ○Φ1 +771
f(0) − ωf(√d). By Equations (6) and (11), for any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d, we have772

∣f(x) − ϕ(x)∣ = ∣f̃(x) − ϕ2 ○Φ1(x)∣ = ∣f̃(x) − ϕ2(β)∣
≤ ∣f̃(x) − f̃(xβ)∣ + ∣f̃(xβ) − ϕ2(β)∣
≤ ωf(√d

K
) + ωf(√d

K
) ≤ 2ωf(2√dn−(s+1)/d),

773

23



where the last inequality comes from the fact774

K = ⌊n(s+1)/d⌋ ≥ n(s+1)/d/2 for n ∈ N+.775

Recall the fact ωf(j ⋅ r) ≤ j ⋅ ωf(r) for any j ∈ N+ and r ∈ [0,∞). Therefore, for any x ∈776 ⋃β∈{0,1,⋯,K−1}d Qβ=[0,1]d/Ω([0,1]d,K, δ), we have777

∣ϕ(x) − f(x)∣ ≤ 2ωf(2√dn−(s+1)/d) ≤ 2⌈2√d⌉ωf(n−(s+1)/d)
≤ 6√dωf(n−(s+1)/d).778

x1

x2

...
xd

ϕ1(x1) = β1

ϕ1(x2) = β2

...
ϕ1(xd) = βd

ψ1(β) ψ2 ◦ ψ1(β) = ϕ2(β) = ϕ2 ◦Φ1(x) ϕ(x)
+f(0)− ωf (

√
d)

ϕ1

ϕ1

ϕ1

ψ1 ψ2

Block 1 Block 2 Block 3

Figure 15: An illustration of the final NestNet realizing ϕ = ϕ2 ○Φ1 + f(0) − ωf(√d) for x =[x1, x2,⋯, xd]T ∈ Qβ for each β ∈ {0,1,⋯,K − 1}d.

It remains to estimate the number of parameters in the NestNet realizing ϕ, which is shown in779
Figure 15. Recall that ϕ1 ∈ NNs{72(s + 7)n}, ψ1 is an affine linear map, and ψ2 ∈ NNs{350(s +780

7)2(2n + 1)}. Therefore, ϕ = ϕ2 ○Φ1 + f(0) − ωf(√d) can be realized by a height-s NestNet with781
at most782

d2(72(s + 7)n)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Block 1

+ (d + 1)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Block 2

+ 350(s + 7)2(2n + 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Block 3

+ 1 ≤ 355d2(s + 7)2(2n + 1)783

parameters, which means we finish the proof of Theorem A.1.784

C Proof of Proposition B.1785

The key point of proving Proposition B.1 is the composition architecture of neural networks. To786
simplify the proof, we first establish several lemmas for proving Proposition B.1 in Section C.1. Next,787
we present the detailed proof of Proposition B.1 in Section C.2 based on the lemmas established in788
Section C.1.789

C.1 Lemmas for proving Proposition B.1790

Lemma C.1. Given any n, r ∈ N+ and δ ∈ (0, 1
C(r,n)) with C(r, n) = ∏r

i=1 2
ni

, there exists791

ϕ ∈ NNr{(12r + 68)n} such that792

ϕ(x) = ⌊x⌋ for any x ∈ 2nr
−1⋃

ℓ=0
[ℓ, ℓ + 1 −C(r, n) ⋅ δ].793

We will prove Lemma C.1 by induction. To simplify the proof, we introduce two lemmas for the base794
case and the induction step.795

First, we introduce the following lemma for the base case of proving Lemma C.1.796

Lemma C.2. Given any n ∈ N+ and δ ∈ (0,1), there exists a function ϕ realized by a ReLU network797
of width 4 and depth 4n − 1 such that798

ϕ(x) = ⌊x⌋ for any x ∈ 2n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ].799
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Proof. Set δ̃ = 2−nδ and define800

ϕ0(x) ∶= σ(x − 1 + δ̃) − σ(x − 1)
δ̃

for x ∈ R.801

Clearly, ϕ0 can be realized by a one-hidden-layer ReLU network of width 2. Moreover, we have802

ϕ0(x) = σ(x − 1 + δ̃) − σ(x − 1)
δ̃

= 0 − 0
δ̃
= 0 if x ∈ [0,1 − δ̃]803

and804

ϕ0(x) = σ(x − 1 + δ̃) − σ(x − 1)
δ̃

= (x − 1 + δ̃) − (x − 1)
δ̃

= 1 if x ∈ [1,2 − δ̃].805

By fixing806

x ∈ 2n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ] = 2n−1⋃

ℓ=0
[ℓ, ℓ + 1 − 2nδ̃],807

we have ⌊x⌋ ∈ {0,1,⋯,2n − 1}, implying that ⌊x⌋ can be represented as808

⌊x⌋ = n−1∑
i=0

zi2
i for z0, z1,⋯, zn−1 ∈ {0,1}.809

Then, for j = 0,1,⋯, n − 1, we have ∑j
i=0 zi2

i + 1 ≤ zj2j +∑j−1
i=0 2i + 1 ≤ zj2j + 2j , implying810

x−∑n−1
i=j+1 zi2

i

2j
∈ [ ⌊x⌋−∑n−1

i=j+1 zi2
i

2j
,
⌊x⌋+1−2nδ̃−∑n−1

i=j+1 zi2
i

2j
] = [∑j

i=0 zi2
i

2j
,
∑j

i=0 zi2
i+1−2nδ̃

2j
]

⊆ [ zj2j
2j
,
zj2

j+2j−2nδ̃
2j

] ⊆ [zj , zj + 1 − δ̃].811

It follows that812

ϕ0(x−∑n−1
i=j+1 zi2

i

2j
) = zj for j = 0,1,⋯, n − 1.813

Therefore, the desired function ϕ can be realized by the network in Figure 16.814
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Figure 16: An illustration of the NestNet realizing ϕ. Here, ϕ0 represent an one-hidden-layer ReLU
network of width 2.

Clearly,815

ϕ(x) = ⌊x⌋ for any x ∈ 2n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ].816

Moreover, ϕ can be realized by a ReLU network of width 1 + 2 + 1 = 4 and depth (1 + 1 + 1) + (1 +817
1 + 1 + 1)(n − 1) = 4n − 1. Hence, we finish the proof of Lemma C.2.818

Next, we introduce the following lemma for the induction step of proving Lemma C.1.819

Lemma C.3. Given any n, s, n̂ ∈ N+ and δ ∈ (0, 1

2ns+1 ), if g ∈ NNs{n̂} satisfying820

g(x) = ⌊x⌋ for any x ∈ 2ns
−1⋃

ℓ=0
[ℓ, ℓ + 1 − δ].821

Then there exists ϕ ∈ NNs+1{n̂ + 12n − 7} such that822

ϕ(x) = ⌊x⌋ for any x ∈ 2ns+1
−1⋃

ℓ=0
[ℓ, ℓ + 1 − 2ns+1

δ].823
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Proof. By setting m = 2ns

, we have mn = (2ns)n = 2(ns)n = 2ns+1

and824

g(x) = ⌊x⌋ for any x ∈ m−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ]. (13)825

By fixing826

x ∈ 2ns+1
−1⋃

ℓ=0
[ℓ, ℓ + 1 − 2ns+1

δ] = mn−1⋃
ℓ=0
[ℓ, ℓ + 1 −mnδ],827

we have ⌊x⌋ ∈ {0,1,⋯,mn − 1}, implying that ⌊x⌋ can be represented as828

⌊x⌋ = n−1∑
i=0

zim
i for z0, z1,⋯, zn−1 ∈ {0,1,⋯,m − 1}.829

Then, for j = 0,1,⋯, n − 1, we have830

j∑
i=0
zim

i + 1 ≤ zjmj + j−1∑
i=0
(m − 1)mi + 1 = zjmj +mj ,831

implying832

x−∑n−1
i=j+1 zim

i

mj ∈ [ ⌊x⌋−∑n−1
i=j+1 zim

i

mj ,
⌊x⌋+1−mnδ−∑n−1

i=j+1 zim
i

mj ]
= [∑j

i=0 zim
i

mj ,
∑j

i=0 zim
i+1−mnδ

mj ]
⊆ [ zjmj

mj ,
zjm

j+mj−mnδ

mj ] ⊆ [zj , zj + 1 − δ].
833

It follows that834

g(x−∑n−1
i=j+1 zim

i

mj ) = zj for j = 0,1,⋯, n − 1.835

Therefore, the desired function ϕ can be realized by the network in Figure 17.836
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i=n−3 zim

i
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zim
i = ⌊x⌋ =: ϕ(x)

Figure 17: An illustration of the NestNet realizing ϕ. Here, g is regarded as an activation function.

Clearly,837

ϕ(x) = ⌊x⌋ for any x ∈ mn−1⋃
ℓ=0
[ℓ, ℓ + 1 −mnδ] = 2n

s+1
−1⋃

ℓ=0
[ℓ, ℓ + 1 − 2ns+1

δ].838

Moreover, the fact g ∈ NNs{n̂} implies that ϕ can be realized by a height-(s + 1) NestNet with at839
most840 (1 + 1)2 + (2 + 1)3 + (3 + 1)3(n − 2) + (3 + 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

outer network

+ n̂®
g

= n̂ + 12n − 7841

parameters. Hence, we finish the proof of Lemma C.3.842

With Lemmas C.2 and C.3 in hand, we are ready to prove Lemma C.1.843

Proof of Lemma C.1. We will use the mathematical induction to prove Lemma C.1. First, we consider844
the base case r = 1. By Lemma C.2, there exists a function ϕ realized by a ReLU network of width 4845
and depth 4n − 1 such that846

ϕ(x) = ⌊x⌋ for any x ∈ 2n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ] ⊆ 2n−1⋃

ℓ=0
[ℓ, ℓ + 1 −C(r, n) ⋅ δ] with r = 1.847
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Moreover, the network realizing ϕ has at most (4 + 1)4((4n − 1) + 1) = 80n parameters, implying848
ϕ ∈ NN1{80n} ⊆ NN1{(12r + 68)n} for r = 1. Thus, the base case r = 1 is proved.849

Next, assume Lemma C.1 holds for r = s ∈ N+. We need to show it is also true for r = s + 1. By the850
induction hypothesis, there exists g ∈ NNs{(12s + 68)n} such that851

g(x) = ⌊x⌋ for any x ∈ 2ns
−1⋃

ℓ=0
[ℓ, ℓ + 1 −C(s, n) ⋅ δ].852

By Lemma C.3 with n̂ = (12s + 68)n therein and setting δ̂ = C(s, n) ⋅ δ, there exists853

ϕ ∈ NNs+1{n̂ + 12n − 7} ⊆ NNs+1{(12s + 68)n + 12n − 7} ⊆ NNs+1{(12(s + 1) + 68)n}854

such that855

ϕ(x) = ⌊x⌋ for any x ∈ 2ns+1
−1⋃

ℓ=0
[ℓ, ℓ + 1 − 2ns+1

δ̂ ].856

Observe that857

2n
s+1

δ̂ = 2ns+1

C(s, n) ⋅ δ = 2ns+1( s∏
i=1

2n
i) ⋅ δ = ( s+1∏

i=1
2n

i) ⋅ δ = C(s + 1, n) ⋅ δ.858

It follows that859

ϕ(x) = ⌊x⌋ for any x ∈ 2ns+1
−1⋃

ℓ=0
[ℓ, ℓ + 1 −C(s + 1, n) ⋅ δ].860

Thus, Lemma C.1 is proved for the case r = s + 1, which means we finish the induction step. Hence,861
by the principle of induction, we complete the proof of Lemma C.1.862

C.2 Detailed proof of Proposition B.1863

Set C(r, n) =∏r
i=1 2

ni

and δ̃ = δ
C(r,n) ∈ (0, 1

C(r,n)). By Lemma C.1, there exists ϕ0 ∈ NNr{(12r+864

68)n} such that865

ϕ0(x) = ⌊x⌋ for any x ∈ 2nr
−1⋃

ℓ=0
[ℓ, ℓ + 1 −C(r, n) ⋅ δ̃] = 2n

r
−1⋃

ℓ=0
[ℓ, ℓ + 1 − δ].866

It follows from J ≤ 2nr

that867

ϕ0(x) = ⌊x⌋ for any x ∈ J−1⋃
j=0
[j, j + 1 − δ].868

Set869

M̃ = max
x∈[J,J+1]

∣ϕ0(x)∣ and M = M̃ + J
δ

.870

Then, for any x ∈ [J, J + 1], we have871

ϕ0(x) +Mσ(x − (J − δ)) ≥ −M̃ +Mδ = −M̃ + (M̃ + J) = J,872

implying873

min{ϕ0(x) +Mσ(x − (J − δ)), J} = J.874

Moreover, for any x ∈ ⋃J−1
j=0 [j, j + 1 − δ], we have σ(x − (J − δ)) = 0, implying875

min{ϕ0(x) +Mσ(x − (J − δ)), J} =min{ϕ0(x), J} =min{⌊x⌋, J} = ⌊x⌋.876

Therefore, by defining877

ϕ(x) ∶=min{ϕ0(x) +Mσ(x − (J − δ)), J} for any x ∈ J⋃
j=0
[j, j + 1 − δ ⋅ 1{j≤J−1}],878
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Figure 18: An illustration of the network realizing ϕ for any x ∈ ⋃J
j=0 [j, j + 1 − δ ⋅ 1{j≤J−1}] based

on the fact min{a, b} = 1
2
(σ(a + b) − σ(−a − b) − σ(a − b) − σ(−a + b)).

we have879

ϕ(x) = ⌊x⌋ for any x ∈ J−1⋃
j=0
[j, j + 1 − δ]880

and881
ϕ(x) = J for any x ∈ [J, J + 1].882

Moreover, ϕ can be realized by the network in Figure 18. The fact ϕ0 ∈ NNr{(12r + 68)n} implies883
that ϕ can be realized by a height-r NestNet with at most884

3((12r + 68)n)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Block 1

+ (2 + 1)4 + (4 + 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Block 2

≤ 36(r + 7)n885

parameters. So we finish the proof of Proposition B.1.886

D Proof of Proposition B.2887

The key idea of proving Proposition B.2 is the bit extraction technique proposed in [6]. First, we888
establish several lemmas for proving Proposition B.2 and give their proofs in Section D.1 except for889
Lemma D.2, the proof of which is placed in Section D.3 since it is complicated. Next, we present the890
detailed proof of Proposition B.2 in Section D.2 based on the lemmas established in Section D.1.891

D.1 Lemmas for proving Proposition B.2892

To simplify the proof of Proposition B.2, we establish several lemmas as the intermediate step. We893
first establish a lemma to show that any continuous piecewise linear functions on R can be realized894
by one-hidden-layer ReLU networks.895

Lemma D.1. Given any p ∈ N+, any continuous piecewise linear function on R with at most p896
breakpoints can be realized by a one-hidden-layer ReLU network of width p + 1.897

Proof. We will use the mathematical induction to prove Lemma D.1. First, we consider the base898
case p = 1. Suppose f ∶ R → R is a continuous piecewise linear function on R with at most p = 1899
breakpoints. Then there exist a1, a2, x0 ∈ R such that900

f(x) = {a1(x − x0) + f(x0) if x ≥ x0
a2(x0 − x) + f(x0) if x < x0.901

Thus, f(x) = a1σ(x − x0) + a2σ(x0 − x) + f(x0) for any x ∈ R, implying f can be realized by a902
one-hidden-layer ReLU network of width 2 = p + 1 for p = 1. Hence, Lemma D.1 is proved for the903
case p = 1.904

Now, assume Lemma D.1 holds for p = k ∈ N+, we would like to show it is also true for p = k + 1.905
Suppose f ∶ R→ R is a continuous piecewise linear function on with at most k + 1 breakpoints. We906
may assume the biggest breakpoint of f is x0 since it is trivial for the case that f has no breakpoint.907
Denote the slopes of the linear pieces left and right next to x0 by a1 and a2, respectively. Define908

f̃(x) ∶= f(x) − (a2 − a1)σ(x − x0) for any x ∈ R.909
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Then f̃ has at most k breakpoints. By the induction hypothesis, f̃ can be realized by a one-hidden-910
layer ReLU network of width k + 1. Thus, there exist w0,j , b0,j ,w1,j , b1 for j = 1,2,⋯, k + 1 such911
that912

f̃(x) = k+1∑
j=1

w1,jσ(w0,jx + b0,j) + b1 for any x ∈ R.913

Therefore, for any x ∈ R, we have914

f(x) = (a2 − a1)σ(x − x0) + f̃(x) = (a2 − a1)σ(x − x0) + k+1∑
j=1

w1,jσ(w0,jx + b0,j) + b1,915

implying f can be realized by a one-hidden-layer ReLU network of width k + 2 = (k + 1) + 1 = p + 1916
for p = k + 1. Thus, we finish the induction process. Therefore, by the principle of induction, we917
complete the proof of Lemma D.1.918

Next, we establish a lemma to extract the sum of ns bits via a height-s NestNet withO(n) parameters.919

Lemma D.2. Given any n, s ∈ N+, there exists ϕ ∈ NNs{57(s + 7)2(n + 1)} such that: For any920
θ1, θ2,⋯, θns ∈ {0,1}, we have921

ϕ(k + bin0.θ1θ2⋯θns) = k∑
ℓ=1

θℓ for k = 0,1,⋯, ns. (14)922

The proof of Lemma D.2 is complicated and hence is placed in Section D.3. Then, based on923
Lemma D.2, we establish a new lemma, Lemma D.3 below, which is a key intermediate conclusion924
to prove Proposition B.2.925

Lemma D.3. Given any n, s ∈ N+ and θi,ℓ ∈ {0,1} for i = 0,1,⋯, n−1 and ℓ = 0,1,⋯,m−1, where926
m = ns, there exists ϕ ∈ NNs{58(s + 7)2(n + 1)} such that927

ϕ(j) = k∑
ℓ=0

θi,ℓ for j = 0,1,⋯, nm − 1,928

where (i, k) is the unique index pair satisfying j = im + k with i ∈ {0,1,⋯, n − 1} and k ∈929 {0,1,⋯,m − 1}.930

Proof. We first construct a network to extract the unique index pair (i, k) from j ∈ {0,1,⋯, nm − 1}931
with the following condition932

j = im + k with i ∈ {0,1,⋯, n − 1} and k ∈ {0,1,⋯,m − 1}.933

There exists a continuous piecewise linear function ϕ1 with 2n breakpoints such that934

ϕ1(x) = ⌊x⌋ for any x ∈ n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ] with δ = 1

2m
.935

By Lemma D.1, ϕ1 can be realized by a one-hidden-layer ReLU network of width 2n + 1. Moreover,936
for any j ∈ {0,1,⋯, nm − 1}, we have937

ϕ1( j
m
) = ⌊ j

m
⌋ = i and j −mϕ1( j

m
) = j −mi = k,938

where (i, k) is the unique index pair satisfying j = im + k with i ∈ {0,1,⋯, n − 1} and k ∈939 {0,1,⋯,m − 1}. By defining940

Φ1(x) ∶= [ ϕ1( x
m
)

x −mϕ1( x
m
) ] for any x ≥ 0,941

we have942

Φ1(j) = [ ϕ1( j
m
)

j −mϕ1( j
m
) ] = [ ik ] for j = 0,1,⋯, nm − 1,943

where (i, k) is the unique index pair satisfying j = im+k with i ∈ {0,1,⋯, n−1} and k ∈ {0,1,⋯,m−944
1}. Moreover, Φ1 can be realized by a one-hidden-layer ReLU network of width 2(2n+1)+1 = 4n+3.945
Hence, the network realizing Φ1 has at most (1+1)(4n+3)+((4n+3)+1)2 = 16n+14 parameters.946
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Define947
zi ∶= bin0.θi,0θi,1⋯θi,m−1 for i = 0,1,⋯, n − 1.948

There exists a continuous piecewise linear function ϕ̃2 with n breakpoints such that949

ϕ̃2(i) = zi for i = 0,1,⋯, n − 1.950

By Lemma D.1, ϕ̃2 can be realized by a one-hidden-layer ReLU network of width n + 1.951

By Lemma D.2, there exists ϕ3 ∈ NNs{57(s+ 7)2(n+ 1)} such that: For any ξ1, ξ2,⋯, ξns ∈ {0,1},952
we have953

ϕ3(k + bin0.ξ1ξ2⋯ξns) = k∑
ℓ=1

ξℓ for k = 1,2,⋯, ns.954

It follows from m = ns that, for any ξ0, ξ1,⋯, ξm−1 ∈ {0,1}, we have955

ϕ3(k + bin0.ξ0ξ1⋯ξm−1) = k∑
ℓ=1

ξℓ−1 = k−1∑
ℓ=0

ξℓ for k = 1,2,⋯,m,956

implying957

ϕ3(k + 1 + bin0.ξ0ξ1⋯ξm−1) = k∑
ℓ=0

ξℓ for k = 0,1,⋯,m − 1.958

Then, for i = 0,1,⋯, n − 1 and k = 0,1,⋯,m − 1, we have959

ϕ3(k + 1 + ϕ̃2(i)) = ϕ2(k + 1 + zi) = ϕ3(k + 1 + bin0.θi,0θi,1⋯θi,m−1) = k∑
ℓ=0

θi,ℓ.960

By defining961
ϕ2(x, y) ∶= y + 1 + ϕ̃2(x) for any x, y ∈ [0,∞)962

and ϕ ∶= ϕ3 ○ ϕ2 ○Φ1, we have963

ϕ(j) = ϕ3 ○ ϕ2 ○Φ1(j) = ϕ3 ○ ϕ2(i, k) = ϕ3(k + 1 + ϕ̃2(i)) = k∑
ℓ=0

θi,ℓ964

for j = 0,1,⋯, nm − 1, where (i, k) is the unique index pair satisfying j = im + k with i ∈965 {0,1,⋯, n − 1} and k ∈ {0,1,⋯,m − 1}.966

It remains to estimate the number of parameters in the NestNet realizing ϕ = ϕ3 ○ ϕ2 ○Φ1. Observe967
that ϕ2 can be realized by a one-hidden-layer ReLU network of width (n + 1) + 1 = n + 2. Then, the968
network realizing ϕ2 has at most (2 + 1)(n + 2) + ((n + 2) + 1) = 4n + 9 parameters. Therefore, ϕ969
can be realized by a height-s NestNet with at most970

(16n + 14)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Φ1

+ (4n + 9)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
ϕ2

+57(s + 7)2(n + 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ϕ3

≤ 58(s + 7)2(n + 1)971

parameters, which means we complete the proof of Lemma D.3.972

D.2 Detailed proof of Proposition B.2973

We may assume J = mn = ns+1 with m = ns since we can set yJ−1 = yJ = ⋯ = ymn−1 if J < mn.974
Define975

aj ∶= ⌊yj/ε⌋ for j = 0,1,⋯, nm − 1.976

Our goal is to construct a function ϕ such that ϕ(j) = ajε for j = 0,1,⋯, nm − 1.977

For i = 0,1,⋯, n − 1, we define978

bi,ℓ = {0 for ℓ = 0
aim+ℓ − aim+ℓ−1 for ℓ = 1,2,⋯,m − 1.979

Since ∣yj − yj−1∣ ≤ ε for all j, we have ∣aj − aj−1∣ ≤ 1. It follows that bi,ℓ ∈ {−1,0,1} for i =980
0,1,⋯, n − 1 and ℓ = 0,1,⋯,m − 1. Hence, there exist ci,ℓ ∈ {0,1} and di,ℓ ∈ {0,1} such that981

bi,ℓ = ci,ℓ − di,ℓ for i = 0,1,⋯, n − 1 and ℓ = 0,1,⋯,m − 1.982
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Since any j ∈ {0,1,⋯, nm − 1} can be uniquely indexed as j = im + k with i ∈ {0,1,⋯, n − 1} and983
k ∈ {0,1,⋯,m − 1}, we have984

aj = aim+k = aim + k∑
ℓ=1
(aim+ℓ − aim+ℓ−1) = aim + k∑

ℓ=1
bi,ℓ = aim + k∑

ℓ=0
bi,ℓ

= aim + k∑
ℓ=0

ci,ℓ − k∑
ℓ=0

di,ℓ.

985

There exists a continuous piecewise linear function ϕ1 with 2n breakpoints such that986

ϕ1(x) = aim for any x ∈ [im, im +m − 1] and i = 0,1,⋯, n − 1.987

Then, we have988
ϕ1(j) = aim for j = 0,1,⋯, nm − 1,989

where (i, k) is the unique index pair satisfying j = im + k with i ∈ {0,1,⋯, n − 1} and k ∈990 {0,1,⋯,m − 1}. By Lemma D.1, ϕ1 can be realized by a one-hidden-layer ReLU network of width991
2n + 1.992

By Lemma D.3, there exist ϕ2, ϕ3 ∈ NNs{58(s + 7)2(n + 1)} such that993

ϕ2(j) = k∑
ℓ=0

ci,ℓ and ϕ3(j) = k∑
ℓ=0

di,ℓ for j = 0,1,⋯, nm − 1,994

where (i, k) is the unique index pair satisfying j = im + k with i ∈ {0,1,⋯, n − 1} and k ∈995 {0,1,⋯,m − 1}.996

Hence, by indexing j ∈ {0,1,⋯, nm−1} as j = im+k for i = {0,1,⋯, n−1} and k ∈ {0,1,⋯,m−1},997
we have998

aj = aim + k∑
ℓ=0

ci,ℓ − k∑
ℓ=0

di,ℓ = ϕ1(j) + ϕ2(j) − ϕ3(j).999

By defining1000

ϕ̃(x) ∶= (ϕ1(x) + ϕ2(x) + ϕ3(x))ε for any x ∈ R,1001

we have ϕ̃(j) = ajε for j = 0,1,⋯, nm−1 and ϕ̃ can be realized by the height-s NestNet in Figure 19.1002

j

ϕ2(j)

j

ϕ1(j) + ϕ2(j)

j

(
ϕ1(j) + ϕ2(j) + ϕ3(j)

)
ε = ajε =: ϕ̃(j)

ϕ2 ϕ1 εϕ3

Block 1 Block 2 Block 3

Figure 19: An illustration of the NestNet realizing ϕ̃ for j = 0,1,⋯, J − 1.

In Figure 19, Block 1 or 3 has at most1003

3(58(s + 7)2(n + 1)) = 174(s + 7)2(n + 1)1004

parameters; Block 2 is of width (2n + 1) + 2 = 2n + 3 and depth 1, and hence has at most1005

(2 + 1)(2n + 3) + ((2n + 3) + 1)2 = 10n + 171006

parameters. Then, ϕ̃ can be realized by a height-s ReLU NestNet with at most1007

2(174(s + 7)2(n + 1)) + 10n + 17 = 349(s + 7)2(n + 1)1008

parameters. Note that ϕ̃ may not be bounded. Thus, we define1009

ψ(x) ∶=min{σ(x), M} for any x ∈ R,1010
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where1011
M =max{yj ∶ j = 0,1,⋯, nm − 1}.1012

Then, the desired function ϕ can be define via ϕ ∶= ψ ○ ϕ̃. Clearly,1013

0 ≤ ϕ(x) ≤M =max{yj ∶ j = 0,1,⋯, J − 1} for any x ∈ R.1014

It follows from 0 ≤ ajε = ⌊yj/ε⌋ε ≤ yj ≤M for j = 0,1,⋯, J − 1 that1015

ϕ(j) = ψ ○ ϕ̃(j) = ψ(ajε) =min{σ(ajε), M} = ajε,1016

implying1017

∣ϕ(j) − yj ∣ = ∣ajε − yj ∣ = ∣⌊yj/ε⌋ε − yj ∣ = ∣⌊yj/ε⌋ − yj/ε∣ε ≤ ε.1018

It remains to show that ϕ can be realized by a height-s ReLU NestNet with the desired size. Clearly,1019
ψ can be realized by the network in Figure 20, which is of width 4 and depth 2.1020

x σ(x)

σ
(
σ(x) +M

)

σ
(
− σ(x)−M

)

σ
(
σ(x)−M

)

σ
(
− σ(x) +M

)

min
{
σ(x), M

}
=: ψ(x)

Figure 20: An illustration of the network realizing ψ based on the fact min{a, b} = 1
2
(σ(a + b) −

σ(−a − b) − σ(a − b) − σ(−a + b)).
Therefore, ϕ can be realized by a height-s ReLU NestNet with at most1021

349(s + 7)2(n + 1) + (4 + 1)4(2 + 1) ≤ 350(s + 7)2(n + 1)1022

parameters. Hence, we finish the proof of Proposition B.2.1023

D.3 Proof of Lemma D.2 for Proposition B.21024

We will use the mathematical induction to prove Lemma D.2. To this end, we introduce two lemmas1025
for the base case and the induction step.1026

Lemma D.4. Given any n ∈ N+, there exists a function ϕ realized by a ReLU network with 128n+2941027
parameters such that: For any θ1, θ2,⋯, θn ∈ {0,1}, we have1028

ϕ(k + bin0.θ1θ2⋯θn) = k∑
ℓ=1

θℓ for k = 0,1,⋯, n. (15)1029

Lemma D.5. Given any n, r, n̂ ∈ N+, if g ∈ NNr{n̂} satisfying1030

g(p + bin0.ξ1ξ2⋯ξnr) = p∑
j=1

ξj for any ξ1, ξ2,⋯, ξnr ∈ {0,1} and p = 0,1,⋯, nr, (16)1031

then there exists ϕ ∈ NNr+1{n̂ + 114(r + 7)(n + 1)} such that: For any θ1, θ2,⋯, θnr+1 ∈ {0,1}, we1032
have1033

ϕ(k + bin0.θ1θ2⋯θnr+1) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nr+1.1034

The proofs of Lemmas D.4 and D.5 can be found in Sections D.3.1 and D.3.2, respectively. We1035
remark that the function ϕ in Lemma D.5 is independent of θ1, θ2,⋯, θnm. The proof of Lemma D.21036
mainly relies on Lemma D.4 and repeated applications of Lemma D.5. The details can be found1037
below.1038
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Proof of Lemma D.2. We will use the mathematical induction to prove Lemma D.2. First, let us1039
consider the base case s = 1. By Lemma D.4, there exists a function realized by a ReLU network1040
with 128n + 294 parameters such that: For any θ1, θ2,⋯, θn ∈ {0,1}, we have1041

ϕ(k + bin0.θ1θ2⋯θn) = k∑
ℓ=1

θℓ for k = 0,1,⋯, n.1042

That means Equation (14) holds for s = 1. Moreover, ϕ can also be regarded as a height-1 ReLU1043
NestNet with 128n + 294 ≤ 57(s + 7)2(n + 1) parameters for s = 1, which means Lemma D.2 is1044
proved for the case s = 1.1045

Next, assume Lemma D.2 holds for s = r ∈ N+. We need to show that it is also true for s = r + 1 by1046
applying Lemma D.5. By the induction hypothesis, there exists1047

g ∈ NNr{57(r + 7)2(n + 1)}1048

such that: For any ξ1, ξ2,⋯, ξnr ∈ {0,1}, we have1049

g(k + bin0.ξ1ξ2⋯ξnr) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nr.1050

It follows from m = nr that1051

g(p + bin0.ξ1ξ2⋯ξm) = p∑
j=1

ξj for any ξ1, ξ2,⋯, ξm ∈ {0,1} and p = 0,1,⋯,m,1052

which means g satisfies Equation (16). Then, by Lemma D.5 with m = nr and n̂ = 57(r + 7)2(n+ 1)1053
therein, there exists1054

ϕ ∈ NNr+1{n̂ + 114(r + 7)(n + 1)}1055

such that: For any θ1, θ2,⋯, θnm ∈ {0,1}, we have1056

ϕ(k + bin0.θ1θ2⋯θnm) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nm.1057

It follows from m = nr that, for any θ1, θ2,⋯, θnr+1 ∈ {0,1}, we have1058

ϕ(k + bin0.θ1θ2⋯θnr+1) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nr+1,1059

which means Equation (14) holds for s = r + 1. Moreover, we have1060

n̂ + 114(r + 7)(n + 1) = 57(r + 7)2(n + 1) + 114(r + 7)(n + 1)
= 57(n + 1)((r + 7)2 + 2(r + 7))
≤ 57(n + 1)((r + 7) + 1)2 = 57((r + 1) + 7)2(n + 1).

1061

This implies that1062

ϕ ∈ NNr+1{n̂ + 114(r + 7)(n + 1)} ⊆ NNr+1{57((r + 1) + 7)2(n + 1)}.1063

Thus, we prove Lemma D.2 for the case s = r + 1, which means we finish the induction step. Hence,1064
by the principle of induction, we complete the proof of Lemma D.2.1065

D.3.1 Proof of Lemma D.4 for Lemma D.21066

To simplify the proof of Lemma D.4, we introduce the following lemma.1067

Lemma D.6. Given any n ∈ N+, there exists a function ϕ realized by a ReLU network of width 7 and1068
depth 2n + 1 such that: For any θ1, θ2,⋯, θn ∈ {0,1}, we have1069

ϕ(bin0.θ1θ2⋯θn, k) = k∑
ℓ=1

θℓ for k = 0,1,⋯, n.1070
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Lemma D.6 is the Lemma 3.5 of [35]. The detailed proof can be found therein. With Lemma D.6 in1071
hand, we are ready to prove Lemma D.4.1072

Proof of Lemma D.4. By Lemma D.6, there exists a function ϕ0 realized by a ReLU network of1073
width 7 and depth 2n + 1 such that: For any θ1, θ2,⋯, θn ∈ {0,1}, we have1074

ϕ0(bin0.θ1θ2⋯θn, k) = k∑
ℓ=1

θℓ for k = 1,2,⋯, n.1075

The equation above is not true for k = 0. We will construct ϕ2 such that1076

ϕ2(bin0.θ1θ2⋯θn, k) = k∑
ℓ=1

θℓ for k = 0,1,⋯, n.1077

To this end, we first set1078

M =max{∣ϕ0(x, y)∣ ∶ x ∈ [0,1], y ∈ [0, n]}1079

and define1080

ϕ1(x, y) ∶=min{M + ϕ0(x, y), 2My} for any x ∈ [0,1] and y ∈ [0, n].1081

x

y

M + ϕ0(x, y)

2My

σ

((
M + ϕ0(x, y)

)
+ 2My

)

σ

(
−

(
M + ϕ0(x, y)

)
− 2My

)

σ

((
M + ϕ0(x, y)

)
− 2My

)

σ

(
−

(
M + ϕ0(x, y)

)
+ 2My

)

min
{
M + ϕ0(x, y), 2My

}
=: ϕ1(x, y)

ϕ0

Figure 21: An illustration of the network realizing ϕ1 for any x ∈ [0,1] and y ∈ [0, n] based on the
fact min{a, b} = 1

2
(σ(a + b) − σ(−a − b) − σ(a − b) − σ(−a + b)).

As we can see from Figure 21, ϕ1 can be realized by a ReLU network of width max{7,4} = 7 and1082
depth (2n + 1) + 2 = 2n + 3. Moreover, we have1083

ϕ1(bin0.θ1θ2⋯θn, k) =min{M + ϕ0(bin0.θ1θ2⋯θn, k), 2Mk}
= {M +∑k

ℓ=1 θℓ for k = 1,2,⋯, n
0 for k = 0.1084

Define1085
ϕ2(x, y) ∶= σ(ϕ1(x, y) −M) for any x ∈ [0,1] and y ∈ [0,∞).1086

Then, ϕ2 can be realized by a ReLU network of width 7 and depth (2n + 3) + 1 = 2n + 4. Moreover,1087
we have1088

ϕ2(bin0.θ1θ2⋯θn, k) = σ(ϕ1(bin0.θ1θ2⋯θn, k) −M)
= {σ(∑k

ℓ=1 θℓ) = ∑k
ℓ=1 θℓ for k = 1,2,⋯, n

σ(−M) = 0 for k = 0.1089

That is,1090

ϕ2(bin0.θ1θ2⋯θn, k) = k∑
ℓ=1

θℓ for k = 0,1,⋯, n.1091

Next, we will construct Ψ to extract k and bin0.θ1θ2⋯θn from k + bin0.θ1θ2⋯θn. It is easy to1092
construct a continuous piecewise linear function ψ ∶ R→ R with 2n breakpoints satisfying1093

ψ(x) = ⌊x⌋ for any x ∈ n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ] with δ = 2−n.1094
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By Lemma D.1 with p = 2n therein, ψ can be realized by a one-hidden-layer ReLU network of width1095
2n + 1. By defining1096

Ψ(x) ∶= [x − ψ(x)
ψ(x) ] = [σ(x) − ψ(x)ψ(x) ] for any x ∈ [0,∞).1097

Then, Ψ can be realized by a one-hidden-layer ReLU network of width 1 + 2(2n + 1) = 4n + 3. That1098
means, the network realizing Ψ has at most1099

(1 + 1)(4n + 3) + ((4n + 3) + 1)2 = 16n + 141100

parameters. Moreover, for any θ1, θ2,⋯, θn ∈ {0,1} and k = 0,1,⋯, n, we have1101

ψ(k + bin0.θ1θ2⋯θn) = ⌊k + bin0.θ1θ2⋯θn⌋ = k,1102

implying1103

Ψ(k + bin0.θ1θ2⋯θn) = [k + bin0.θ1θ2⋯θn − ψ(k + bin0.θ1θ2⋯θn)
ψ(k + bin0.θ1θ2⋯θn) ]

= [bin0.θ1θ2⋯θn
k

] .1104

Finally, the desired function ϕ can be defined via ϕ ∶= ϕ2 ○Ψ. Clearly, the network realizing ϕ2 is of1105
width 7 and depth 2n + 4, and hence has at most1106

(7 + 1)7((2n + 4) + 1) = 56(2n + 5)1107

parameters, implying ϕ can be realized by a ReLU network with at most1108

56(2n + 5) + (16n + 14) = 128n + 2941109

parameters. Moreover, for any θ1, θ2,⋯, θn ∈ {0,1} and k = 0,1,⋯, n, we have1110

ϕ(k + bin0.θ1θ2⋯θn) = ϕ2 ○Ψ(k + bin0.θ1θ2⋯θn)
= ϕ2(bin0.θ1θ2⋯θn, k) = k∑

ℓ=1
θℓ.

1111

Thus, we finish the proof of Lemma D.4.1112

D.3.2 Proof of Lemma D.5 for Lemma D.21113

The key idea of proving Lemma D.5 is to construct a network with n blocks, each of which extracts1114
the sum of nr bits via g. Then the whole network can extract the sum of nr+1 bits as we expect.1115

To simplify our notation, we set m = nr. Given any nm binary bits θℓ ∈ {0,1} for ℓ = 1,2,⋯, nm,1116
we divide these nm bits into n classes according to their indices, where the i-th class is composed1117
of m bits θim+1,⋯, θim+m for i = 0,1,⋯, n − 1. We will show how to extract the m bits of the i-th1118
class, stored in bin0.θim+1⋯θim+m.1119

First, let us show how to construct a network to extract k and bin0.θ1θ2⋯θnm from k + 0.θ1θ2⋯θnm.1120
By setting ñ = 2n and Proposition B.1 with J = 2ñr

therein, there exists1121

g̃ ∈ NNr{36(r + 7)ñ} = NNr{36(r + 7)(2n)} = NNr{72(r + 7)n}1122

such that1123

g̃(x) = ⌊x⌋ for any x ∈ J−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ].1124

Observe that1125

J − 1 = 2ñr = 2(2n)r − 1 ≥ 22(nr) − 1 = 22m − 1 = 4m − 1 ≥m2 ≥ nm.1126

It follows from bin0.θ1θ2⋯θnm ≤ 1 − 2−nm = 1 − δ that1127

k + bin0.θ1θ2⋯θnm ∈ nm⋃
ℓ=0
[ℓ, ℓ + 1 − δ] ⊆ J−1⋃

ℓ=0
[ℓ, ℓ + 1 − δ]1128
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for k = 0,1,⋯, nm. Thus, we have1129

g̃(k + bin0.θ1θ2⋯θnm) = k for k = 0,1,⋯, nm. (17)1130

It is easy to verify that1131

2m ⋅ bin0.θim+1⋯θnm ∈ 2m−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ] for i = 0,1,⋯, n − 1.1132

Since 2m − 1 = 2nr − 1 ≤ 2(2n)r − 1 = J − 1, we have1133

g̃(2m ⋅ bin0.θim+1⋯θnm) = ⌊2m ⋅ bin0.θim+1⋯θnm⌋ for i = 0,1,⋯, n − 1.1134

Therefore, for i = 0,1,⋯, n − 1, we have1135

bin0.θim+1⋯θim+m = ⌊2m ⋅ bin0.θim+1⋯θnm⌋
2m

= g̃(2m ⋅ bin0.θim+1⋯θnm)
2m

1136

and1137

bin0.θ(i+1)m+1⋯θnm = 2m(bin0.θim+1⋯θnm − bin0.θim+1⋯θim+m)
= 2m(bin0.θim+1⋯θnm − g̃(2m ⋅ bin0.θim+1⋯θnm)

2m
).1138

By defining1139

ϕ1(x) ∶= g̃(2mx)
2m

and ϕ2(x) ∶= 2m(x − g̃(2mx)
2m

) = (σ(x) − g̃(2mx)
2m

) for x ≥ 0,1140

we have1141
bin0.θim+1⋯θim+m = ϕ1(bin0.θim+1⋯θnm) (18)1142

and1143

bin0.θ(i+1)m+1⋯θnm = ϕ2(bin0.θim+1⋯θnm) (19)1144

for any i ∈ {0,1,⋯, n − 1}. Moreover, ϕ1 can be realized by a one-hidden-layer g̃-activated network1145
of width 1; ϕ2 can be realized by a one-hidden-layer (σ, g̃)-activated network of width 2.1146

Define1147
ϕ3,i(x) ∶=min{σ(x − im), m} for any x ∈ R and i = 0,1,⋯, n − 1.1148

For any k ∈ {1,2,⋯, nm}, there exist k1 ∈ {0,1,⋯, n − 1} and k2 ∈ {1,2,⋯,m} such that k =1149
k1m + k2. Then we have1150

ϕ3,i(k) =min{σ(k − im), m} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m if i ≤ k1 − 1
k2 if i = k1
0 if i ≥ k1 + 1. (20)1151

Observe that1152 {1,2,⋯, k} = {1,2,⋯, k1m + k2}
= ( k1−1⋃

i=1
{im + j ∶ j = 1,2,⋯,m})⋃{k1m + j ∶ j = 1,2,⋯, k2}.1153

It follows that1154
k∑

ℓ=1
θℓ = k1m+k2∑

ℓ=1
θℓ = k1−1∑

i=0
( m∑

j=1
θim+j) + k2∑

j=1
θk1m+j + 0

= k1−1∑
i=0
( m∑

j=1
θim+j) + k1∑

i=k1

( k2∑
j=1

θim+j) + n−1∑
i=k1+1

( 0∑
j=1

θim+j)
= k1−1∑

i=0
( ϕ3,i(k)∑

j=1
θim+j) + k1∑

i=k1

( ϕ3,i(k)∑
j=1

θim+j) + n−1∑
i=k1+1

( ϕ3,i(k)∑
j=1

θim+j)
= n−1∑

i=0
( ϕ3,i(k)∑

j=1
θim+j)

(21)1155
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for k ∈ {1,2,⋯, nm}, where the second to last equality comes from Equation (20). It is easy to verify1156
that Equation (21) also holds for k = 0, i.e.,1157

0∑
ℓ=1

θℓ = 0 = n−1∑
i=0
( 0∑

j=1
θim+j) = n−1∑

i=0
( ϕ3,i(0)∑

j=1
θim+j).1158

Therefore, we have1159
k∑

ℓ=1
θℓ = n−1∑

i=0
( ϕ3,i(k)∑

j=1
θim+j) for any k ∈ {0,1,⋯, nm}. (22)1160

Fix i ∈ {0,1,⋯, n − 1}. By setting p = ϕ3,i(k) ∈ {0,1,⋯,m} and ξj = θim+j for j = 1,2,⋯,m in1161
Equation (16), we have1162

g(ϕ3,i(k) + bin0.θim+1θim+2⋯θim+m) = ϕ3,i(k)∑
j=1

θim+j . (23)1163

With Equations (17), (18), (19), (22), and (23) in hand, we are ready to construct the desired function1164
ϕ, which can be realized by the NestNet in Figure 22. Clearly, we have1165

ϕ(k + bin0.θ1⋯θnm) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nm.1166

Note that nm = n ⋅ nr = nr+1. Then we have1167

ϕ(k + bin0.θ1⋯θnr+1) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nr+1.1168

k + bin0.θ1 · · · θnm

k + bin0.θ1 · · · θnm

g̃(k + bin0.θ1 · · · θnm) = k

bin0.θ1 · · · θnm

k

bin0.θm+1 · · · θnm

ϕ3,0(k) + bin0.θ1 · · · θm

k

bin0.θ2m+1 · · · θmn

ϕ3,1(k) + bin0.θm+1 · · · θm+m

ϕ3,0(k)∑

j=1

θj

k

bin0.θ3m+1 · · · θmn

ϕ3,2(k) + bin0.θ2m+1 · · · θ2m+m

1∑

i=0

ϕ3,i(k)∑

j=1

θim+j

k

bin0.θ(n−1)m+1 · · · θnm

ϕ3,n−2(k) + bin0.θ(n−2)m+1 · · · θ(n−2)m+m

n−3∑

i=0

ϕ3,i(k)∑

j=1

θim+j

k

· · ·
ϕ3,n−1(k) + bin0.θ(n−1)m+1 · · · θ(n−1)m+m

n−2∑

i=0

ϕ3,i(k)∑

j=1

θim+j

n−1∑

i=0

ϕ3,i(k)∑

j=1

θim+j =
k∑

ℓ=1

θℓ =: ϕ(k + bin0.θ1 · · · θnm)

ϕ2 ϕ2 ϕ2
ϕ1 ϕ1 ϕ1

g g g g

ϕ3,0 ϕ3,1 ϕ3,2 ϕ3,n−1
g̃

Figure 22: An illustration of the NestNet realizing ϕ based on Equations (17), (18), (19), (22), and
(23). Here, g and g̃ are regarded as activation functions.

It remains to estimate the number of parameters in the NestNet realizing ϕ. Recall that ϕ1 can1169
be realized by a one-hidden-layer g̃-activated network of width 1 and ϕ2 can be realized by a1170
one-hidden-layer (σ, g̃)-activated network of width 2.1171

Observe that1172
min{a, b} = 1

2
(σ(a + b) − σ(−a − b) − σ(a − b) − σ(−a + b)) for any a, b ∈ R.1173

As we can see from Figure 23, ϕ3,i can be realized by a σ-activated network of width 4 and depth 21174
for each i ∈ {0,1,⋯, n − 1}.1175

x σ(x− im)

σ
(
σ(x− im) +m

)

σ
(
− σ(x− im)−m

)

σ
(
σ(x− im)−m

)

σ
(
− σ(x− im) +m

)

min
{
σ(x− im), m

}
=: ϕ3,i(x)

Figure 23: An illustration of ϕ3,i for each i ∈ {0,1,⋯, n − 1}.
Thus, the network in Figure 22 can be regarded as a (σ, g, g̃)-activated network of width 2 + 1 + 1 +1176
1 + 4 + 1 = 10 and depth 2 + (2 + 1)n = 3n + 2. Recall that g ∈ NNr{n̂} and g̃ ∈ NNr{72(r + 7)n}.1177
This implies that ϕ can be realized by a height-(r + 1) NestNet with at most1178 (10 + 1)10((3n + 2) + 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

outer network

+ n̂®
g

+ 72(r + 7)n´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g̃

≤ n̂ + 114(r + 7)(n + 1)1179

parameters, which means we finish the proof of Lemma D.5.1180
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