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Abstract4

This paper concentrates on the approximation power of deep feed-forward neu-5

ral networks in terms of width and depth. It is proved by construction that6

ReLU networks with width O(max{d⌊N1/d⌋, N + 2}) and depth O(L) can ap-7

proximate a Hölder continuous function on [0,1]d with an approximation rate8

O(λ
√
d(N2L2 lnN)−α/d), where α ∈ (0,1] and λ > 0 are Hölder order and constant,9

respectively. Such a rate is optimal up to a constant in terms of width and depth10

separately, while existing results are only nearly optimal without the logarithmic11

factor in the approximation rate. More generally, for an arbitrary continuous func-12

tion f on [0,1]d, the approximation rate becomes O(
√
dωf((N2L2 lnN)−1/d) ),13

where ωf(⋅) is the modulus of continuity. We also extend our analysis to any con-14

tinuous function f on a bounded set. Particularly, if ReLU networks with depth15

31 and width O(N) are used to approximate one-dimensional Lipschitz continuous16

functions on [0,1] with a Lipschitz constant λ > 0, the approximation rate in terms17

of the total number of parameters, W = O(N2), becomes O( λ
W lnW ), which has18

not been discovered in the literature for fixed-depth ReLU networks.19

Key words. Deep ReLU Networks; Optimal Approximation; VC-dimension; Bit Ex-20

traction.21

1 Introduction22

Over the past few decades, the expressiveness of neural networks has been widely23

studied from many points of view, e.g., in terms of combinatorics [27], topology [4],24

Vapnik-Chervonenkis (VC) dimension [3, 13, 31], fat-shattering dimension [1, 19], infor-25

mation theory [30], classical approximation theory [2, 6, 10, 16, 20, 24, 32, 32–36, 41, 44],26

optimization [14, 17, 18, 21, 29]. The error analysis of neural networks consists of three27

parts: the approximation error, the optimization error, and the generalization error.28

This paper focuses on the approximation error for ReLU networks.29

The approximation errors of feed-forward neural networks with various activation30

functions have been studied for different types of functions, e.g., smooth functions31
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[9,22,24,25,40], piecewise smooth functions [30], band-limited functions [26], continuous32

functions [33–35, 41]. In the early works of approximation theory for neural networks,33

the universal approximation theorem [6,15,16] without approximation rates showed that34

there exists a sufficiently large neural network approximating a target function in a cer-35

tain function space within any given error ε > 0. In particular, it is shown in [23] that the36

ReLU-activated residual neural network with one-neuron hidden layers is a universal ap-37

proximator. The universal approximation property for general residual neural networks38

was proved in [20] via a dynamical system approach.39

An asymptotic analysis of the approximation rate in terms of depth is provided40

in [41, 43] for ReLU networks. To be exact, the nearly optimal approximation rates of41

ReLU networks with width O(d) and depth O(L) for functions in C([0,1]d) and the42

unit ball of Cs([0,1]d) are O(ωf(L−2/d)) and O((L/ lnL)−2s/d), respectively. These two43

papers provide the approximation rate in terms of depth asymptotically for fixed-width44

networks. A different approach is used in [24,33] to obtain a quantitative characterization45

of the approximation rate in terms of width, depth, and smoothness order for continuous46

and smooth functions.47

Particularly, it was shown in [33] that a ReLU network with width C1(d) ⋅N and48

depth C2(d) ⋅L can attain an approximation error C3(d) ⋅ωf(N−2/dL−2/d) to approximate49

a continuous function f on [0,1]d, where C1(d), C2(d), and C3(d) are three constants in50

d with explicit formulas to specify their values, and ωf(⋅) is the modulus of continuity51

of f ∈ C([0,1]d) defined via52

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ x,y ∈ [0,1]d, ∥x − y∥2 ≤ r}, for any r ≥ 0.53

Such an approximation error is optimal in terms of N and L up to a logarithmic term54

and the corresponding optimal approximation theory is still unavailable. To address this55

problem, we provide a constructive proof in this paper to show that ReLU networks56

of width O(N) and depth O(L) can approximate an arbitrary continuous function f57

on [0,1]d with an optimal approximation error O (
√
dωf((N2L2 lnN)−1/d)) in terms of58

N and L. As shown by our main result, Theorem 1.1 below, the approximation rate59

obtained here admits explicit formulas to specify its prefactors when ωf(⋅) is known.60

Theorem 1.1. Given a continuous function f ∈ C([0,1]d), for any N ∈ N+, L ∈ N+,61

and p ∈ [1,∞], there exists a function φ implemented by a ReLU network with width62

C1 max{d⌊N1/d⌋, N + 2} and depth 11L +C2 such that63

∥f − φ∥Lp([0,1]d) ≤ 131
√
dωf((N

2L2 log3(N + 2))
−1/d

),64

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p =∞.65

Note that 3d+3 max{d⌊N1/d⌋, N + 2} ≤ 3d+3 max{dN, 3N} ≤ 3d+4dN . Given any66

Ñ , L̃ ∈ N+ with Ñ ≥ 3d+4d and L̃ ≥ 29 + 2d, there exist N,L ∈ N+ such that67

3d+4dN ≤ Ñ < 3d+4d(N + 1) and 11L + 18 + 2d ≤ L̃ < 11(L + 1) + 18 + 2d.68

It follows that69

N ≥
N + 1

3
>

Ñ

3d+5d
and L ≥

L + 1

2
>

1

2
⋅
L̃ − 18 − 2d

11
=
L̃ − 18 − 2d

22
.70

Then we have an immediate corollary of Theorem 1.1.71
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Corollary 1.2. Given a continuous function f ∈ C([0,1]d), for any Ñ ∈ N+ and L̃ ∈ N+72

with Ñ ≥ 3d+4d and L̃ ≥ 29+2d, there exists a function φ implemented by a ReLU network73

with width Ñ and depth L̃ such that74

∥f − φ∥L∞([0,1]d) ≤ 131
√
dωf(((

Ñ
3d+5d)

2( L̃−18−2d
22 )2 log3(

Ñ
3d+5d + 2))

−1/d
).75

As a special case of Theorem 1.1 for explicit error characterization, let us take Hölder76

continuous functions as an example. Let Hölder([0,1]d, α, λ) denote the space of Hölder77

continuous functions on [0,1]d of order α ∈ (0,1] with a Hölder constant λ > 0. We have78

an immediate corollary of Theorem 1.1 as follows.79

Corollary 1.3. Given a Hölder continuous function f ∈ Hölder([0,1]d, α, λ), for any80

N ∈ N+, L ∈ N+, and p ∈ [1,∞], there exists a function φ implemented by a ReLU81

network with width C1 max{d⌊N1/d⌋, N + 2} and depth 11L +C2 such that82

∥f − φ∥Lp([0,1]d) ≤ 131λ
√
d(N2L2 log3(N + 2))

−α/d
,83

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p =∞.84

To better illustrate the importance of our theory, we summarize our key contribu-85

tions as follows.86

(1) Upper bound: We provide a quantitative and non-asymptotic approximation rate87

131
√
dωf((N2L2 log3(N + 2))

−1/d
) in terms of width O(N) and depth O(L) for any88

f ∈ C([0,1]d) in Theorem 1.1.89

(1.1) This approximation error analysis can be extended to f ∈ C(E) for any E ⊆90

[−R,R]d with R > 0 as we shall see later in Theorem 2.5.91

(1.2) In the case of one-dimensional Lipschitz continuous functions on [0,1] with92

a Lipschitz constant λ > 0, the approximation rate in Theorem 1.1 becomes93

O( λ
W lnW ) for ReLU networks with 31 hidden layers and O(W ) parameters94

via setting L = 1 and W = O(N2) therein. To the best of our knowledge,95

the approximation rate O( λ
W lnW ) is better than existing known results using96

fixed-depth ReLU networks to approximate Lipschitz continuous functions on97

[0,1].98

(2) Lower bound: Through the VC-dimension bounds of ReLU networks given in [13], we99

show, in Section 2.3, that the approximation rate 131λ
√
d(N2L2 log3(N + 2))

−α/d
in100

terms of width O(N) and depth O(L) for Hölder([0,1]d, α, λ) is optimal as follows.101

(2.1) When the width is fixed, both the approximation upper and lower bounds take102

the form of CL−2α/d for a positive constant C.103

(2.2) When the depth is fixed, both the approximation upper and lower bounds take104

the form of C(N2 lnN)−α/d for a positive constant C.105
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Figure 1: Our rate is optimal in terms of width O(N) and depth O(L) simultaneously
except for the region marked in cyan characterized by {(N,L) ∈ N2 ∶ C1 ≤ N ≤ LC2},
where Ci = Ci(α, d) for i = 1,2 are two positive constants. This figure is an example for
C1 = 1000 and C2 = 1/100.

We would like to point out that if N and L vary simultaneously, the rate is optimal106

in the N -L plane except for a small region as shown in Figure 1. See Section 2.3 for a de-107

tailed discussion. The earlier result in [33] provides a nearly optimal approximation error108

that has a gap (a logarithmic term) between the lower and upper bounds. It is technically109

challenging to match the upper bound with the lower bound. Compared to the nearly110

optimal rate 19λ
√
dN−2α/dL−2α/d for Hölder continuous functions in Hölder([0,1]d, α, λ)111

in [33], this paper achieves the optimal rate 131λ
√
d(N2L2 log3(N + 2))

−α/d
using more112

technical and sophisticated construction. For example, a novel bit extraction technique113

different to that in [3] is proposed, and new ReLU networks are constructed to approx-114

imate step functions more efficiently than those in [33]. The optimal result obtained in115

this paper could also be extended to other functions spaces, leading to better under-116

standing of deep network approximation.117

We have obtained the optimal approximation rate for (Hölder) continuous functions118

approximated by ReLU networks. There are two possible directions to improve the119

approximation rate or reduce the effect of the curse of dimensionality. The first one is120

to consider proper target function spaces, e.g., Barron spaces [2, 8, 12, 37], band-limited121

functions [5,26], smooth functions [24,43], and analytic functions [9]. The other direction122

is to consider neural networks with other activation functions. For example, the results123

of [43] imply that (sin,ReLU)-activated networks with W parameters can achieve an124

asymptotic approximation error O(2−cd
√
W ) for Lipschitz continuous functions defined125

on [0,1]d, where cd is an unknown constant depending on d. Floor-ReLU networks with126

width O(N) and depth O(L) are constructed in [34] to admit an approximation rate127

ωf(
√
dN−

√
L) + 2ωf(

√
d)N−

√
L for any continuous function f ∈ C([0,1]d). It is shown128

in [35] that three-hidden-layer networks with O(W ) parameters using the floor function129

(⌊x⌋), the exponential function (2x), and the step function (1x≥0) as activation functions130

can approximate Lipschitz functions defined on [0,1]d with an exponentially small error131

O(
√
d2−W ). By the use of more sophisticated activation functions instead of those used132

in [34,35,43], a recent paper [42] shows that there exists a network of size depending on133

d implicitly, achieving an arbitrary approximation error for any continuous function in134

C([0,1]d). A key ingredient of the approaches mentioned above is to use more than one135
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activation functions to design neural network architectures.136

The error analysis of deep learning is to estimate approximation, generalization, and137

optimization errors. Here, we give a brief discussion, the interested reader can find more138

details in [24, 34]. Let φ(x;θ) denote a function computed by a network parameterized139

with θ. Given a target function f , the final goal is to find the expected risk minimizer140

θD ∶= arg min
θ

RD(θ), where RD(θ) ∶= Ex∼U(X ) [`(φ(x;θ), f(x))] ,141

with a loss function `(⋅, ⋅) and an unknown data distribution U(X ).142

In practice, for given samples {(xi, f(xi))}ni=1, the goal of supervised learning is to143

identify the empirical risk minimizer144

θS ∶= arg min
θ

RS(θ), where RS(θ) ∶=
1

n

n

∑
i=1

`(φ(xi;θ), f(xi)).145

In fact, one could only get a numerical minimizer θN via a numerical optimization146

method. The discrepancy between the target function f and the learned function147

φ(x;θN ) is measured by RD(θN ), which is bounded by148

RD(θN ) ≤ RD(θD)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

Approximation error

+ [RS(θN ) −RS(θS)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Optimization error

+ [RD(θN ) −RS(θN )] + [RS(θD) −RD(θD)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Generalization error

.149

This paper deals with the approximation error of ReLU networks for continuous functions150

and gives an upper bound of RD(θD) which is optimal up to a constant. Note that151

the approximation error analysis given here is independent of data samples and deep152

learning algorithms. However, the analysis of optimization and generalization errors153

do depend on data samples, deep learning algorithms, models, etc. For example, refer154

to [7, 8, 11, 14, 17, 18, 21, 28, 29] for a further understanding of the generalization and155

optimization errors.156

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1157

by assuming Theorem 2.1 is true, show the optimality of Theorem 1.1, and extend our158

analysis to continuous functions defined on any bounded set. Next, Theorem 2.1 is159

proved in Section 3 based on Propositions 3.1 and 3.2, the proofs of which can be found160

in Section 4. Finally, Section 5 concludes this paper with a short discussion.161

2 Theoretical analysis162

In this section, we first prove Theorem 1.1 and discuss its optimality. Next, we ex-163

tend our analysis to general continuous functions defined on any bounded set. Notations164

throughout this paper are summarized in Section 2.1.165

2.1 Notations166

Let us summarize all basic notations used in this paper as follows.167

• Let R, Q, and Z denote the set of real numbers, rational numbers, and integers,168

respectively.169
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• Let N and N+ denote the set of natural numbers and positive natural numbers,170

respectively. That is, N+ = {1,2,3,⋯} and N = N+⋃{0}.171

• Matrices are denoted by bold uppercase letters. For instance, A ∈ Rm×n is a real172

matrix of size m × n, and AT denotes the transpose of A. Vectors are denoted173

as bold lowercase letters. For example, v = [v1,⋯, vd]T = [
v1
⋮
vd

] ∈ Rd is a column174

vector with v(i) = vi being the i-th element. Besides, “[” and “]” are used to175

partition matrices (vectors) into blocks, e.g., A = [A11 A12
A21 A22

].176

• For any p ∈ [1,∞), the p-norm (or `p-norm) of a vector x = [x1, x2,⋯, xd]T ∈ Rd is177

defined by178

∥x∥p ∶= (∣x1∣
p + ∣x2∣

p +⋯ + ∣xd∣
p)

1/p
.179

• For any x ∈ R, let ⌊x⌋ ∶= max{n ∶ n ≤ x, n ∈ Z} and ⌈x⌉ ∶= min{n ∶ n ≥ x, n ∈ Z}.180

• Assume n ∈ Nd, then f(n) = O(g(n)) means that there exists positive C indepen-181

dent of n, f , and g such that f(n) ≤ Cg(n) when all entries of n go to +∞.182

• For any θ ∈ [0,1), suppose its binary representation is θ = ∑
∞
`=1 θ`2

−` with θ` ∈183

{0,1}, we introduce a special notation bin0.θ1θ2⋯θL to denote the L-term binary184

representation of θ, i.e., bin0.θ1θ2⋯θL ∶= ∑
L
`=1 θ`2

−`.185

• Let µ(⋅) denote the Lebesgue measure.186

• Let 1S be the characteristic function on a set S, i.e., 1S is equal to 1 on S and 0187

outside S.188

• Let ∣S∣ denote the size of a set S, i.e., the number of all elements in S.189

• The set difference of two sets A and B is denoted by A/B ∶= {x ∶ x ∈ A, x ∉ B}.190

• Given any K ∈ N+ and δ ∈ (0, 1
K ), define a trifling region Ω([0,1]d,K, δ) of [0,1]d191

as192

Ω([0,1]d,K, δ) ∶=
d

⋃
j=1

{x = [x1, x2,⋯, xd]
T ∈ [0,1]d ∶ xj ∈

K−1

⋃
k=1

( kK − δ, kK )}. (2.1)193

In particular, Ω([0,1]d,K, δ) = ∅ if K = 1. See Figure 2 for two examples of trifling194

regions.195

• Let Hölder([0,1]d, α, λ) denote the space of Hölder continuous functions on [0,1]d196

of order α ∈ (0,1] with a Hölder constant λ > 0.197

• For a continuous piecewise linear function f(x), the x values where the slope198

changes are typically called breakpoints.199

• Let CPwL(R, n) denote the space that consists of all continuous piecewise linear200

functions with at most n breakpoints on R.201
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Ω([0, 1]d, K, δ) for K = 4, d = 2

(b)

Figure 2: Two examples of trifling regions. (a) K = 5, d = 1. (b) K = 4, d = 2.

• Let σ ∶ R→ R denote the rectified linear unit (ReLU), i.e. σ(x) = max{0, x}. With202

a slight abuse of notation, we define σ ∶ Rd → Rd as σ(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

max{0, x1}

⋮

max{0, xd}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for any203

x = [x1,⋯, xd]T ∈ Rd.204

• We will use NN to denote a function implemented by a ReLU network for short205

and use Python-type notations to specify a class of functions implemented by206

ReLU networks with several conditions, e.g., NN (c1; c2; ⋯; cm) is a set of func-207

tions implemented by ReLU networks satisfying m conditions given by {ci}1≤i≤m,208

each of which may specify the number of inputs (#input), the number of outputs209

(#output), the number of hidden layers (depth), the total number of parameters210

(#parameter), and the width in each hidden layer (widthvec), the maximum width211

of all hidden layers (width), etc. For example, if φ ∈ NN (#input = 2; widthvec =212

[100,100]; #output = 1), then φ is a function satisfying213

– φ maps from R2 to R.214

– φ can be implemented by a ReLU network with two hidden layers and the215

number of neurons in each hidden layer is 100.216

• For any function φ ∈ NN (#input = d; widthvec = [N1,N2,⋯,NL]; #output = 1),217

if we set N0 = d and NL+1 = 1, then the architecture of the network implementing218

φ can be briefly described as follows:219

x = h̃0
W0, b0
L0

h1
σ h̃1 ⋯

WL−1, bL−1
LL−1

hL
σ h̃L

WL, bL
LL

hL+1 = φ(x),220

where Wi ∈ RNi+1×Ni and bi ∈ RNi+1 are the weight matrix and the bias vector in221

the i-th affine linear transformation Li, respectively, i.e.,222

hi+1 =Wi ⋅ h̃i + bi =∶ Li(h̃i), for i = 0,1,⋯, L,223

and224

h̃i = σ(hi), for i = 1,2,⋯, L.225

In particular, φ can be represented in a form of function compositions as follows.226

φ = LL ○ σ ○LL−1 ○ σ ○ ⋯ ○ σ ○L1 ○ σ ○L0,227

which has been illustrated in Figure 3.228
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Figure 3: An example of a ReLU network with width 5 and depth 2.

• The expression “a network with width N and depth L” means229

– The maximum width of this network for all hidden layers is no more than230

N .231

– The number of hidden layers of this network is no more than L.232

2.2 Proof of Theorem 1.1233

The key point is to construct piecewise constant functions to approximate continu-234

ous functions in the proof. However, it is impossible to construct a piecewise constant235

function implemented by a ReLU network due to the continuity of ReLU networks.236

Thus, we introduce the trifling region Ω([0,1]d,K, δ), defined in Equation (2.1), and use237

ReLU networks to implement piecewise constant functions outside the trifling region.238

To prove Theorem 1.1, we first introduce a weaker variant of Theorem 1.1, showing how239

to construct ReLU networks to pointwisely approximate continuous functions except for240

the trifling region.241

Theorem 2.1. Given a function f ∈ C([0,1]d), for any N ∈ N+ and L ∈ N+, there exists242

a function φ implemented by a ReLU network with width max{8d⌊N1/d⌋+ 3d, 16N + 30}243

and depth 11L + 18 such that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(
√
d) and244

∣f(x) − φ(x)∣ ≤ 130
√
dωf((N

2L2 log3(N + 2))
−1/d

), for any x ∈ [0,1]d/Ω([0,1]d,K, δ),245

where K = ⌊N1/d⌋2⌊L1/d⌋2⌊⌊log3(N + 2)⌋1/d⌋ and δ is an arbitrary number in (0, 1
3K ].246

With Theorem 2.1 that will be proved in Section 3, we can easily prove Theorem 1.1247

for the case p ∈ [1,∞). To attain the rate in L∞-norm, we need to control the approxi-248

mation error in the trifling region. To this end, we introduce a theorem to deal with the249

approximation inside the trifling region Ω([0,1]d,K, δ).250

Theorem 2.2 (Theorem 3.7 of [44] or Theorem 2.1 of [24]). Given any ε > 0, N,L,K ∈251

N+, and δ ∈ (0, 1
3K ], assume f is a continuous function in C([0,1]d) and φ̃ can be252

implemented by a ReLU network with width N and depth L. If253

∣f(x) − φ̃(x)∣ ≤ ε, for any x ∈ [0,1]d/Ω([0,1]d,K, δ),254
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then there exists a function φ implemented by a new ReLU network with width 3d(N +4)255

and depth L + 2d such that256

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ), for any x ∈ [0,1]d.257

Now we are ready to prove Theorem 1.1 by assuming Theorem 2.1 is true, which258

will be proved later in Section 3.259

Proof of Theorem 1.1. We may assume f is not a constant function since it is a trivial260

case. Then ωf(r) > 0 for any r > 0. Let us first consider the case p ∈ [1,∞). Set261

K = ⌊N1/d⌋2⌊L1/d⌋2⌊⌊log3(N + 2)⌋1/d⌋ and choose a small δ ∈ (0, 1
3K ] such that262

Kdδ(2∣f(0)∣ + 2ωf(
√
d))

p
= ⌊N1/d⌋2⌊L1/d⌋2⌊⌊log3(N + 2)⌋1/d⌋dδ(2∣f(0)∣ + 2ωf(

√
d))

p

≤ (ωf((N
2L2 log3(N + 2))

−1/d
))

p

.
263

By Theorem 2.1, there exists a function φ implemented by a ReLU network with width264

max{8d⌊N1/d⌋ + 3d, 16N + 30} ≤ 16 max{d⌊N1/d⌋, N + 2}265

and depth 11L + 18 such that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(
√
d) and266

∣f(x) − φ(x)∣ ≤ 130
√
dωf((N

2L2 log3(N + 2))
−1/d

), for any x ∈ [0,1]d/Ω([0,1]d,K, δ).267

It follows from µ(Ω([0,1]d,K, δ)) ≤Kdδ and ∥f∥L∞([0,1]d) ≤ ∣f(0)∣ + ωf(
√
d) that268

∥f − φ∥p
Lp([0,1]d) = ∫

Ω([0,1]d,K,δ)
∣f(x) − φ(x)∣pdx + ∫

[0,1]d/Ω([0,1]d,K,δ)
∣f(x) − φ(x)∣pdx

≤Kdδ(2∣f(0)∣ + 2ωf(
√
d))

p
+ (130

√
dωf((N

2L2 log3(N + 2))
−1/d

))

p

≤ (ωf((N
2L2 log3(N + 2))

−1/d
))

p

+ (130
√
dωf((N

2L2 log3(N + 2))
−1/d

))

p

≤ (131
√
dωf((N

2L2 log3(N + 2))
−1/d

))

p

.

269

Hence, ∥f − φ∥Lp([0,1]d) ≤ 131
√
dωf((N2L2 log3(N + 2))

−1/d
).270

Next, let us discuss the case p = ∞. Set K = ⌊N1/d⌋2⌊L1/d⌋2⌊⌊log3(N + 2)⌋1/d⌋ and271

choose a small δ ∈ (0, 1
3K ] such that272

d ⋅ ωf(δ) ≤ ωf((N
2L2 log3(N + 2))

−1/d
).273

By Theorem 2.1, there exists a function φ̃ implemented by a ReLU network with width274

max{8d⌊N1/d⌋ + 3d, 16N + 30} and depth 11L + 18 such that275

∣f(x) − φ̃(x)∣ ≤ 130
√
dωf((N

2L2 log3(N + 2))
−1/d

) =∶ ε,276
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for any x ∈ [0,1]d/Ω([0,1]d,K, δ). By Theorem 2.2, there exists a function φ imple-277

mented by a ReLU network with width278

3d(max{8d⌊N1/d⌋ + 3d, 16N + 30} + 4) ≤ 3d+3 max{d⌊N1/d⌋, N + 2}279

and depth 11L + 18 + 2d such that280

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ) ≤ 131
√
dωf((N

2L2 log3(N + 2))
−1/d

), for any x ∈ [0,1]d.281

So we finish the proof.282

2.3 Optimality283

This section will show that the approximation rates in Theorem 1.1 and Corollary 1.3284

are optimal and there is no room to improve for the function class Hölder([0,1]d, α, λ).285

Therefore, the approximation rate for the whole continuous functions space in terms of286

width and depth in Theorem 1.1 cannot be improved. A typical method to characterize287

the optimal approximation theory of neural networks is to study the connection between288

the approximation error and Vapnik–Chervonenkis (VC) dimension [24, 33, 40, 41, 44].289

This method relies on the VC-dimension upper bound given in [13]. In this paper, we290

adopt this method with several modifications to simplify the proof.291

Let us first present the definitions of VC-dimension and related concepts. Let H be292

a class of functions mapping from a general domain X to {0,1}. We say H shatters the293

set {x1,x2,⋯,xm} ⊆ X if294

∣{[h(x1), h(x2),⋯, h(xm)]
T
∈ {0,1}m ∶ h ∈H}∣ = 2m,295

where ∣ ⋅ ∣ denotes the size of a set. This equation means, given any θi ∈ {0,1} for296

i = 1,2,⋯,m, there exists h ∈ H such that h(xi) = θi for all i. For a general function set297

F mapping from X to R, we say F shatters {x1,x2,⋯,xm} ⊆ X if T ○F does, where298

T (t) ∶= {
1, t ≥ 0,
0, t < 0

and T ○F ∶= {T ○ f ∶ f ∈ F}.299

For any m ∈ N+, we define the growth function of H as300

ΠH(m) ∶= max
x1,x2,⋯,xm∈X

∣{[h(x1), h(x2),⋯, h(xm)]
T
∈ {0,1}m ∶ h ∈H}∣.301

Definition 2.3 (VC-dimension). Let H be a class of functions from X to {0,1}. The302

VC-dimension of H, denoted by VCDim(H), is the size of the largest shattered set,303

namely,304

VCDim(H) ∶= sup{m ∈ N+ ∶ ΠH(m) = 2m}305

if {m ∈ N+ ∶ ΠH(m) = 2m} is not empty. In the case of {m ∈ N+ ∶ ΠH(m) = 2m} = ∅, we306

may define VCDim(H) = 0.307

Let F be a class of functions from X to R. The VC-dimension of F , denoted by308

VCDim(F ), is defined by VCDim(F ) ∶= VCDim(T ○F ), where309

T (t) ∶= {
1, t ≥ 0,
0, t < 0

and T ○F ∶= {T ○ f ∶ f ∈ F}.310
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In particular, the expression “VC-dimension of a network (architecture)” means the VC-311

dimension of the function set that consists of all functions implemented by this network312

(architecture).313

We remark that one may also define VCDim(F ) as VCDim(F ) ∶= VCDim(T̃ ○F ),314

where315

T̃ (t) ∶= {
1, t > 0,
0, t ≤ 0

and T̃ ○F ∶= {T̃ ○ f ∶ f ∈ F}.316

Note that function spaces generated by networks are closed under linear transformation.317

Thus, these two definitions of VC-dimension are equivalent.318

The theorem below, similar to Theorem 4.17 of [44], reveals the connection between319

VC-dimension and the approximation rate.320

Theorem 2.4. Assume F is a set of functions mapping from [0,1]d to R. For any321

ε > 0, if VCDim(F ) ≥ 1 and322

inf
φ∈F

∥φ − f∥L∞([0,1]d) ≤ ε, for any f ∈ Hölder([0,1]d, α,1), (2.2)323

then VCDim(F ) ≥ (9ε)−d/α.324

This theorem demonstrates the connection between VC-dimension of F and the ap-325

proximation rate using elements of F to approximate functions in Hölder([0,1]d, α, λ).326

To be precise, the VC-dimension of F determines an approximation rate lower bound327

VCDim(F )−α/d/9, which is the best possible approximation rate. Denote the best ap-328

proximation error of functions in Hölder([0,1]d, α,1) approximated by ReLU networks329

with width N and depth L as330

Eα,d(N,L) ∶= sup
f∈Hölder([0,1]d,α,1)

( inf
φ∈NN (width≤N ; depth≤L)

∥φ − f∥L∞([0,1]d)).331

We have three remarks listed below.332

(i) A large VC-dimension cannot guarantee a good approximation rate. For example,333

it is easy to verify that334

VCDim({f ∶ f(x) = cos(ax), a ∈ R}) =∞.335

However, functions in {f ∶ f(x) = cos(ax), a ∈ R} cannot approximate Hölder336

continuous functions well.337

(ii) A large VC-dimension is necessary for a good approximation rate, because the338

best possible approximation rate is controlled by an expression of VC-dimension,339

as shown in Theorem 2.4. It is shown in Theorem 6 and 8 of [13] that the VC-340

dimension of ReLU networks has two types of upper bounds: O(WL lnW ) and341

O(WU). Here, W , L, and U are the numbers of parameters, layers, and neurons,342

respectively. If we let N denote the maximum width of the network, then W =343

O(N2L) and U = O(NL), implying that344

WL lnW = O(N2L ⋅L ln(N2L)) = O(N2L2 ln(NL))345
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and346

WU = O(N2L ⋅NL) = O(N3L2).347

It follows that348

VCDim(NN (width ≤ N ; depth ≤ L)) ≤ min{O(N2L2 ln(NL)),O(N3L2)},349

deducing350

C1(α, d)(min{N2L2 ln(NL),N3L2})
−α/d

≤

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
implied by Theorem 2.4

Eα,d(N,L) ≤ C2(α, d)(N
2L2 lnN)

−α/d

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
implied by Corollaries 1.2 and 1.3

, (2.3)351

where C1(α, d) and C2(α, d) are two positive constants determined by s, d, and352

C2(s, d) can be explicitly expressed.353

• When L = L0 is fixed, Equation (2.3) implies354

C1(α, d,L0)(N
2 lnN)−α/d ≤ Eα,d(N,L0) ≤ C2(α, d,L0)(N

2 lnN)−α/d,355

where C1(α, d,L0) and C2(α, d,L0) are two positive constants determined by356

α, d,L0.357

• When N = N0 is fixed, Equation (2.3) implies358

C1(α, d,N0)L
−2α/d ≤ Eα,d(N0, L) ≤ C2(α, d,N0)L

−2α/d,359

where C1(α, d,N0) and C2(α, d,N0) are two positive constants determined by360

α, d,N0.361

• It is easy to verify that Equation (2.3) is tight except for the following region362

{(N,L) ∈ N2 ∶ C3(α, d) ≤ N ≤ LC4(α,d)},363

C3 = C3(α, d) and C4 = C4(α, d) are two positive constants. See Figure 1 for364

an illustration for the case C3 = 1000 and C4 = 1/100.365

Finally, let us present the detailed proof of Theorem 2.4.366

Proof of Theorem 2.4. Recall that the VC-dimension of a function set is defined as the367

size of the largest set of points that this class of functions can shatter. So our goal is to368

find a subset of F to shatter O(ε−d/α) points in [0,1]d, which can be divided into two369

steps.370

• Construct {fχ ∶ χ ∈ B} ⊆ Hölder([0,1]d, α,1) that scatters O(ε−d/α) points, where371

B is a set defined later.372

• Design φχ ∈ F , for each χ ∈ B, based on fχ and Equation (2.2) such that {φχ ∶ χ ∈373

F} ⊆ F also shatters O(ε−d/α) points.374
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The details of these two steps can be found below.375

Step 1∶ Construct {fχ ∶ χ ∈ B} ⊆ Hölder([0,1]d, α,1) that scatters O(ε−d/α) points.376

We may assume ε ≤ 2/9 since the case ε > 2/9 is trivial. In fact, ε > 2/9 implies377

VCDim(F ) ≥ 1 ≥ 1/2 ≥ 2−d/α > (9ε)−d/α.378

Let K = ⌊(9ε/2)
−1/α

⌋ ∈ N+ and divide [0,1]d into Kd non-overlapping sub-cubes {Qβ}β379

as follows:380

Qβ ∶= {x = [x1, x2,⋯, xd]
T ∈ [0,1]d ∶ xi ∈ [

βi
K ,

βi+1
K ], i = 1,2,⋯, d},381

for any index vector β = [β1, β2,⋯, βd]T ∈ {0,1,⋯,K − 1}d.382

Let Q(x0, η) denote the closed cube with center x0 ∈ Rd and sidelength η > 0. Define383

a function ζQ on [0,1]d corresponding to Q = Q(x0, η) ⊆ [0,1]d such that:384

• ζQ(x0) = (η/2)α/2;385

• ζQ(x) = 0 for any x ∉ Q/∂Q, where ∂Q is the boundary of Q;386

• ζQ is linear on the line that connects x0 and x for any x ∈ ∂Q.387

Define388

B ∶= {χ ∶ χ is a map from {0,1,⋯,K − 1}d to {−1,1}}.389

For each χ ∈ B, we define390

fχ(x) ∶= ∑
β∈{0,1,⋯,K−1}d

χ(β)ζQβ
(x),391

where ζQβ
(x) is the associated function introduced just above. It is easy to check that392

{fχ ∶ χ ∈ B} ⊆ Hölder([0,1]d, α,1) can shatter Kd = O(ε−d/α) points in [0,1]d.393

Step 2∶ Construct {φχ ∶ χ ∈ B} that also scatters O(ε−d/α) points.394

By Equation (2.2), for each χ ∈ B, there exists φχ ∈ F such that395

∥φχ − fχ∥L∞([0,1]d) ≤ ε + ε/81.396

Let µ(⋅) denote the Lebesgue measure of a set. Then, for each χ ∈ B, there exists397

Hχ ⊆ [0,1]d with µ(Hχ) = 0 such that398

∣φχ(x) − fχ(x)∣ ≤
82
81ε, for any x ∈ [0,1]/Hχ.399

Set H = ∪χ∈BHχ, then we have µ(H) = 0 and400

∣φχ(x) − fχ(x)∣ ≤
82
81ε, for any χ ∈ B and x ∈ [0,1]/H. (2.4)401

Since Qβ has a sidelength 1
K = 1

⌊(9ε/2)−1/α⌋ , we have, for each β ∈ {0,1,⋯,K − 1}d and402

any x ∈ 1
10Qβ

1○,403

∣fχ(x)∣ = ∣ζQβ
(x)∣ ≥ 9

10 ∣ζQβ
(xQβ

)∣ = 9
10(

1
2⌊(9ε/2)−1/α⌋)

α/2 ≥ 81
80ε, (2.5)404

1○ 1
10
Qβ denotes the closed cube whose sidelength is 1/10 of that of Qβ and which shares the same

center of Qβ.
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where xQβ
is the center of Qβ.405

Note that ( 1
10Qβ)/H is not empty, since µ(( 1

10Qβ)/H) > 0 for each β ∈ {0,1,⋯,K −406

1}d. Together with Equations (2.4) and (2.5), there exists xβ ∈ ( 1
10Qβ)/H such that, for407

each β ∈ {0,1,⋯,K − 1}d and each χ ∈ B,408

∣fχ(xβ)∣ ≥
81
80ε >

82
81ε ≥ ∣fχ(xβ) − φχ(xβ)∣.409

Hence, fχ(xβ) and φχ(xβ) have the same sign for each χ ∈ B and β ∈ {0,1,⋯,K −410

1}d. Then {φχ ∶ χ ∈ B} shatters {xβ ∶ β ∈ {0,1,⋯,K − 1}d} since {fχ ∶ χ ∈ B} shatters411

{xβ ∶ β ∈ {0,1,⋯,K − 1}d}. Therefore,412

VCDim(F ) ≥ VCDim({φχ ∶ χ ∈ B}) ≥Kd = ⌊(9ε/2)−1/α⌋d ≥ (9ε)−d/α,413

where the last inequality comes from the fact ⌊x⌋ ≥ x/2 ≥ x/(21/α) for any x ∈ [1,∞) and414

α ∈ (0,1]. So we finish the proof.415

2.4 Approximation in irregular domain416

We extend our analysis to general continuous functions defined on any irregular417

bounded set in Rd. The key idea is to extend the target function to a hypercube while418

preserving the modulus of continuity. The extension of continuous (smooth) functions419

has been widely studied, e.g., [39] for smooth functions and [38] for continuous functions.420

For simplicity, we use Lemma 4.2 of [33]. The proof can be found therein. For a general421

set E ⊆ Rd, the modulus of continuity of f ∈ C(E) is defined via422

ωEf (r) ∶= sup{∣f(x) − f(y)∣ ∶ x,y ∈ E, ∥x − y∥2 ≤ r}, for any r ≥ 0.423

In particular, ωf(⋅) is short of ωEf (⋅) in the case of E = [0,1]d. Then, Theorem 1.1 can424

be generalized to f ∈ C(E) for any bounded set E ⊆ [−R,R]d with R > 0, as shown in425

the following theorem.426

Theorem 2.5. Given any bounded continuous function f ∈ C(E) with E ⊆ [−R,R]d and427

R > 0, for any N ∈ N+, L ∈ N+, and p ∈ [1,∞], there exists a function φ implemented by428

a ReLU network with width C1 max{d⌊N1/d⌋, N + 2} and depth 11L +C2 such that429

∥f − φ∥Lp(E) ≤ 131(2R)d/p
√
dωEf (2R(N2L2 log3(N + 2))

−1/d
),430

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p =∞.431

Proof. Given any bounded continuous function f ∈ C(E), by Lemma 4.2 of [33] via432

setting S = [−R,R]d, there exists g ∈ C([−R,R]d) such that433

• g(x) = f(x) for any x ∈ E ⊆ S = [−R,R]d;434

• ωSg (r) = ω
E
f (r) for any r ≥ 0.435

Define436

g̃(x) ∶= g(2Rx −R), for any x ∈ [0,1]d.437
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By applying Theorem 1.1 to g̃ ∈ C([0,1]d), there exists a function φ̃ implemented by a438

ReLU network with width C1 max{d⌊N1/d⌋, N + 2} and depth 11L +C2 such that439

∥φ̃ − g̃∥Lp([0,1]d) ≤ 131
√
dωg̃((N

2L2 log3(N + 2))
−1/d

),440

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p =∞.441

Note that f(x) = g(x) = g̃(x+R2R ) for any x ∈ E ⊆ S = [−R,R]d and442

ωg̃(r) = ω
S
g (2Rr) = ω

E
f (2Rr), for any r ≥ 0.443

Define φ(x) ∶= φ̃(x+R2R ) = φ̃ ○ L(x) for any x ∈ Rd, where L ∶ Rd → Rd is an affine linear444

map given by L(x) = x+R
2R . Clearly, φ can be implemented by a ReLU network with width445

C1 max{d⌊N1/d⌋, N + 2} and depth 11L + C2, where C1 = 16 and C2 = 18 if p ∈ [1,∞);446

C1 = 3d+3 and C2 = 18 + 2d if p = ∞. Moreover, for any x ∈ E ⊆ S = [−R,R]d, we have447
x+R
2R ∈ [0,1]d, implying448

∥φ − f∥Lp(E) = ∥φ − g∥Lp(E) = ∥φ̃ ○L − g̃ ○L∥Lp(E)

≤ ∥φ̃ ○L − g̃ ○L∥Lp([−R,R]d) = (2R)d/p∥φ̃ − g̃∥Lp([0,1]d)

≤ 131(2R)d/p
√
dωg̃((N

2L2 log3(N + 2))
−1/d

)

= 131(2R)d/p
√
dωEf (2R(N2L2 log3(N + 2))

−1/d
).

449

With the discussion above, we have proved Theorem 2.5.450

3 Proof of Theorem 2.1451

We will prove Theorem 2.1 in this section. We first present the key ideas in Sec-452

tion 3.1. The detailed proof is presented in Section 3.3, based on two propositions in453

Section 3.1, the proofs of which can be found in Section 4.454

3.1 Key ideas of proving Theorem 2.1455

Given an arbitrary f ∈ C([0,1]d), our goal is to construct an almost piecewise456

constant function φ implemented by a ReLU network to approximate f well. To this end,457

we introduce a piecewise constant function fp ≈ f serving as an intermediate approximant458

in our construction in the sense that459

f ≈ fp on [0,1]d and fp ≈ φ on [0,1]d/Ω([0,1]d,K, δ).460

The approximation in f ≈ fp is a simple and standard technique in constructive approx-461

imation. The most technical part is to design a ReLU network with the desired width462

and depth to implement a function φ with φ ≈ fp outside Ω([0,1]d,K, δ). See Figure 4463

for an illustration. The introduction of the trifling region is to ease the construction464

of φ, which is a continuous piecewise linear function, to approximate the discontinuous465

function fp by removing the difficulty near discontinuous points, essentially smoothing466

fp by restricting the approximation domain in [0,1]d/Ω([0,1]d,K, δ).467

Now let us discuss the detailed steps of construction.468
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(
xβ, f (xβ)

)

Figure 4: An illustration of f , fp, φ, xβ, Qβ, and the trifling region Ω([0,1]d,K, δ) in the
one-dimensional case for β ∈ {0,1,⋯,K − 1}d, where K = N2L2⌊log3(N + 2)⌋ and d = 1
with N = 1 and L = 3. f is the target function; fp is the piecewise constant function
approximating f ; φ is a function, implemented by a ReLU network, approximating f ;
and xβ is a representative of Qβ. The measure of Ω([0,1]d,K, δ) can be arbitrarily small
as we shall see in the proof of Theorem 1.1.

(i) First, divide [0,1]d into a union of important regions {Qβ}β and the trifling re-469

gion Ω([0,1]d,K, δ), where each Qβ is associated with a representative xβ ∈ Qβ470

such that fp(xβ) = f(xβ) for each index vector β ∈ {0,1,⋯,K − 1}d, where471

K = O((N2L2 lnN)1/d) is the partition number per dimension (see Figure 7 for472

examples for d = 1 and d = 2).473

(ii) Next, we design a vector function Φ1(x) constructed via474

Φ1(x) = [φ1(x1), φ1(x2), ⋯, φ1(xd)]
T

475

to project the whole cube Qβ to a d-dimensional index β for each β, where each476

one-dimensional function φ1 is a step function implemented by a ReLU network.477

(iii) The third step is to solve a point fitting problem. To be precise, we construct a478

function φ2 implemented by a ReLU network to map β ∈ {0,1,⋯,K − 1}d approxi-479

mately to fp(xβ) = f(xβ). Then φ2 ○Φ1(x) = φ2(β) ≈ fp(xβ) = f(xβ) ≈ f(x) for480

any x ∈ Qβ and each β, implying φ ∶= φ2 ○ Φ1 ≈ fp ≈ f on [0,1]d/Ω([0,1]d,K, δ).481

We would like to point out that we only need to care about the values of φ2 at482

a set of points {0,1,⋯,K − 1}d in the construction of φ2 according to our design483

φ = φ2 ○Φ1 as illustrated in Figure 5. Therefore, it is not necessary to care about484

the values of φ2 sampled outside the set {0,1,⋯,K − 1}d, which is a key point to485

ease the design of a ReLU network to implement φ2 as we shall see later.486

We remark that in Figure 5, we have487

φ(x) = φ2 ○Φ1(x) = φ2(β)
E1
≈ f(xβ)

E2
≈ f(x)488

for any x ∈ Qβ and each β ∈ {0,1,⋯,K − 1}d. Thus, φ − f is bounded by E1 + E2 outside489

the trifling region. Observe that E2 is bounded by ωf(
√
d/K). As we shall see later in490

Section 3.3, E1 can also be bounded by ωf(
√
d/K) by applying Proposition 3.2. Hence,491
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Φ1(x) = β
=⇒
for x ∈ Qβ

A set of
d-dimensional indices:
β ∈ {0, 1, · · · ,K − 1}d

=⇒ φ2(β) ≈ f(xβ)

A set of function values
at representatives:{

f(xβ) : β ∈ {0, 1, · · · ,K − 1}d
}

Figure 5: An illustration of the desired function φ = φ2 ○ Φ1. Note that φ ≈ f on
[0,1]d/Ω([0,1]d,K, δ), since φ(x) = φ2 ○Φ1(x) = φ2(β) ≈ f(xβ) ≈ f(x) for any x ∈ Qβ
and each β ∈ {0,1,⋯,K − 1}d.

φ − f is controlled by 2ωf(
√
d/K) outside the trifling region, which deduces the desired492

approximation error.493

Finally, we discuss how to implement Φ1 and φ2 by deep ReLU networks with width494

O(N) and depth O(L) using two propositions as we shall prove in Sections 4.2 and 4.3495

later. We first show how to construct a ReLU network with the desired width and depth496

by Proposition 3.1 to implement a one-dimensional step function φ1. Then Φ1 can be497

attained via defining498

Φ1(x) ∶= [φ1(x1), φ1(x2), ⋯, φ1(xd)]
T
, for any x = [x1, x2,⋯, xd]

T ∈ Rd.499

Proposition 3.1. For any N,L, d ∈ N+ and δ ∈ (0, 1
3K ] with500

K = ⌊N1/d⌋2⌊L1/d⌋2⌊n1/d⌋, where n = ⌊log3(N + 2)⌋,501

there exists a one-dimensional function φ implemented by a ReLU network with width502

8⌊N1/d⌋ + 3 and depth 2⌊L1/d⌋ + 5 such that503

φ(x) = k, if x ∈ [ kK ,
k+1
K − δ ⋅ 1{k≤K−2}], for k = 0,1,⋯,K − 1.504

The setting K = ⌊N1/d⌋2⌊L1/d⌋2⌊n1/d⌋ = O(N2/dL2/dn1/d) is not neat here, but it is505

very convenient for later use. The construction of φ2 is a direct result of Proposition 3.2506

below, the proof of which relies on the bit extraction technique in [3].507

Proposition 3.2. Given any ε > 0 and arbitrary N,L,J ∈ N+ with J ≤ N2L2⌊log3(N+2)⌋,508

assume yj ≥ 0 for j = 0,1,⋯, J − 1 are samples with509

∣yj − yj−1∣ ≤ ε, for j = 1,2,⋯, J − 1.510

Then there exists φ ∈ NN (#input = 1; width ≤ 16N + 30; depth ≤ 6L+ 10; #output = 1)511

such that512

(i) ∣φ(j) − yj ∣ ≤ ε for j = 0,1,⋯, J − 1.513

(ii) 0 ≤ φ(x) ≤ max{yj ∶ j = 0,1,⋯, J − 1} for any x ∈ R.514
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3.2 Construction of final network515

We will discuss the construction of the final network approximating the target func-516

tion with the same setting as in Section 3.1. There are two main parts: 1) Construct the517

final network architecture based on Propositions 3.1 and 3.2; 2) Implement the network518

architectures in Propositions 3.1 and 3.2.519

Final network architecture based on Propositions 3.1 and 3.2520

By the idea mentioned in Figure 5, the final network architecture can be imple-521

mented as shown in Figure 6.522

x1 O(N1/d)

O(L1/d)

φ1

x2 O(N1/d)

O(L1/d)

φ1

xd O(N1/d)

O(L1/d)

φ1

ψ1 O(N)

O(L)

ψ2 φ(x)

Φ1(x) = [φ1(x1), · · · , φ1(xd)]T φ2 = ψ2 ◦ ψ1

Figure 6: An illustration of the final network architecture with width
max{O(dN1/d), O(N)} and depth O(L). ψ1 ∶ Rd → R is a linear function. φ1 and
ψ2 are implemented via Propositions 3.1 and 3.2, respectively.

Note that φ1 in Figure 6 is a step function mapping x ∈ [ kK ,
k+1
K − δ ⋅ 1{k≤K−2}] to k523

for each k ∈ {0,1,⋯,K − 1}. It can be easily implemented via Proposition 3.1. Clearly,524

by defining Φ1(x) = [φ1(x1), φ1(x2),⋯, φ1(xd)]
T

, Φ1 maps x ∈ Qβ to β.525

As shown in Figure 5, we need to design a network to compute φ2 mapping β ∈526

{0,1,⋯,K−1}d approximately to f(xβ). To this end, we first construct a linear function527

ψ1 ∶ Rd → R mapping β ∈ {0,1,⋯,K − 1}d to R for the purpose of converting a d-528

dimensional point-fitting problem to a one-dimensional one, and then construct a network529

to compute ψ2 with ψ2(ψ1(β)) ≈ f(xβ) via applying Proposition 3.2. Thus, we have530

φ2(β) ∶= ψ2 ○ ψ1(β) ≈ f(xβ) as desired.531

Network architectures in Propositions 3.1 and 3.2532

To prove Proposition 3.1, we need to construct a ReLU network with width O(N1/d)533

and depth O(L1/d) to compute a step function with O((N2L2 lnN)1/d) “steps” outside534

the trifling region. It is easy to construct a ReLU network with O(W ) parameters to535

compute a step function with W “steps” outside a small region. As we shall see later536

in Section 4.2, the composition architecture of ReLU networks can help to implement537

step functions with much more “steps”. Refer to Section 4.2 for the detailed proof of538

Proposition 3.1.539

Proposition 3.2 essentially solves a point-fitting problem with N2L2⌊log3(N + 2)⌋540

points via a ReLU network with width O(N) and depth O(L). Set M = N2L, L̂ =541
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L⌊log3(N+2)⌋, and represent j ∈ {0,1,⋯,ML̂−1} via j =mL̂+k, wherem ∈ {0,1,⋯,M−1}542

and k ∈ {0,1,⋯, L̂ − 1}.543

Define am,k ∶= ⌊ym,k/ε⌋ where ym,k = ymL̂+k. Then544

∣am,kε − ym,k∣ = ∣⌊ym,k/ε⌋ε − ym,k∣ ≤ ε.545

It suffices to prove φ(m,k) = am,k. The assumption ∣yj − yj−1∣ ≤ ε implies that bm,k ∶=546

am,k − am,k−1 ∈ {−1,0,1}. Thus, there exist cm,k ∈ {0,1} and dm,k ∈ {0,1} such that547

bm,k = cm,k − dm,k.548

Note that549

am,k = am,0 +
k

∑
j=1

(am,j − am,j−1) = am,0 +
k

∑
j=1

bm,j = am,0 +
k

∑
j=1

cm,j −
k

∑
j=1

dm,j.550

It is easy to construct a ReLU network with width O(N) and depth O(L) (O(N2L)551

parameters in total) to compute φ1 such that φ1(m) = am,0 for each m ∈ {0,1,⋯,M − 1}552

with M = N2L. By the bit extraction technique in [3], one could construct φ2, φ3 ∈553

NN (width ≤ O(N); depth ≤ O(L)) such that φ2(m,k) = ∑
k
j=1 cm,j and φ3(m,k) =554

∑
k
j=1 dm,j. Thus, φ(m,k) ∶= φ1(m) + φ2(m,k) − φ3(m,k) = am,k as desired.555

In order to use the bit extraction technique (two types of bits 0 or 1) to solve the556

point-fitting problem, we essentially simplify the target as discussed above. That is,557

non-negative number ym,k Ð→ integer am,k = ⌊ym,k/ε⌋
ε
≈ ym,k

Ð→ bm,k = am,k − am,k−1 ∈ {−1,0,1}

Ð→ bm,k = cm,k − dm,k with cm,k, dm,k ∈ {0,1}.

558

The detailed proof of Proposition 3.2 can be found in Section 4.3.559

3.3 Detailed proof560

We essentially construct an almost piecewise constant function implemented by a561

ReLU network with width O(N) and depth O(L) to approximate f . We may assume f562

is not a constant function since it is a trivial case. Then ωf(r) > 0 for any r > 0. It is563

clear that ∣f(x)−f(0)∣ ≤ ωf(
√
d) for any x ∈ [0,1]d. Define f̃ ∶= f −f(0)+ωf(

√
d), then564

0 ≤ f̃(x) ≤ 2ωf(
√
d) for any x ∈ [0,1]d.565

Let M = N2L, n = ⌊log3(N + 2)⌋, K = ⌊N1/d⌋2⌊L1/d⌋2⌊n1/d⌋, and δ be an arbitrary566

number in (0, 1
3K ]. The proof can be divided into four steps as follows:567

1. Normalize f as f̃ , divide [0,1]d into a union of sub-cubes {Qβ}β∈{0,1,⋯,K−1}d and the568

trifling region Ω([0,1]d,K, δ), and denote xβ as the vertex of Qβ with minimum569

∥ ⋅ ∥1 norm;570

2. Construct a sub-network to implement a vector function Φ1 projecting the whole571

cube Qβ to the d-dimensional index β for each β, i.e., Φ1(x) = β for all x ∈ Qβ;572

3. Construct a sub-network to implement a function φ2 mapping the index β approx-573

imately to f̃(xβ). This core step can be further divided into three sub-steps:574
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3.1. Construct a sub-network to implement ψ1 bijectively mapping the index set575

{0,1,⋯,K − 1}d to an auxiliary set A1 ⊆ {
j

2Kd ∶ j = 0,1,⋯,2Kd} defined later576

(see Figure 8 for an illustration);577

3.2. Determine a continuous piecewise linear function g with a set of breakpoints578

A1 ∪A2 ∪ {1} satisfying: 1) assign the values of g at breakpoints in A1 based579

on {f̃(xβ)}β, i.e., g ○ψ1(β) = f̃(xβ); 2) assign the values of g at breakpoints580

in A2 ∪ {1} to reduce the variation of g for applying Proposition 3.2;581

3.3. Apply Proposition 3.2 to construct a sub-network to implement a function ψ2582

approximating g well on A1 ∪A2 ∪ {1}. Then the desired function φ2 is given583

by φ2 = ψ2 ○ ψ1 satisfying φ2(β) = ψ2 ○ ψ1(β) ≈ g ○ ψ1(β) = f̃(xβ);584

4. Construct the final network to implement the desired function φ such that φ(x) =585

φ2 ○Φ1(x)+f(0)−ωf(
√
d) ≈ f̃(xβ)+f(0)−ωf(

√
d) = f(xβ) ≈ f(x) for any x ∈ Qβ586

and β ∈ {0,1,⋯,K − 1}d.587

The details of these steps can be found below.588

Step 1∶ Divide [0,1]d into {Qβ}β∈{0,1,⋯,K−1}d and Ω([0,1]d,K, δ).589

Define xβ ∶= β/K and590

Qβ ∶= {x = [x1, x2,⋯, xd]
T ∈ [0,1]d ∶ xi ∈ [

βi
K ,

βi+1
K − δ ⋅ 1{βi≤K−2}], i = 1,2,⋯, d}591

for each d-dimensional index β = [β1, β2,⋯, βd]T ∈ {0,1,⋯,K−1}d. Recall that Ω([0,1]d,K, δ)592

is the trifling region defined in Equation (2.1). Apparently, xβ is the vertex of Qβ with593

minimum ∥ ⋅ ∥1 norm and594

[0,1]d = ( ∪β∈{0,1,⋯,K−1}d Qβ)⋃Ω([0,1]d,K, δ).595

See Figure 7 for illustrations.596
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Figure 7: Illustrations of Ω([0,1]d,K, δ), Qβ, and xβ for β ∈ {0,1,⋯,K − 1}d. (a) K = 4
and d = 1. (b) K = 4 and d = 2.

Step 2∶ Construct Φ1 mapping x ∈ Qβ to β.597
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By Proposition 3.1, there exists φ1 ∈ NN (width ≤ 8⌊N1/d⌋ + 3; depth ≤ 2⌊L1/d⌋ + 5)598

such that599

φ1(x) = k, if x ∈ [ kK ,
k+1
K − δ ⋅ 1{k≤K−2}], for k = 0,1,⋯,K − 1.600

It follows that φ1(xi) = βi if x = [x1, x2,⋯, xd]T ∈ Qβ for each β = [β1, β2,⋯, βd]T .601

By defining602

Φ1(x) ∶= [φ1(x1), φ1(x2), ⋯, φ1(xd)]
T
, for any x = [x1, x2,⋯, xd]

T ∈ Rd,603

we have Φ1(x) = β if x ∈ Qβ for each β ∈ {0,1,⋯,K − 1}d.604

Step 3∶ Construct φ2 mapping β approximately to f̃(xβ).605

The construction of the sub-network implementing φ2 is essentially based on Propo-606

sition 3.2. To meet the requirements of applying Proposition 3.2, we first define two607

auxiliary sets A1 and A2 as608

A1 ∶= { i
Kd−1 +

k
2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1}609

and610

A2 ∶= { i
Kd−1 +

K+k
2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1}.611

Clearly, A1 ∪A2 ∪ {1} = {
j

2Kd ∶ j = 0,1,⋯,2Kd} and A1 ∩A2 = ∅. See Figure 7 for an612

illustration of A1 and A2. Next, we further divide this step into three sub-steps.613

Step 3.1∶ Construct ψ1 bijectively mapping {0,1,⋯,K − 1}d to A1.614

Inspired by the binary representation, we define615

ψ1(x) ∶=
xd

2Kd
+
d−1

∑
i=1

xi
Ki

, for any x = [x1, x2,⋯, xd]
T ∈ Rd. (3.1)616

Then ψ1 is a linear function bijectively mapping the index set {0,1,⋯,K − 1}d to617

{
βd

2Kd +
d−1

∑
i=1

βi
Ki ∶ β ∈ {0,1,⋯,K − 1}d}

= { i
Kd−1 +

k
2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1} = A1.

618

Step 3.2∶ Construct g to satisfy g ○ ψ1(β) = f̃(xβ) and to meet the requirements of619

applying Proposition 3.2.620

Let g ∶ [0,1]→ R be a continuous piecewise linear function with a set of breakpoints621

{
j

2Kd ∶ j = 0,1,⋯,2Kd} = A1 ∪A2 ∪ {1} and the values of g at these breakpoints satisfy622

the following properties:623

• The values of g at the breakpoints in A1 = {ψ1(β) ∶ β ∈ {0,1,⋯,K −1}d} are set as624

g(ψ1(β)) = f̃(xβ), for any β ∈ {0,1,⋯,K − 1}d; (3.2)625

• At the breakpoint 1, let g(1) = f̃(1), where 1 = [1,1,⋯,1]T ∈ Rd;626
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Figure 8: An illustration of A1, A2, {1}, and g for d = 2 and K = 4.

• The values of g at the breakpoints in A2 are assigned to reduce the variation of g,627

which is a requirement of applying Proposition 3.2. Note that628

{ i
Kd−1 −

K+1
2Kd ,

i
Kd−1} ⊆ A1 ∪ {1}, for i = 1,2,⋯,Kd−1,629

implying the values of g at i
Kd−1−

K+1
2Kd and i

Kd−1 have been assigned for i = 1,2,⋯,Kd−1.630

Thus, the values of g at the breakpoints in A2 can be successfully assigned by631

letting g linear on each interval [ i
Kd−1 −

K+1
2Kd ,

i
Kd−1 ] for i = 1,2,⋯,Kd−1, since632

A2 ⊆ ⋃
Kd−1
i=1 [ i

Kd−1 −
K+1
2Kd ,

i
Kd−1 ]. See Figure 8 for an illustration.633

Apparently, such a function g exists (see Figure 8 for an example) and satisfies634

∣g( j
2Kd ) − g(

j−1
2Kd )∣ ≤ max{ωf(

1
K ), ωf(

√
d)/K} ≤ ωf(

√
d
K ), for j = 1,2,⋯,2Kd,635

and636

0 ≤ g( j
2Kd ) ≤ 2ωf(

√
d), for j = 0,1,⋯,2Kd.637

Step 3.3∶ Construct ψ2 approximating g well on A1 ∪A2 ∪ {1}.638

Note that639

2Kd = 2(⌊N1/d⌋2⌊L1/d⌋2⌊n1/d⌋)
d
≤ 2(N2L2n) ≤ N2⌈

√
2L⌉2⌊log3(N + 2)⌋.640

By Proposition 3.2 (set yj = g(
j

2K2 ) and ε = ωf(
√
d
K ) > 0 therein), there exists641

ψ̃2 ∈ NN (#input = 1; width ≤ 16N + 30; depth ≤ 6⌈
√

2L⌉ + 10; #output = 1)642

such that643

∣ψ̃2(j) − g(
j

2Kd )∣ ≤ ωf(
√
d
K ), for j = 0,1,⋯,2Kd − 1,644

and645

0 ≤ ψ̃2(x) ≤ max{g( j
2Kd ) ∶ j = 0,1,⋯,2Kd − 1} ≤ 2ωf(

√
d), for any x ∈ R.646

By defining ψ2(x) ∶= ψ̃2(2Kdx) for any x ∈ R, we have ψ2 ∈ NN (#input = 1; width ≤647

16N + 30; depth ≤ 6⌈
√

2L⌉ + 10; #output = 1),648

0 ≤ ψ2(x) = ψ̃2(2K
dx) ≤ 2ωf(

√
d), for any x ∈ R, (3.3)649
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and650

∣ψ2(
j

2Kd ) − g(
j

2Kd )∣ = ∣ψ̃2(j) − g(
j

2Kd )∣ ≤ ωf(
√
d
K ), for j = 0,1,⋯,2Kd − 1. (3.4)651

Let us end Step 3 by defining the desired function φ2 as φ2 ∶= ψ2 ○ ψ1. Note that652

ψ1 ∶ Rd → R is a linear function and ψ2 ∈ NN (#input = 1; width ≤ 16N + 30; depth ≤653

6⌈
√

2L⌉ + 10; #output = 1). Thus, φ2 ∈ NN (#input = 1; width ≤ 16N + 30; depth ≤654

6⌈
√

2L⌉ + 10; #output = 1). By Equations (3.2) and (3.4), we have655

∣φ2(β) − f̃(xβ)∣ = ∣ψ2(ψ1(β)) − g(ψ1(β))∣ ≤ ωf(
√
d
K ), (3.5)656

for any β ∈ {0,1,⋯,K − 1}d. Equation (3.3) and φ2 = ψ2 ○ ψ1 implies657

0 ≤ φ2(x) ≤ 2ωf(
√
d), for any x ∈ Rd. (3.6)658

Step 4∶ Construct the final network to implement the desired function φ.659

Define φ ∶= φ2 ○Φ1 + f(0) − ωf(
√
d). Since φ1 ∈ NN (width ≤ 8⌊N1/d⌋ + 3; depth ≤660

2⌊L1/d⌋ + 5]), we have Φ1 ∈ NN (#input = d; width ≤ 8d⌊N1/d⌋ + 3d; depth ≤ 2L +661

5; #output = d). It follows from the fact ⌈
√

2L⌉ ≤ ⌈3
2L⌉ ≤

3
2L+

1
2 that 6⌈

√
2L⌉+10 ≤ 9L+13,662

implying663

φ2 ∈ NN (#input = 1; width ≤ 16N + 30; depth ≤ 6⌈
√

2L⌉ + 10; #output = 1)

⊆ NN (#input = 1; width ≤ 16N + 30; depth ≤ 9L + 13; #output = 1).
664

Thus, φ = φ2 ○Φ1 + f(0) − ωf(
√
d) is in665

NN (width ≤ max{8d⌊N1/d⌋ + 3d,16N + 30}; depth ≤ (2L + 5) + (9L + 13) = 11L + 18).666

Now let us estimate the approximation error. Note that f = f̃ + f(0)−ωf(
√
d). By667

Equation (3.5), for any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d, we have668

∣f(x) − φ(x)∣ = ∣f̃(x) − φ2(Φ1(x))∣ = ∣f̃(x) − φ2(β)∣

≤ ∣f̃(x) − f̃(xβ)∣ + ∣f̃(xβ) − φ2(β)∣

≤ ωf(
√
d
K ) + ωf(

√
d
K ) ≤ 2ωf(64

√
d(N2L2 log3(N + 2))

−1/d
),

669

where the last inequality comes from the fact670

K = ⌊N1/d⌋2⌊L1/d⌋2⌊n1/d⌋ ≥ N2/dL2/dn1/d
32 =

N2/dL2/d⌊log3(N+2)⌋1/d
32 ≥

(N2L2 log3(N+2))1/d
64 ,671

for any N,L ∈ N+. Recall the fact ωf(j ⋅ r) ≤ j ⋅ ωf(r) for any j ∈ N+ and r ∈ [0,∞).672

Therefore, for any x ∈ ⋃β∈{0,1,⋯,K−1}dQβ=[0,1]
d/Ω([0,1]d,K, δ), we have673

∣f(x) − φ(x)∣ ≤ 2ωf(64
√
d(N2L2 log3(N + 2))

−1/d
)

≤ 2⌈64
√
d⌉ωf((N

2L2 log3(N + 2))
−1/d

)

≤ 130
√
dωf((N

2L2 log3(N + 2))
−1/d

).

674

It remains to show the upper bound of φ. By Equation (3.6) and φ = φ2○Φ1+f(0)−675

ωf(
√
d), it holds that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(

√
d). Thus, we finish the proof.676
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4 Proofs of propositions in Section 3.1677

In this section, we will prove Propositions 3.1 and 3.2. We first introduce several678

basic results of ReLU networks. Next, we prove these two propositions based on these679

basic results.680

4.1 Basic results of ReLU networks681

To simplify the proofs of two propositions in Section 3.1, we introduce three lemmas682

below, which are basic results of ReLU networks683

Lemma 4.1. For any N1,N2 ∈ N+, given N1(N2 + 1) + 1 samples (xi, yi) ∈ R2 with684

x0 < x1 < ⋯ < xN1(N2+1) and yi ≥ 0 for i = 0,1,⋯,N1(N2+1), there exists φ ∈ NN (#input =685

1; widthvec = [2N1,2N2 + 1]; #output = 1) satisfying the following conditions.686

(i) φ(xi) = yi for i = 0,1,⋯,N1(N2 + 1).687

(ii) φ is linear on each interval [xi−1, xi] for i ∉ {(N2 + 1)j ∶ j = 1,2,⋯,N1}.688

Lemma 4.2. Given any N,L, d ∈ N+, it holds that689

NN (#input = d; widthvec = [N,NL]; #output = 1)

⊆ NN (#input = d; width ≤ 2N + 2; depth ≤ L + 1; #output = 1).
690

Lemma 4.3. For any n ∈ N+, it holds that691

CPwL(R, n) ⊆ NN (#input = 1; widthvec = [n + 1]; #output = 1). (4.1)692

Lemma 4.1 is a part of Theorem 3.2 in [44] or Lemma 2.2 in [32]. Lemma 4.1 is693

Theorem 3.1 in [44] or Lemma 3.4 in [32]. It remains to prove Lemma 4.3.694

Proof of Lemma 4.3. We use the mathematical induction to prove Equation (4.1). First,695

consider the case n = 1. Given any f ∈ CPwL(R,1), there exist a1, a2, x0 ∈ R such that696

f(x) = {
a1(x − x0) + f(x0), if x ≥ x0,
a2(x0 − x) + f(x0), if x < x0.

697

Thus, f(x) = a1σ(x − x0) + a2σ(x0 − x) + f(x0) for any x ∈ R, implying698

f ∈ NN (#input = 1; widthvec = [2]; #output = 1).699

Thus, Equation (4.1) holds for n = 1.700

Now assume Equation (4.1) holds for n = k ∈ N+, we would like to show it is also701

true for n = k +1. Given any f ∈ CPwL(R, k +1), we may assume the biggest breakpoint702

of f is x0 since it is trivial for the case that f has no breakpoint. Denote the slopes of703

the linear pieces left and right next to x0 by a1 and a2, respectively. Define704

f̃(x) ∶= f(x) − (a2 − a1)σ(x − x0), for any x ∈ R.705

Then f̃ has at most k breakpoints. By the induction hypothesis, we have706

f̃ ∈ CPwL(R, k) ⊆ NN (#input = 1; widthvec = [k + 1]; #output = 1).707
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Thus, there exist w0,j, b0,j,w1,j, b1 for j = 1,2,⋯, k + 1 such that708

f̃(x) =
k+1

∑
j=1

w1,jσ(w0,jx + b0,j) + b1, for any x ∈ R.709

Therefore, for any x ∈ R, we have710

f(x) = (a2 − a1)σ(x − x0) + f̃(x) = (a2 − a1)σ(x − x0) +
k+1

∑
j=1

w1,jσ(w0,jx + b0,j) + b1,711

implying f ∈ NN (#input = 1; widthvec = [k + 2]; #output = 1). Thus, Equation (4.1)712

holds for k+1, which means we finish the induction process. So we complete the proof.713

4.2 Proof of Proposition 3.1714

Now, let us present the detailed proof of Proposition 3.1. Denote K = M̃ ⋅ L̃, where715

M̃ = ⌊N1/d⌋2⌊L1/d⌋, n = ⌊log3(N + 2)⌋, and L̃ = ⌊L1/d⌋⌊n1/d⌋. Consider the sample set716

{(1, M̃ − 1), (2,0)}⋃{(m
M̃
,m) ∶m = 0,1,⋯, M̃ − 1}

⋃{(m+1
M̃

− δ,m) ∶m = 0,1,⋯, M̃ − 2}.
717

Its size is718

2M̃ + 1 = 2⌊N1/d⌋2⌊L1/d⌋ + 1 = ⌊N1/d⌋ ⋅ ((2⌊N1/d⌋⌊L1/d⌋ − 1) + 1) + 1.719

By Lemma 4.1 (set N1 = ⌊N1/d⌋ and N2 = 2⌊N1/d⌋⌊L1/d⌋ − 1 therein), there exists720

φ1 ∈ NN (widthvec = [2⌊N1/d⌋,2(2⌊N1/d⌋⌊L1/d⌋ − 1) + 1])

= NN (widthvec = [2⌊N1/d⌋,4⌊N1/d⌋⌊L1/d⌋ − 1])
721

such that722

• φ1(
M̃−1
M̃

) = φ1(1) = M̃ − 1 and φ1(
m
M̃

) = φ1(
m+1
M̃

− δ) =m for m = 0,1,⋯, M̃ − 2.723

• φ1 is linear on [M̃−1
M̃
,1] and each interval [m

M̃
, m+1
M̃

− δ] for m = 0,1,⋯, M̃ − 2.724

Then, for m = 0,1,⋯, M̃ − 1, we have725

φ1(x) =m, for any x ∈ [m
M̃
, m+1
M̃

− δ ⋅ 1{m≤M̃−2}]. (4.2)726

Now consider another sample set727

{( 1
M̃
, L̃ − 1), (2,0)}⋃{( `

M̃L̃
, `) ∶ ` = 0,1,⋯, L̃ − 1}

⋃{( `+1
M̃L̃

− δ, `) ∶ ` = 0,1,⋯, L̃ − 2}.
728

Its size is729

2L̃ + 1 = 2⌊L1/d⌋⌊n1/d⌋ + 1 = ⌊n1/d⌋ ⋅ ((2⌊L1/d⌋ − 1) + 1) + 1.730

By Lemma 4.1 (set N1 = ⌊n1/d⌋ and N2 = 2⌊L1/d⌋ − 1 therein), there exists731

φ2 ∈ NN (widthvec = [2⌊n1/d⌋,2(2⌊L1/d⌋ − 1) + 1])

= NN (widthvec = [2⌊n1/d⌋,4⌊L1/d⌋ − 1])
732

such that733
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• φ2(
L̃−1
M̃L̃

) = φ2(
1
M̃

) = L̃ − 1 and φ2(
`

M̃L̃
) = φ2(

`+1
M̃L̃

− δ) = ` for ` = 0,1,⋯, L̃ − 2.734

• φ2 is linear on [ L̃−1
M̃L̃

, 1
M̃

] and each interval [ `
M̃L̃

, `+1
M̃L̃

− δ] for ` = 0,1,⋯, L̃ − 2.735

It follows that, for m = 0,1,⋯, M̃ − 1 and ` = 0,1,⋯, L̃ − 1,736

φ2(x −
m
M̃

) = `, for any x ∈ [mL̃+`
M̃L̃

, mL̃+`+1
M̃L̃

− δ ⋅ 1{`≤L̃−2}]. (4.3)737

K = M̃ ⋅ L̃ implies any k ∈ {0,1,⋯,K − 1} can be unique represented by k = mL̃ + `738

for m ∈ {0,1,⋯, M̃ − 1} and ` ∈ {0,1,⋯, L̃ − 1}. Then the desired function φ can be739

implemented by a ReLU network shown in Figure 9.740

x

φ1(x) = m

x

m

x− m

M̃

m

φ2(x− m

M̃
) = `

mL̃+ ` = k =: φ(x)
φ1

φ2

Figure 9: An illustration of the network architecture implementing φ based on Equa-
tions (4.2) and (4.3) for x ∈ [ kK ,

k+1
K − δ ⋅ 1{k≤K−2}] = [mL+`

M̃L̃
, mL+`+1

M̃L̃
− δ ⋅ 1{m≤M̃−2 or `≤L̃−2}],

where k =mL̃ + ` for m = 0,1,⋯, M̃ − 1 and ` = 0,1,⋯, L̃ − 1.

Clearly,741

φ(x) = k, if x ∈ [ kK ,
k+1
K − δ ⋅ 1{k≤K−2}], for any k ∈ {0,1,⋯,K − 1}.742

By Lemma 4.2, we have743

φ1 ∈ NN (#input = 1; widthvec = [2⌊N1/d⌋,4⌊N1/d⌋⌊L1/d⌋ − 1]; #output = 1)

⊆ NN (#input = 1; width ≤ 8⌊N1/d⌋ + 2; depth ≤ ⌊L1/d⌋ + 1; #output = 1)
744

and745

φ2 ∈ NN (#input = 1; widthvec = [2⌊n1/d⌋,4⌊L1/d⌋ − 1]; #output = 1)

⊆ NN (#input = 1; width ≤ 8⌊n1/d⌋ + 2; depth ≤ ⌊L1/d⌋ + 1; #output = 1).
746

Recall that n = ⌊log3(N + 2)⌋ ≤ N . It follows from Figure 9 that φ can be implemented747

by a ReLU network with width748

max{8⌊N1/d⌋ + 2 + 1,8⌊n1/d⌋ + 2 + 1} = 8⌊N1/d⌋ + 3749

and depth750

(⌊L1/d⌋ + 1) + 2 + (⌊L1/d⌋ + 1) + 1 = 2⌊L1/d⌋ + 5.751

So we finish the proof.752
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4.3 Proof of Proposition 3.2753

The proof of Proposition 3.2 is based on the bit extraction technique in [3, 13]. To754

simplify the proof, we first prove Lemmas 4.4, 4.5, 4.6, and 4.7, which serve as four755

important intermediate steps. Next, we will apply Lemma 4.7 to prove Proposition 3.2.756

In fact, we modify this technique to extract the sum of many bits rather than one bit757

and this modification can be summarized in Lemmas 4.4 and 4.5 below.758

Lemma 4.4. For any n ∈ N+, there exists a function φ in759

NN (#input = 2; width ≤ (n + 1)2n+1; depth ≤ 3; #output = 1)760

such that: Given any θj ∈ {0,1} for j = 1,2,⋯, n, we have761

φ(bin0.θ1θ2⋯θn, i) =
i

∑
j=1

θj, for any i ∈ {0,1,2,⋯, n}. 2○762

Proof. Set θ = bin0.θ1θ2⋯θn. Clearly,763

θj = ⌊2jθ⌋/2 − ⌊2j−1θ⌋, for any j ∈ {1,2,⋯, n}.764

We shall use a ReLU network to replace ⌊⋅⌋. Let g ∈ CPwL(R,2n+1 − 2) be the function765

satisfying two conditions:766

• g matches set of samples767

2n−1

⋃
k=0

{(k, k), (k + 1 − δ, k)}, where δ = 2−(n+1);768

• The breakpoint set of g is769

(
2n−1

⋃
k=0

{k, k + 1 − δ})/({0}⋃{2n − δ}).770

Then g(x) = ⌊x⌋ for any x ∈ ⋃2n−1
k=0 [k, k + 1 − δ]. Clearly, θ = bin0.θ1θ2⋯θn implies771

2jθ ∈
2n−1

⋃
k=0

[k, k + 1 − δ], for any j ∈ {0,1,2,⋯, n}.772

Thus,773

θj = ⌊2jθ⌋/2 − ⌊2j−1θ⌋ = g(2jθ)/2 − g(2j−1θ), for any j ∈ {1,2,⋯, n}. (4.4)774

It is easy to design a ReLU network to output θ1, θ2,⋯, θn by Equation (4.4) when775

using θ = bin0.θ1θ2⋯θn as the input. However, it is highly non-trivial to construct776

a ReLU network to output ∑
i
j=1 θj with another input i, since many operations like777

multiplication and comparison are not allowed in designing ReLU networks. Now let us778

establish a formula to represent ∑
i
j=1 θj in a form of a ReLU network as follows.779

2○By convention, ∑m
j=n aj = 0 if n >m, no matter what aj is for each j.
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Define T (n) ∶= σ(n+ 1)− σ(n) = {
1, n≥0,
0, n<0 for any integer n. Then, by Equation (4.4)780

and the fact x1x2 = σ(x1 + x2 − 1) for any x1, x2 ∈ {0,1}, we have, for i = 0,1,2,⋯, n,781

i

∑
j=1

θj =
n

∑
j=1

θj ⋅ T (i − j) =
n

∑
j=1

σ(θj + T (i − j) − 1)

=
n

∑
j=1

σ(θj + σ(i − j + 1) − σ(i − j) − 1)

=
n

∑
j=1

σ(g(2jθ)/2 − g(2j−1θ) + σ(i − j + 1) − σ(i − j) − 1).

782

Define783

zi,j ∶= σ(g(2
jθ)/2 − g(2j−1θ) + σ(i − j + 1) − σ(i − j) − 1), (4.5)784

for any i, j ∈ {0,1,2,⋯, n}. Then the goal is to design φ satisfying785

φ(θ, i) =
i

∑
j=1

θj =
n

∑
j=1

zi,j, for any i ∈ {0,1,2,⋯, n}. (4.6)786

See Figure 10 for the network architecture implementing the desired function φ.787

Input 1 2 3 Output

g(·)
g(2·)
g(22·)
g(2n−1·)
g(2n·)

θ

i

g(θ)

g(2θ)

g(22θ)

...
g(2n−1θ)

g(2nθ)

σ(i)

σ(i− 1)

σ(i− 2)

...
σ(i− n+ 1)

σ(i− n)

σ
(
g(2θ)/2− g(θ) + σ(i)− σ(i− 1)− 1

)
= zi,1

σ
(
g(22θ)/2− g(21θ) + σ(i− 1)− σ(i− 2)− 1

)
= zi,2

...

σ
(
g(2nθ)/2− g(2n−1θ) + σ(i− n+ 1)− σ(i− n)− 1

)
= zi,n

n∑

j=1

zi,j =
i∑

j=1

θj =: φ(θ, i)

Figure 10: An illustration of the network implementing the desired function φ with
the input [θ, i]T = [bin0.θ1θ2⋯θn, i]T for any i ∈ {0,1,2,⋯, n} and θ1, θ2,⋯, θn ∈ {0,1}.
g(2j ⋅) can be implemented by a one-hidden-layer network with width 2n+1 − 1 for each
j ∈ {0,1,2,⋯, n}. The red numbers above the architecture indicate the order of hidden
layers. The network architecture is essentially determined by Equations (4.5) and (4.6),
which are valid no matter what θ1, θ2,⋯, θn ∈ {0,1} are. Thus, the desired function φ
is independent of θ1, θ2,⋯, θn ∈ {0,1}. We omit ReLU (σ) for a neuron if its output is
non-negative without ReLU. Such a simplification is applied to similar figures in this
paper.

By Lemma 4.3, we have788

g ∈ CPwL(R,2n+1 − 2) ⊆ NN (#input = 1; widthvec = [2n+1 − 1]; #output = 1),789
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implying790

g(2j ⋅) ∈ CPwL(R,2n+1 − 2) ⊆ NN (#input = 1; widthvec = [2n+1 − 1]; #output = 1),791

for j = 0,1,2,⋯, n. Clearly, the network in Figure 10 has width792

(n + 1)(2n+1 − 1) + (n + 1) = (n + 1)2n+1793

and depth 3. So we finish the proof.794

Lemma 4.5. For any n,L ∈ N+, there exists a function φ in795

NN (#input = 2; width ≤ (n + 3)2n+1 + 4; depth ≤ 4L + 2; #output = 1)796

such that: Given any θj ∈ {0,1} for j = 1,2,⋯, Ln, we have797

φ(bin0.θ1θ2⋯θLn, k) =
k

∑
j=1

θj, for any k ∈ {1,2,⋯, Ln}.798

Proof. Let g1 ∈ CPwL(R,2n+1 − 2) be the function satisfying:799

• g1 matches the set of samples800

2n−1

⋃
i=0

{(i, i), (i + 1 − δ, i)}, where δ = 2−(Ln+1).801

• The breakpoint set of g1 is802

(
2n−1

⋃
i=0

{(i, i), (i + 1 − δ, i)})/({0}⋃{2n − δ}).803

Then g1(x) = ⌊x⌋ for any x ∈ ⋃2n−1
i=0 [i, i + 1 − δ]. Note that804

2n ⋅ bin0.θ`n+1⋯θLn ∈
2n−1

⋃
i=0

[i, i + 1 − δ], for any ` ∈ {0,1,⋯, L − 1}.805

Thus, for any ` ∈ {0,1,⋯, L − 1}, we have806

bin0.θ`n+1⋯θ`n+n =
⌊2n ⋅ bin0.θ`n+1⋯θLn⌋

2n
=
g1(2n ⋅ bin0.θ`n+1⋯θLn)

2n
. (4.7)807

Define g2(x) ∶= 2nx − g1(2nx) for any x ∈ R. Then g2 ∈ CPwL(R,2n+1 − 2) and808

bin0.θ(`+1)n+1⋯θLn = 2n(bin0.θ`n+1⋯θLn − bin0.θ`n+1⋯θ`n+n)

= 2n(bin0.θ`n+1⋯θLn −
g1(2n ⋅ bin0.θ`n+1⋯θLn)

2n
) = g2(bin0.θ`n+1⋯θLn).

(4.8)809

By Lemma 4.4, there exists810

φ1 ∈ NN (#input = 2; width ≤ (n + 1)2n+1; depth ≤ 3; #output = 1)811
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such that: For any ξ1, ξ2,⋯, ξn ∈ {0,1}, we have812

φ1(bin0.ξ1ξ2⋯ξn, i) =
i

∑
j=1

ξj, for i = 0,1,2,⋯, n.813

It follows that814

φ1(bin0.θ`n+1θ`n+2⋯θ`n+n, i) =
i

∑
j=1

θ`n+j, for ` = 0,1,⋯, L − 1 and i = 0,1,⋯, n. (4.9)815

Define φ2,`(x) ∶= min{σ(x − `n), n} for any x ∈ R and ` ∈ {0,1,⋯, L − 1}. For any816

k ∈ {1,2,⋯, Ln}, there exist k1 ∈ {0,1,⋯, L−1} and k2 ∈ {1,2,⋯, n} such that k = k1n+k2,817

implying818

k

∑
i=1

θi =
k1n+k2
∑
i=1

θi =
k1−1

∑
`=0

(
n

∑
j=1

θ`n+j) +
k1

∑
`=k1

(
k2

∑
j=1

θ`n+j) +
L−1

∑
`=k1+1

(
0

∑
j=1

θ`n+j)

=
L−1

∑
`=0

(

min{σ(k−`n), n}

∑
j=1

θ`n+j) =
L−1

∑
`=0

(

φ2,`(k)

∑
j=1

θ`n+j).

(4.10)819

Then, the desired function φ can be implemented by the network architecture in Fig-820

ure 11.821

bin0.θ1 · · · θLn

k

bin0.θn+1 · · · θLn

bin0.θ1 · · · θn

φ2,0(k)

k

bin0.θ2n+1 · · · θLn

bin0.θn+1 · · · θn+n

φ2,1(k)

φ2,0(k)∑

j=1

θj

k

bin0.θ3n+1 · · · θLn

bin0.θ2n+1 · · · θ2n+n

φ2,2(k)

1∑

`=0

φ2,`(k)∑

j=1

θ`n+j

k

bin0.θ(L−1)n+1 · · · θLn

bin0.θ(L−2)n+1 · · · θ(L−2)n+n

φ2,L−2(k)

L−3∑

`=0

φ2,`(k)∑

j=1

θ`n+j

k

· · ·
bin0.θ(L−1)n+1 · · · θ(L−1)n+n

φ2,L−1(k)

L−2∑

`=0

φ2,`(k)∑

j=1

θ`n+j

L−1∑

`=0

φ2,`(k)∑

j=1

θ`n+j =
k∑

i=1

θi =: φ(bin0.θ1 · · · θLn, k)

g2 g2 g2
g1 g1 g1

φ1 φ1 φ1 φ1

φ2,0 φ2,1 φ2,2 φ2,L−1

Figure 11: An illustration of the network implementing the desired function φ with the
input [bin0.θ1θ2⋯θLn, k]T for any k ∈ {1,2,⋯, Ln} and θ1, θ2,⋯, θLn ∈ {0,1}. The network
architecture is essentially determined by Equations (4.7), (4.8), (4.9), and (4.10), which
are valid no matter what θ1, θ2,⋯, θLn ∈ {0,1} are. Thus, the desired function φ is
independent of θ1, θ2,⋯, θLn ∈ {0,1}. We omit ReLU (σ) for a neuron if its output is
non-negative without ReLU.

By Lemma 4.3, we have822

g1, g2 ∈ CPwL(R,2n+1 − 2) ⊆ NN (#input = 1; widthvec = [2n+1 − 1]; #output = 1).823

Recall that φ1 ∈ NN (width ≤ (n + 1)2n+1; depth ≤ 3). As shown in Figure 12,824

φ2,`(x) ∈ NN (width ≤ 4; depth ≤ 2) for ` = 0,1,⋯, L − 1. Therefore, the network in825

Figure 11 has width826

(2n+1 − 1) + (2n+1 − 1) + (n + 1)2n+1 + 1 + 4 + 1 = (n + 3)2n+1 + 4827

and depth828

2 +L(1 + 3) = 4L + 2.829

So we finish the proof.830
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x σ(x− `n)

σ
(
σ(x− `n) + n

)

σ
(
− σ(x− `n)− n

)

σ
(
σ(x− `n)− n

)

σ
(
− σ(x− `n) + n

)

min
{
σ(x− `n), n

}
=: φ2,`(x)

Figure 12: An illustration of the network implementing the desired function φ2,` for each
` ∈ {0,1,⋯, L − 1}, based on min{y, n} = 1

2
(σ(y + n) − σ(−y − n) − σ(y − n) − σ(−y + n)).

Next, we introduce Lemma 4.6 to map indices to the partial sum of given bits.831

Lemma 4.6. Given any N,L ∈ N+ and arbitrary θm,k ∈ {0,1} for m = 0,1,⋯,M − 1 and832

k = 0,1,⋯, Ln − 1, where M = N2L and n = ⌊log3(N + 2)⌋, there exists833

φ ∈ NN (#input = 2; width ≤ 6N + 14; depth ≤ 5L + 4; #output = 1)834

such that835

φ(m,k) =
k

∑
j=0

θm,j, for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.836

Proof. Define837

ym ∶= bin0.θm,0θm,1⋯θm,Ln−1, for m = 0,1,⋯,M − 1.838

Consider the sample set {(m,ym) ∶m = 0,1,⋯,M}, whose cardinality is839

M + 1 = N((NL − 1) + 1) + 1.840

By Lemma 4.1 (set N1 = N and N2 = NL − 1 therein), there exists841

φ1 ∈ NN (#input = 1; widthvec = [2N,2(NL − 1) + 1]; #output = 1)

= NN (#input = 1; widthvec = [2N,2NL − 1]; #output = 1)
842

such that843

φ1(m) = ym, for m = 0,1,⋯,M − 1.844

By Lemma 4.5, there exists845

φ2 ∈ NN (#input = 2; width ≤ (n + 3)2n+1 + 4; depth ≤ 4L + 2; #output = 1)846

such that, for any ξ1, ξ2,⋯, ξLn ∈ {0,1}, we have847

φ2(bin0.ξ1ξ2⋯ξLn, k) =
k

∑
j=1

ξj, for k = 1,2,⋯, Ln.848

It follows that, for any ξ0, ξ1,⋯, ξLn−1 ∈ {0,1}, we have849

φ2(bin0.ξ0ξ1⋯ξLn−1, k + 1) =
k

∑
j=0

ξj, for k = 0,1,⋯, Ln − 1.850
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m

k

φ1(m)

k + 1

φ2
(
φ1(m), k + 1

)
=
∑k

j=0 θm,j =: φ(m, k)

φ1
φ2

Figure 13: An illustration of the network implementing the desired function φ for m =

0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.

Thus, for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1, we have851

φ2(φ1(m), k + 1) = φ2(ym, k + 1) = φ2(0.θm,0θm,1⋯θm,Ln−1, k + 1) =
k

∑
j=0

θm,j.852

Hence, the desired function φ can be implemented by the network shown in Fig-853

ure 13. By Lemma 4.2, φ1 ∈ NN (widthvec = [2N,2NL − 1]) ⊆ NN (width ≤ 4N +854

2; depth ≤ L + 1). It holds that855

(n + 3)2n+1 + 4 ≤ 6 ⋅ (3n) + 2 = 6 ⋅ (3⌊log3(N+2)⌋) + 2 ≤ 6(N + 2) + 2 = 6N + 14,856

implying857

φ2 ∈ NN (#input = 2; width ≤ (n + 3)2n+1 + 4; depth ≤ 4L + 2; #output = 1)

⊆ NN (#input = 2; width ≤ 6N + 14; depth ≤ 4L + 2; #output = 1).
858

Therefore, the network in Figure 13 is with width max{(4N + 2)+ 1,6N + 14} = 6N + 14859

and depth (4L + 2) + 1 + (L + 1) = 5L + 4. So we finish the proof.860

Next, we apply Lemma 4.6 to prove Lemma 4.7 below, which is a key intermediate861

conclusion to prove Proposition 3.2.862

Lemma 4.7. For any ε > 0 and N,L ∈ N+, denote M = N2L and n = ⌊log3(N + 2)⌋.863

Assume ym,k ≥ 0 for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1 are samples with864

∣ym,k − ym,k−1∣ ≤ ε, for m = 0,1,⋯,M − 1 and k = 1,2,⋯, Ln − 1.865

Then there exists φ ∈ NN (#input = 2; width ≤ 16N + 30; depth ≤ 5L + 7; #output = 1)866

such that867

(i) ∣φ(m,k) − ym,k∣ ≤ ε for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1;868

(ii) 0 ≤ φ(x1, x2) ≤ max{ym,k ∶ m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1} for any869

x1, x2 ∈ R.870

Proof. Define871

am,k ∶= ⌊ym,k/ε⌋, for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.872

We will construct a function implemented by a ReLU network to map the index (m,k)873

to am,kε for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.874
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Define bm,0 ∶= 0 and bm,k ∶= am,k − am,k−1 for m = 0,1,⋯,M − 1 and k = 1,2,⋯, Ln− 1.875

Since ∣ym,k − ym,k−1∣ ≤ ε for all m and k, we have bm,k ∈ {−1,0,1}. Hence, there exist876

cm,k ∈ {0,1} and dm,k ∈ {0,1} such that bm,k = cm,k − dm,k, which implies877

am,k = am,0 +
k

∑
i=1

(am,i − am,i−1) = am,0 +
k

∑
i=1

bm,i = am,0 +
k

∑
i=0

bm,i

= am,0 +
k

∑
i=0

cm,i −
k

∑
i=0

dm,i,

878

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.879

Consider the sample set880

{(m,am,0) ∶m = 0,1,⋯,M − 1}⋃{(M,0)}.881

Its size is M + 1 = N ⋅ ((NL − 1) + 1) + 1, by Lemma 4.1 (set N1 = N and N2 = NL − 1882

therein), there exists883

ψ1 ∈ NN (widthvec = [2N,2(NL − 1) + 1]) = NN (widthvec = [2N,2NL − 1])884

such that885

ψ1(m) = am,0, for m = 0,1,⋯,M − 1.886

By Lemma 4.6, there exist ψ2, ψ3 ∈ NN (width ≤ 6N + 14; depth ≤ 5L + 4) such that887

ψ2(m,k) =
k

∑
i=0

cm,i and ψ3(m,k) =
k

∑
i=0

dm,i,888

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1. Hence, it holds that889

am,k = am,0 +
k

∑
i=0

cm,i −
k

∑
i=0

dm,i = ψ1(m) + ψ2(m,k) − ψ3(m,k), (4.11)890

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.891

Define892

ymax ∶= max{ym,k ∶m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1}.893

Then the desired function can be implemented by two sub-networks shown in Figure 14.894

By Lemma 4.2,895

ψ1 ∈ NN (#input = 1; widthvec = [2N,2NL − 1]; #output = 1)

⊆ NN (#input = 1; width ≤ 4N + 2; depth ≤ L + 1; #output = 1).
896

Recall that ψ2, ψ3 ∈ NN (width ≤ 6N + 14; depth ≤ 5L + 4). Thus, φ1 ∈ NN (width ≤897

(4N + 2) + 2(6N + 14) = 16N + 30; depth ≤ (5L + 4) + 1 = 5L + 5) as shown in Figure 14.898

And it is clear that φ2 ∈ NN (width ≤ 4; depth ≤ 2), implying φ = φ2 ○ φ1 ∈ NN (width ≤899

16N + 30; depth ≤ (5L + 5) + 2 = 5L + 7).900

Clearly, 0 ≤ φ(x1, x2) ≤ ymax for any x1, x2 ∈ R, since φ(x1, x2) = φ2 ○ φ1(x1, x2) =901

max{σ(φ1(x1, x2)), ymax}.902
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k

ψ1(m)

ψ2(m, k)

ψ3(m, k)

am,kε =: φ1(m, k)

ψ1

ψ2

ψ3

(a) φ1

x σ(x)

σ
(
σ(x) + ymax

)

σ
(
− σ(x)− ymax

)

σ
(
σ(x)− ymax

)

σ
(
− σ(x) + ymax

)

min
{
σ(x), ymax

}
=: φ2(x)

(b) φ2

Figure 14: Illustrations of two sub-networks implementing the desired function φ = φ2○φ1

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1, based on Equation (4.11) and the fact

min{x1, x2} =
x1+x2−∣x1−x2∣

2 =
σ(x1+x2)−σ(−x1−x2)−σ(x1−x2)−σ(−x1+x2)

2 .

Note that 0 ≤ am,kε = ⌊ym,k/ε⌋ε ≤ ymax. Then we have φ(m,k) = φ2 ○ φ1(m,k) =903

φ2(am,kε) = max{σ(am,kε), ymax} = am,kε. Therefore,904

∣φ(m,k) − ym,k∣ = ∣am,kε − ym,k∣ = ∣⌊ym,k/ε⌋ε − ym,k∣ ≤ ε,905

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1. Hence, we finish the proof.906

Finally, we apply Lemma 4.7 to prove Proposition 3.2.907

Proof of Proposition 3.2. Denote M = N2L, n = ⌊log3(N + 2)⌋, and L̂ = Ln. We may908

assume J =MLn =ML̂ since we can set yJ−1 = yJ = yJ+1 = ⋯ = yML̂−1 if J <ML̂.909

Consider the sample set910

{(mL̂,m) ∶m = 0,1,⋯,M}⋃{(mL̂ + L̂ − 1,m) ∶m = 0,1,⋯,M − 1}.911

Its size is 2M + 1 = N ⋅ ((2NL − 1)+ 1)+ 1. By Lemma 4.1 (set N1 = N and N2 = NL − 1912

therein), there exists913

φ1 ∈ NN (widthvec = [2N,2(2NL − 1) + 1]) = NN (widthvec = [2N,4NL − 1])914

such that915

• φ1(ML̂) =M and φ1(mL̂) = φ1(mL̂ + L̂ − 1) =m for m = 0,1,⋯,M − 1.916

• φ1 is linear on each interval [mL̂,mL̂ + L̂ − 1] for m = 0,1,⋯,M − 1.917

It follows that918

φ1(j) =m, and j − L̂φ1(j) = k, where j =mL̂ + k, (4.12)919

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, L̂ − 1.920

Since J = ML̂, any j ∈ {0,1,⋯, J − 1} can be uniquely indexed as j = mL̂ + k for921

m ∈ {0,1,⋯,M − 1} and k ∈ {0,1,⋯, L̂ − 1}. So we can denote yj = ymL̂+k as ym,k. Then922

by Lemma 4.7, there exists φ2 ∈ NN (width ≤ 16N + 30; depth ≤ 5L + 7) such that923

∣φ2(m,k) − ym,k∣ ≤ ε, for m = 0,1,⋯,M − 1 and k = 0,1,⋯, L̂ − 1, (4.13)924

and925

0 ≤ φ2(x1, x2) ≤ ymax, for any x1, x2 ∈ R, (4.14)926
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φ1(j)
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φ1(j)

j − L̂φ1(j)

φ(j) := φ2
(
φ1(j), j − L̂φ1(j)

)
= φ2(m, `) = φ(j) ≈ ym,` = yj

φ1 φ2

Figure 15: An illustration of the ReLU network implementing the desired function φ
based Equation (4.12). The index j ∈ {0,1,⋯,ML̂−1} is unique represented by j =mL+k
for m ∈ {0,1,⋯,M − 1} and k ∈ {0,1,⋯, L̂ − 1}.

where ymax ∶= max{ym,k ∶m = 0,1,⋯,M−1 and k = 0,1,⋯, L̂−1} = max{yj ∶ j = 0,1,⋯, J−927

1}.928

By Lemma 4.2,929

φ1 ∈ NN (#input = 1; widthvec = [2N,4NL − 1]; #output = 1)

⊆ NN (#input = 1; width ≤ 8N + 2; depth ≤ L + 1; #output = 1).
930

Recall that φ2 ∈ NN (width ≤ 16N + 30; depth ≤ 5L + 7). So φ ∈ NN (width ≤ 16N +931

30; depth ≤ (L + 1) + 2 + (5L + 7) = 6L + 10) as shown in Figure 15.932

Equation (4.14) implies933

0 ≤ φ(x) ≤ ymax, for any x ∈ R,934

since φ is given by φ(x) = φ2(φ1(x), x − L̂φ1(x)).935

Represent j ∈ {0,1,⋯,ML̂ − 1} via j = mL̂ + k for m = 0,1,⋯,M − 1 and k =936

0,1,⋯, L̂ − 1. Then, by Equation (4.13), we have937

∣φ(j) − yj ∣ = ∣φ2(φ1(j), j − L̂φ1(j)) − yj ∣ = ∣φ2(m,k) − ym,k∣ ≤ ε,938

for any j ∈ {0,1,⋯,ML̂ − 1} = {0,1,⋯, J − 1}. So we finish the proof.939

We would like to remark that the key idea in the proof of Proposition 3.2 is the bit940

extraction technique in Lemma 4.5, which allows us to store Ln bits in a binary number941

bin0.θ1θ2⋯θLn and extract each bit θi. The extraction operator can be efficiently carried942

out via a deep ReLU neural network demonstrating the power of depth.943

5 Conclusion and future work944

This paper aims at a quantitative and optimal approximation rate for ReLU net-945

works in terms of the width and depth to approximate continuous functions. It is946

shown by construction that ReLU networks with width O(N) and depth O(L) can947

approximate an arbitrary continuous function f on [0,1]d with an approximation rate948

O(ωf((N2L2 lnN)−1/d) ). By connecting the approximation property to VC-dimension,949

we prove that such a rate is optimal for Hölder continuous functions on [0,1]d in terms950

of the width and depth separately, and hence this rate is also optimal for the whole951

continuous function class. We also extend our analysis to general continuous functions952

on any bounded subset of Rd. We would like to remark that our analysis was based on953

the fully connected feed-forward neural networks and the ReLU activation function. It954

would be very interesting to extend our conclusions to neural networks with other types955

of architectures (e.g., convolutional neural networks) and activation functions (e.g., tanh956

and sigmoid functions).957
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